贵州东南部榕江加里东褶皱带内的现今地应力分布特征及构造分析

李兵, 王建新, 王显军, 丁立丰, 郭启良. 贵州东南部榕江加里东褶皱带内的现今地应力分布特征及构造分析[J]. 地质力学学报, 2019, 25(6): 1048-1057. doi: 10.12090/j.issn.1006-6616.2019.25.06.087
引用本文: 李兵, 王建新, 王显军, 丁立丰, 郭启良. 贵州东南部榕江加里东褶皱带内的现今地应力分布特征及构造分析[J]. 地质力学学报, 2019, 25(6): 1048-1057. doi: 10.12090/j.issn.1006-6616.2019.25.06.087
LI Bing, WANG Jianxin, WANG Xianjun, DING Lifeng, GUO Qiliang. DISTRIBUTION OF PRESENT-DAY CRUSTAL STRESS AND TECTONIC ANALYSIS IN THE RONGJIANG CALEDONIAN FOLD BELT, SOUTHEASTERN GUIZHOU[J]. Journal of Geomechanics, 2019, 25(6): 1048-1057. doi: 10.12090/j.issn.1006-6616.2019.25.06.087
Citation: LI Bing, WANG Jianxin, WANG Xianjun, DING Lifeng, GUO Qiliang. DISTRIBUTION OF PRESENT-DAY CRUSTAL STRESS AND TECTONIC ANALYSIS IN THE RONGJIANG CALEDONIAN FOLD BELT, SOUTHEASTERN GUIZHOU[J]. Journal of Geomechanics, 2019, 25(6): 1048-1057. doi: 10.12090/j.issn.1006-6616.2019.25.06.087

贵州东南部榕江加里东褶皱带内的现今地应力分布特征及构造分析

  • 基金项目:
    中央级公益性科研院所基本科研业务专项资助项目(ZDJ2016-06,ZDJ2019-20)
详细信息
    作者简介: 李兵(1984-), 男, 助理研究员, 从事地应力测量以及构造应力场方面的研究。E-mail:mycoon@139.com
  • 中图分类号: P553

DISTRIBUTION OF PRESENT-DAY CRUSTAL STRESS AND TECTONIC ANALYSIS IN THE RONGJIANG CALEDONIAN FOLD BELT, SOUTHEASTERN GUIZHOU

  • 贵州东南部位于盖层极不发育的榕江加里东褶皱带内,为查明该区域内的地应力状态,在贵州省黔南州境内进行了7个钻孔的水压致裂地应力测量工作,同时结合贵州西部已有研究结果和贵州西北部1个钻孔的地应力测量资料,对贵州东南部与西部和西北部的地应力分布差异进行了对比研究,最后结合断层的活动性质以及Byerlee准则探讨了测孔区域断层的稳定性,结果表明:水平主应力在研究区占主导地位,最大水平主应力方向表现为北西向;根据安德森断层理论,三向主应力的相对大小有利于逆断层和走滑断层的活动,这与研究区发育的活动断层性质相对应;最大和最小水平主应力的线性拟合结果表明,研究区水平主应力的梯度大于黔西煤层地区、广西盆地东北部和全国的地应力梯度值,最大水平主应力的值在相近深度上大于黔西、黔西北地区和广西盆地东北部;三都断裂带附近存在较高的构造应力,μm值(最大剪应力与平均主应力的比值)较高,表明断层处于摩擦极限平衡状态;而三江-融安断裂两侧的构造作用存在较为明显的差异,西侧的构造作用强于东侧;虽然部分钻孔内的μm值都处于高值,但区域应力方向与断层多以较大角度相交,因此断层是稳定的,这与研究区的地震活动性相吻合。

  • 加载中
  • 图 1  研究区的断层分布图[11]

    Figure 1. 

    图 2  压力-时间测量曲线和SH方向

    Figure 2. 

    图 3  三向主应力随深度变化

    Figure 3. 

