Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges reservoir area
-
摘要:
长江两岸高耸的危岩体对航道、沿岸居民带来巨大安全隐患。大宁河属于长江一级支流,龙门寨危岩体位于大宁河上,距离巫山县城仅1 km。利用FLOW-3D软件,模拟了145 m、175 m两种水位工况下龙门寨危岩体崩塌产生涌浪过程和涌浪传播过程。模拟结果表明,涌浪在145 m水位工况下最大浪高约为17.9 m,175 m水位工况下最大浪高约为11.6 m;在巫山县的五个码头处,两种水位工况最大涌浪爬高分别约为10.9 m、3.8 m;根据涌浪高度,对大宁河进行危险分区,145 m水位工况下极高危险区长度约4.4 km,很高危险区长度约1.9 km;175 m水位工况下极高危险区长度约3.0 km,很高危险区长度约1.0 km。研究结果有助于防控龙门寨危岩体潜在涌浪灾害危害,保障大宁河航道和巫山县码头安全,同时也为三峡库区滑坡涌浪灾害提供了预警依据。
Abstract:The towering rock masses on both sides of the Yangtze River bring huge safety hazards to the waterway and residents along the river. The Daning River is a tributary of the Yangtze River. The dangerous rock mass in Longmen Village is located above the Daning River, only 1km away from Wushan County. In this paper, the FLOW-3D software model is used to simulate the generation and propagation processes of the surge induced by the collapse of the dangerous rock mass in Longmen Village under two water level conditions of 145 m and 175 m. The numerical simulation analysis shows that the maximum surge height at 145 m and 175 m water level is about 17.8 m and 11.6 m respectively. At the five wharfs in Wushan County, the maximum surge climbs as high as 6.4m and 2.1 m respectively under the two water level conditions. According to the surge height, the Daning River area is zoned based on the risk level. When the water level is 145 m high, the extremely high-risk zone is about 4.4 km and the very high-risk zone is about 1.9 km; when the water level is 175 m high, the extremely high-risk zone is about 3.0 km and the very high-risk zone is about 1 km. The potential surge hazard of the dangerous rock mass in Longmen Village endangers the safety of the Daning River waterway and the wharfs in Wushan county. This study provides a basis for the early warning of landslide-induced surge disasters in the Three Gorges reservoir area.
-
-
ATAIE-ASHTIANI B, NIK-KHAH A, 2008. Impulsive waves caused by subaerial landslides[J]. Environmental Fluid Mechanics, 8(3):263-280. doi: 10.1007/s10652-008-9074-7
Chinese Society of Rock Mechanics and Engineering, 2019. Group criteria for Landslide surge risk Assessment (draft submission)[R]. Beijing: Chinese Society of Rock Mechanics and Engineering. (in Chinese)
FRITZ H M, HAGER W H, MINOR H E, 2004. Near field characteristics of landslide generated impulse waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6):287-302. doi: 10.1061/(ASCE)0733-950X(2004)130:6(287)
GUO H W, WU C C, 2000. The mathematical model for landslide and its application[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 21(1):24-27. (in Chinese) http://cn.bing.com/academic/profile?id=a6856ac753e215c04562f3065c1eb75a&encoded=0&v=paper_preview&mkt=zh-cn
HUANG B L, LIU G N, WANG S C, et al., 2015. Study on disaster formation mechanism of high and steep bank slope in three Gorges Reservoir area[M]. Beijing:Science Press. (in Chinese)
HUANG B L, WANG S C, CHEN X T, et al., 2013. Prototype physical similarity experimental study of impulsive wave generated by cataclastic rockmass failur[J]. Chinese Journal of Rock Mechanics and Engineering, 32(7):1417-1425. (in Chinese) https://www.researchgate.net/publication/285207183_Prototype_physical_similarity_experimental_study_of_impulsive_wave_generated_by_cataclastic_rockmass_failure
HUANG B L, YIN Y P, 2018. Risk assessment research on impulse wave generated by landslide in reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 37(3):621-629. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201803010.htm
HUANG B L, YIN Y P, DU C L, 2016. Risk management study on impulse waves generated by Hongyanzi landslide in Three Gorges Reservoir of China on June 24, 2015[J]. Landslides, 13(3):603-616. doi: 10.1007/s10346-016-0702-x
HUANG B L, YIN Y P, LIU G N, et al., 2012. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008[J]. Landslides, 9(3):395-405. doi: 10.1007/s10346-012-0331-y
HUANG B L, YIN Y P, WANG S C, et al., 2017. Analysis of the Tangjiaxi landslide-generated waves in the Zhexi Reservoir, China, by a granular flow coupling model[J]. Natural Hazards and Earth System Sciences, 17(5):657-670. doi: 10.5194/nhess-17-657-2017
HUANG B L, YIN Y P, WANG S C, et al., 2019. Landslide surge analysis[M]. Beijing:Science Press. (in Chinese)
HUO Z T, HUANG B L, ZHANG Q, et al., 2020. Analysis of surge induced by Heishiban landslide in Three Gorges Reservoir area[J]. Water Resources and Hydropower Engineering, 51(1):115-122. (in Chinese)
KOO W, KIM M H, 2008. Numerical modeling and analysis of waves induced by submerged and aerial/sub-aerial landslides[J]. KSCE Journal of Civil Engineering, 12(2):77-83. doi: 10.1007/s12205-008-0077-1