    图 4  K值随深度变化

    Figure 4. 

    图 5  研究区和广西东北部的水平应力之和与之差随深度变化

    Figure 5. 

    图 6  三江-融安断裂带两侧相近深度上的水平主应力随深度变化

    Figure 6. 

    表 1  地应力测量结果

    Table 1.  Results of in-situ stress measurement in boreholes

    孔号 岩性 序号 深度/m 主应力值/MPa 方位/(°) P0/MPa μm KHmax Ka K
    SH Sh SV
    DZ-1 泥质灰岩 1 197.00 12.79 7.06 5.21 N28°W 1.93 0.54 2.45 1.90 3.31
    泥质灰岩 2 239.40 16.35 9.88 6.33 N32°W 2.35 0.56 2.58 2.07 3.52
    泥质灰岩 3 249.60 16.71 10.37 6.6 2.45 0.55 2.53 2.05 3.44
    泥质灰岩 4 263.36 17.73 10.26 6.97 N41°W 2.58 0.55 2.54 2.01 3.45
    泥质灰岩 5 272.14 17.83 10.3 7.2 2.67 0.54 2.48 1.95 3.35
    泥质灰岩 6 293.24 18.85 11.19 7.76 2.87 0.53 2.43 1.94 3.27
    DZ-2 炭质页岩 1 284.02 15.29 10.13 7.52 N44°W 1.68 0.40 2.03 1.69 2.33
    炭质页岩 2 293.79 16.43 9.88 7.78 2.12 0.43 2.11 1.69 2.53
    炭质页岩 3 315.91 15.85 9.10 8.36 2.34 0.38 1.90 1.49 2.24
    炭质页岩 4 324.25 17.53 10.38 8.58 N37°W 2.42 0.42 2.04 1.63 2.45
    炭质页岩 5 344.29 20.13 11.87 9.11 N53°W 2.62 0.46 2.21 1.76 2.70
    TMS-1 砂质板岩 1 108.62 10.20 5.39 2.87 0.44 0.60 3.55 2.72 4.02
    砂质板岩 2 152.86 11.1 7.95 4.04 N63°W 0.87 0.53 2.75 2.36 3.23
    砂质板岩 3 222.62 11.82 7.63 5.89 N55°W 1.56 0.41 2.01 1.65 2.37
    砂质板岩 4 341.31 13.86 7.97 9.03 2.72 0.36 1.53 1.21 1.77
    GT-1 石英砂岩 1 148.50 7.52 4.91 3.93 1.09 0.39 1.91 1.58 2.26
    石英砂岩 2 162.80 10.83 8.2 4.31 1.23 0.51 2.51 2.21 3.12
    石英砂岩 3 249.50 13.78 8.32 6.6 N43°W 2.08 0.44 2.09 1.67 2.59
    石英砂岩 4 261.00 14.73 8.96 6.91 N48°W 2.19 0.45 2.13 1.71 2.66
    石英砂岩 5 277.60 15.47 9.43 7.35 2.35 0.45 2.10 1.69 2.62
    石英砂岩 6 286.90 16.08 10.51 7.59 2.44 0.45 2.12 1.75 2.65
    LX2 石英砂岩 1 144.44 8.23 5.06 3.82 1.32 0.47 2.15 1.74 2.76
    石英砂岩 2 213.00 14.36 10.69 5.64 2 0.55 2.55 2.22 3.40
    石英砂岩 3 277.11 14.42 8.89 7.33 N41°W 2.62 0.43 1.97 1.59 2.51
    石英砂岩 4 378.00 15.49 10.83 10 3.61 0.30 1.55 1.32 1.86
    石英砂岩 5 425.30 16.75 11.4 11.25 N56°W 4.08 0.28 1.49 1.25 1.77
    石英砂岩 6 462.30 18.42 11.93 12.22 N35°W 4.44 0.30 1.51 1.24 1.80
    LX5 泥质砂岩 1 200.50 7.91 4.81 5.11 N40°W 1.87 0.35 1.55 1.24 1.86
    泥质砂岩 2 220.10 8.75 5.91 5.61 N47°W 2.07 0.31 1.56 1.31 1.89
    泥质砂岩 3 228.00 9.37 6.83 5.81 2.14 0.33 1.61 1.39 1.97
    泥质砂岩 4 238.80 11.28 7.25 6.06 2.24 0.41 1.86 1.53 2.37
    泥质砂岩 5 289.18 10.77 6.43 7.37 N54°W 2.74 0.37 1.46 1.17 1.73
    JGS-2 花岗岩 1 119.41 9.68 6.49 3.16 1.17 0.62 3.06 2.56 4.28
    花岗岩 2 166.50 10.34 6.41 4.41 1.63 0.52 2.34 1.90 3.13
    花岗岩 3 206.00 12.60 7.65 5.45 N35°W 2.02 0.51 2.31 1.86 3.08
    花岗岩 4 234.50 15.85 10.4 6.2 2.3 0.55 2.56 2.12 3.47
    花岗岩 5 269.30 17.00 10.76 7.13 N52°W 2.64 0.52 2.38 1.95 3.20
    花岗岩 6 278.70 17.50 10.92 7.37 N56°W 2.73 0.52 2.37 1.93 3.18
    花岗岩 7 288.50 17.69 10.95 7.63 2.83 0.51 2.32 1.88 3.10
    Bgp1
    (黔西北毕节地区)
    页岩 1 278.50 7.19 4.73 7.37 1.77 0.22 0.98 0.81
    页岩 2 295.00 10.45 6.69 7.81 1.93 0.22 1.34 1.10
    页岩 3 358.50 14.37 9.31 10.20 NW50° 2.55 0.21 1.41 1.16
    页岩 4 387.80 12.26 7.80 10.26 NW42° 2.84 0.22 1.19 0.98
    页岩 5 425.40 12.13 7.77 11.26 3.21 0.22 1.08 0.88
    页岩 6 448.60 12.56 8.40 11.87 NW54° 3.44 0.20 1.06 0.88
    注:Sv—垂直主应力;P0—静水压力;Ka—平均水平主应力与垂直应力之比;KHmax—最大水平主应力与垂直主应力之比;K′—有效应力条件下的KHmaxμm—最大剪应力与平均主应之比
    下载: 导出CSV

    表 2  地应力随深度变化拟合方程

    Table 2.  Fitting equation of in-situ stress with depths in different regions

    地区 拟合方程 深度范围
    黔东南 SH=0.032z+5.771;r2=0.52 Sh=0.020z+3.740;r2=0.53 100~500 m
    黔西地区[13] SH=0.0263z+1.2445;r2=0.59 Sh=0.0193z+0.8726;r2=0.70 100~1300 m
    广西东北部[10] SH=0.026z+4.052,r2=0.61 Sh=0.017z+2.555;r2=0.71 100~650 m
    中国大陆[16] SH=0.0301z+4.363 Sh=0.0185z+2.093 50~1000 m
    下载: 导出CSV
  • HAST N. The state of stress in the upper part of the earth's crust[J]. Tectonophysics, 1969, 8(3): 169-211. doi: 10.1016/0040-1951(69)90097-3

    BROWN E T, HOEK E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211-215. http://cn.bing.com/academic/profile?id=4ce40fe47cc2324742e2ee91f75225d3&encoded=0&v=paper_preview&mkt=zh-cn

    RUMMEL F, MÖHRING-ERDMAN, G, BAUMGÄRTNER J. PAGEOPH. Stress constraints and hydrofracturing stress data for the continental crust[J]. Pure and Applied Geophysics, 1986, 124(4-5): 875-895. doi: 10.1007/BF00879616

    BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4-5): 615-626. doi: 10.1007/BF00876528