LI J, CHEN J Y, XU Q, et al., 2018. Study on the influence factors of landslide surge wave on the impact pressure on dam's surface[J]. Journal of Hydraulic Engineering, 49(2):232-240. (in Chinese) http://www.researchgate.net/publication/327988806_Study_on_the_influence_factors_of_landslide_surge_wave_on_the_impact_pressure_on_dam's_surface
LIU L, YIN K L, WANG J J, et al., 2016. Dynamic evaluation of regional landslide hazard due to rainfall:a case study in Wanzhou central district, Three Gorges reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 35(3):558-569. (in Chinese) https://link.springer.com/article/10.1007/s11629-016-4353-0
LIU T, PENG D F, LIU J W, et al., 2019. Countermeasure analysis of shipping development of Yichang-Wuhan section of Yangtze River trunk Line[J]. Journal of Water Conservancy and Transportation Engineering, (1):76-84. (in Chinese)
LIU X R, JING R, MIAO L L, et al., 2020. The model and typical case analysis of bank slope reservoir bank reconstruction in Wushan Section[J]. Journal of Rock Mechanics and Engineering, 39(7):1321-1332. (in Chinese)
MIH W C, 1999. High concentration granular shear flow[J]. Journal of Hydraulic Research, 37(2):229-248. doi: 10.1080/00221689909498308
PENG H, WU F, JIN K, et al., 2017. Experimental study on head wave height of surge caused by landslide of reservoir bank[J]. Water Resources and Hydropower Engineering, 48(12):95-100. (in Chinese)
REN X W, TANG Y Q, DAI Y X, et al., 2009. Improved method for calculating landslide initial surge height[J]. Journal of Hydraulic Engineering, 40(9):1116-1119. (in Chinese) http://cn.bing.com/academic/profile?id=73f2274efba92ff784e946919de8a46a&encoded=0&v=paper_preview&mkt=zh-cn
Tao X Q, 1994. An experimental study on landslide surge during normal operation of Lijiaxia reservoir[J]. Northwest Water Power, (1):42-45. (in Chinese)
TEUFELSBAUER H, WANG Y, PUDASAINI S P, et al., 2011. DEM simulation of impact force exerted by granular flow on rigid structures[J]. Acta Geotechnica, 6(3):119-133. doi: 10.1007/s11440-011-0140-9
WANG J C, SUN J H, 2019. Characteristics and Stability analysis of rock collapse of low-angled red-bed slope in east Sichuan[J]. Journal of Geomechanics, 25(6):1091-1098. (in Chinese)
WANG P Y, HAN L F, YU T, et al., 2016. Effects of landslide generated impulse waves on ship impact force for pile wharf[J]. Journal of Harbin Engineering University, 37(6):878-884. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HEBG201606021.htm
WANG T H, TANG M G, LI Y J, et al., 2018. Study on risk assessment of regional geohazard:a case study of Xuanhan Region[J]. Water Resources and Hydropower Engineering, 49(11):157-164. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-SJWJ201811022.htm
WANG W P, LI B, HUANG B L, et al., 2016. Stability analysis of sub-horizontal thick-bedded slope in three gorges reservior area:a case study of Jianchuandong dangerous rockmass in Wushan, Chongqing[J]. Journal of Geomechanics, 22(3):725-732. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201603026.htm
WANG Y, LIU J Z X, ZHANG Y, et al., 2018. Review of wave amplitude prediction generatedby landslide based on physical experiments[J]. Geology and Mineral Resources of South China, 34(4):279-288. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC201804002.htm
XIE H Q, JIANG C B, DENG B, et al., 2017. Formation and propagation regulation of water waves caused by the landslides in narrow reservoir's river channel[J]. Journal of Transport Science and Engineering, 33(4):45-50, 76. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-CSJX201704009.htm
YANG L W, WEI Y J, WANG W P, et al., 2018. Research on dynamic characteristics of the Kalayagaqi landslide in Yining country, Xinjiang[J]. Journal of Geomechanics, 24(5):699-705. (in Chinese)
YIN Y P, HUANG B L, LIU G N, et al., 2015. Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir, China[J]. Environmental Earth Sciences, 74(3):2595-2607. doi: 10.1007/s12665-015-4278-x
YU R F, 1995. Study on landslide surge and landslide warning near dam bank of Longyangxia Project in Yellow River[J]. Water Power, (3):14-16, 37. (in Chinese)
ZHANG M L, SHEN Y M, 2008. Three-dimensional simulation of meandering river based on 3-D RNG κ-ε turbulence model[J]. Journal of Hydrodynamics, 20(4):448-455. doi: 10.1016/S1001-6058(08)60079-7
ZHOU J W, XU F G, YANG X G, et al., 2016. Comprehensive analyses of the initiation and landslide-generated wave processes of the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir, China[J]. Landslides, 13(3):589-601. doi: 10.1007/s10346-016-0704-8
郭洪巍, 吴葱葱, 2000.水库滑坡涌浪的数学模型及其应用[J].华北水利水电学院学报, 21(1):24-27. http://www.cnki.com.cn/Article/CJFDTotal-HBSL200001006.htm
黄波林, 王世昌, 陈小婷, 等, 2013.碎裂岩体失稳产生涌浪原型物理相似试验研究[J].岩石力学与工程学报, 32(7):1417-1425. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201307015.htm
黄波林, 刘广宁, 王世昌, 等, 2015.三峡库区高陡岸坡成灾机理研究[M].北京:科学出版社.