    秦向辉, 陈群策, 孟文, 等.大地震前后实测地应力状态变化及其意义:以龙门山断裂带为例[J].地质力学学报, 2018, 24(3): 309-320. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180303&journal_id=dzlxxb

    QIN Xianghui, CHEN Qunce, MENG Wen, et al. Evaluating measured in-situ stress state changes associated with earthquakes and its implications: a case study in the longmenshan fault zone[J]. Journal of Geomechanics, 2018, 24(3): 309-320. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180303&journal_id=dzlxxb

    陈群策, 孙东生, 崔建军, 等.雪峰山深孔水压致裂地应力测量及其意义[J].地质力学学报, 2019, 25(5): 853-865. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190514&journal_id=dzlxxb

    CHEN Qunce, SUN Dongsheng, CUI Jianjun, et al. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 2019, 25(5): 853-865. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190514&journal_id=dzlxxb

    王艳华, 崔效锋, 胡幸平, 等.基于原地应力测量数据的中国大陆地壳上部应力状态研究[J].地球物理学报, 2012, 55(9): 3016-3027. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201209020

    WANG Yanhua, CUI Xiaofeng, HU Xingping, et al. Study on the stress state in upper crust of China mainland based on in-situ stress measurements[J]. Chinese Journal of Geophysics, 2012, 55(9): 3016-3027. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201209020

    RALEIGH C B, HEALY J H, BREDEHOEFT J D. An experiment in earthquake control at Rangely, Colorado[J]. Science, 1976, 191(4233): 1230-1237. doi: 10.1126/science.191.4233.1230

    ZOBACK M D, HICKMAN S. In situ study of the physical mechanisms controlling induced seismicity at monticello reservoir, South Carolina[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B8): 6959-6974. doi: 10.1029/JB087iB08p06959

    李兵, 李兵岩, 张策, 等.广西盆地东北部的地应力分布特征[J].岩石力学与工程学报, 2017, 36(S1): 3475-3484. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2017S1041.htm

    LI Bing, LI Bingyan, ZHANG Ce, et al. Distribution characteristics of the crustal stress in the northeast of Guangxi Basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3475-3484. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSLX2017S1041.htm

    马杏垣.中国岩石圈动力学地图集[M].中国地图出版社, 1989.

    MA Xingyuan. Lithspheric dynamics atlas of China[M]. Beijing: China Cartographc Publishing House, 1989. (in Chinese)

    高振鲲.贵州高原现今应力场数值模拟及其工程地质意义[D].贵阳: 贵州大学, 2008.http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=2008206049.nh

    GAO Zhenkun. Mathematical simulation research on present tectonic stress field and its engineering geology significance of Guizhou plateau[D]. Guizhou: Guizhou University, 2008. (in Chinese with English abstract)

    徐宏杰, 桑树勋, 易同生, 等.黔西地应力场特征及构造成因[J].中南大学学报(自然科学版), 2014, 45(6): 1960-1966. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201406029

    XU Hongjie, SANG Shuxun, YI Tongsheng, et al. Characteristics of in-situ stress field and its tectonic origin in Western Guizhou[J]. Journal of Central South University (Science and Technology), 2014, 45(6): 1960-1966. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201406029

    许忠淮, 汪素云, 黄雨蕊, 等.由大量的地震资料推断的我国大陆构造应力场[J].地球物理学报, 1989, 32(6): 636-647. doi: 10.3321/j.issn:0001-5733.1989.06.004

    XU Zhonghuai, WANG Suyun, HUANG Yurui, et al. The tectonic stress field of Chinese continent deduced from a great number of earthquakes[J]. Chinese Journal of Geophysics, 1989, 32(6): 636-647. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5733.1989.06.004

    李细光, 史水平, 黄洋, 等.广西及其邻区现今构造应力场研究[J].地震研究, 2007, 30(3): 235-240. doi: 10.3969/j.issn.1000-0666.2007.03.006