黄波林, 殷跃平, 2018.水库区滑坡涌浪风险评估技术研究[J].岩石力学与工程学报, 37(3):621-629. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201803010.htm
黄波林, 殷跃平, 王世昌, 等, 2019.滑坡涌浪分析[M].北京:科学出版社.
霍志涛, 黄波林, 张全, 等, 2020.三峡库区黑石板滑坡涌浪分析[J].水利水电技术, 51(1):115-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdjs202001013
李静, 陈健云, 徐强, 等, 2018.滑坡涌浪对坝面冲击压力的影响因素研究[J].水利学报, 49(2):232-240. http://www.cnki.com.cn/Article/CJFDTotal-SLXB201802010.htm
刘磊, 殷坤龙, 王佳佳, 等, 2016.降雨影响下的区域滑坡危险性动态评价研究:以三峡库区万州主城区为例[J].岩石力学与工程学报, 35(3):558-569. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201603013.htm
刘涛, 彭东方, 刘均卫.等, 2019.长江干线宜昌至武汉段航运发展对策分析[J].水利水运工程学报, (1):76-84. http://www.cnki.com.cn/Article/CJFDTotal-SLSY20190226009.htm
刘新荣, 景瑞, 缪露莉, 等, 2020.巫山段消落带岸坡库岸再造模式及典型案例分析[J].岩石力学与工程学报, 39(7):1321-1332.
彭辉, 吴凡, 金科, 等, 2017.库岸滑坡涌浪首浪高度试验研究[J].水利水电技术, 48(12):95-100. http://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201712016.htm
任兴伟, 唐益群, 代云霞, 等, 2009.滑坡初始涌浪高度计算方法的改进及其应用[J].水利学报, 40(9):1116-1119. http://www.cqvip.com/QK/90347X/200909/1001031982.html
陶孝铨, 1994.李家峡水库正常运行期的滑坡涌浪试验研究[J].西北水电, (1):42-45. http://www.cqvip.com/qk/98045X/199401/1512012.html
王军朝, 孙金辉, 2019.川东红层缓倾角岩质崩塌特征与稳定性分析[J].地质力学学报, 25(6):1091-1098. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190610&journal_id=dzlxxb
王平义, 韩林峰, 喻涛, 等, 2016.滑坡涌浪对高桩码头船舶撞击力的影响[J].哈尔滨工程大学学报, 37(6):878-884. http://www.cnki.com.cn/Article/CJFDTotal-HEBG201606021.htm
王天河, 汤明高, 李云杰, 等, 2018.区域地质灾害危险性评价研究:以宣汉地区为例[J].水利水电技术, 49(11):157-164. http://www.cqvip.com/QK/92237X/201811/7001070341.html
王文沛, 李滨, 黄波林, 等, 2016.三峡库区近水平厚层斜坡滑动稳定性研究:以重庆巫山箭穿洞危岩为例[J].地质力学学报, 22(3):725-732. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160326&journal_id=dzlxxb
汪洋, 刘继芝娴, 张宇, 等, 2018.基于物理模拟试验的滑坡涌浪波幅预测研究综述[J].华南地质与矿产, 34(4):279-288. http://www.cnki.com.cn/Article/CJFDTotal-HNKC201804002.htm
谢海清, 蒋昌波, 邓斌, 等, 2017.狭窄型库区河道滑坡涌浪的形成及其传播规律[J].交通科学与工程, 33(4):45-50, 76. http://www.cqvip.com/QK/98148X/201704/674251789.html
杨龙伟, 魏云杰, 王文沛, 等, 2018.新疆伊宁县喀拉亚尕奇滑坡动力学特征研究[J].地质力学学报, 24(5):699-705. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180513&journal_id=dzlxxb
余仁福, 1995.黄河龙羊峡工程近坝库岸滑坡涌浪及滑坡预警研究[J].水力发电, (3):14-16, 37. http://www.cqvip.com/Main/Detail.aspx?id=1890417
中国岩石力学与工程学会, 2019.滑坡涌浪危险性评估规范(送审稿)[R].北京: 中国岩石力学与工程学会.
-