    LI Xiguang, SHI Shuiping, HUANG Yang, et al. Current tectonic stress field in Guangxi and vicinity[J]. Journal of Seismological Research, 2007, 30(3): 235-240. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0666.2007.03.006

    景锋, 盛谦, 张勇慧, 等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报, 2007, 26(10): 2056-2062. doi: 10.3321/j.issn:1000-6915.2007.10.014

    JING Feng, SHENG Qian, ZHANG Yonghui, et al. Research on distribution rule of shallow crustal geostress in China mainland[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2056-2062. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.10.014

    李兵, 丁立丰, 王建新, 等.山东蓬莱近海岸的地应力状态及断层稳定性评价[J].地质力学学报, 2019, 25(4): 459-466. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190402&journal_id=dzlxxb

    LI Bing, DING Lifeng, WANG Jianxin, et al. The state of the in-situ stress and fault stability evaluation of the Penglai coast[J]. Journal of Geomechanics, 2019, 25(4): 459-466. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190402&journal_id=dzlxxb

    HAIMSON B C, CORNET F H. ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002

    ZOBACK M D. Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2010.

    李延栋.中国区域地质志, 贵州志[M].北京:地质出版社, 2017.

    LI Yandong. China regional geological records, Guizhou Zhi[M]. Beijing: Geological Publishing House, 2017. (in Chinese)

    谢富仁, 崔效峰, 赵建涛, 等.中国大陆及邻区现代构造应力场分区[J].地球物理学报, 2004, 47(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016

    XIE Furen, CUI Xiaofeng, ZHAO Jiantao, et al. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 2004, 47(4): 654-662. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5733.2004.04.016

    李学刚, 杨坤光, 胡祥云, 等.黔东凯里—三都断裂结构及形成演化[J].成都理工大学学报:自然科学版, 2012, 39(1): 18-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201201003

    LI Xuegang, YANG Kunguang, HU Xiangyun, et al. Formation and evolution of the Kaili-Sandu fault in East Guizhou, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(1): 18-26. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201201003

    刘志臣, 杜威, 陈坡, 等.贵州从江那哥铅锌多金属矿构造变形特征[J].矿业工程研究, 2012, 27(2): 64-69. doi: 10.3969/j.issn.1674-5876.2012.02.015

    LIU Zhichen, DU Wei, CHEN Po, et al. Study on deformation characteristics of Nage Pb-Zn-polymetallic sulfide ore deposit in Congjiang County of Guizhou Province[J]. Mineral Engineering Research, 2012, 27(2): 64-69. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-5876.2012.02.015

    汤世凯, 马筱, 杨坤光, 等.黔东桂北加里东期两类构造变形特征与成因机制探讨[J].现代地质, 2014, 28(1): 109-118. doi: 10.3969/j.issn.1000-8527.2014.01.010

    TANG Shikai, MA Xiao, YANG Kunguang, et al. Characteristics and genesis of two types of tectonic deformation during Caledonian in eastern Guizhou and northern Guangxi[J]. Geoscience, 2014, 28(1): 109-118. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2014.01.010

    RANALLI G, CHANDLER T E. The stress field in the upper crust as determined from in situ measurements[J]. Geologische Rundschau, 1975, 64(1): 653-674. doi: 10.1007/BF01820688

    高莉青, 陈宏德.岩体应力状态的影响因[C]//素国家地震局地壳应力研究所情报室.地应力测量理论研究与应用.北京: 地质出版社, 1987.

    GAO Liqing, CHEN Hongde. The influence of the stress state of rock mass due to the compiling of the information room of the Institute of crustal stress[C]//National Seismological Bureau. Research and Application of Geostress Measurement Theory and Application. Beijing: Geological Publishing House, 1987. (in Chinese)

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1156
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2019-06-15
修回日期:  2019-08-29
刊出日期:  2019-12-31

目录