Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area
-
摘要:
文章以金沙江下游乌东德水电站坝区右岸水垫塘高陡边坡为例,系统探索了高度超过500 m的高陡边坡地质灾害调查识别与监测预警技术。针对常规方法难以准确捕捉高陡边坡危岩体变形破坏特征这一问题,创新采用了"登山攀岩速降技术与地质调查、工程地质测绘相结合"的方法,在乌东德水电站坝区水垫塘高陡边坡共调查识别了178个危岩体。在此基础上,通过构建分布式光纤应变实时监测系统和具有明显裂缝的危岩体布设拉绳位移传感器,实现了高陡边坡危岩体形变的实时监测,监测结果与实际危岩体变形一致。此外,在高程580~1600 m的坡体上还布设了6个地震动监测台站,捕捉到了包括2016年12月8日乌东德地震和2017年3月12日的鲁甸地震在内的大量地震加速度数据,并以此分析了乌东德地震波作用下的岩体动力响应特征,结果显示该边坡处于基本稳定状态。上述研究思路和方法对西南水电站高陡边坡稳定性监测预警和风险评估具有借鉴意义。
Abstract:Taking the high-steep slope of Shuidiantang of the Wudongde dam on the Jinsha River as an example, this paper explores systematically the early warning technology and risk management of the high-steep slope monitoring with a height of over 500 m. Rock mass collapse often occurs at slopes with the gradient greater than 70°, and it is difficult to identify. With the method of rock climbing technique, geological survey and geological mapping, the high precision identification and analysis of the dangerous rock mass is achieved. Totally, 178 dangerous rocks are identified. On the basis of this result, the distributed optical fiber strain monitoring and the pull-line displacement sensor of the fractured rock are distributed to monitor in real-time the deformation of the rock mass. The monitoring data are in agreement with the reality. Furthermore, six seismic monitoring stations were set up between the slope of the elevation of 580~1600 m. Many seismic acceleration data were caught, including that of the Wudongde earthquake on December 8, 2016 and the Ludian earthquake on March 12, 2017. On the basis of these data, the stability and dynamic response of the Wudongde earthquake on this high-steep slope are analyzed. The results show that this slope is in the basically stable state. The ideas and methods of high-steep slope warning and risk assessment of southwest hydropower stations are of reference significance.
-
-
DING Y, SHI B, CUI H L, et al., 2005. A fiber optic sensing net applied in slope monitoring based on Brillouin scattering[J]. Chinese Journal of Geotechnical Engineering, 27(3):338-342. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC20050300J.htm
DONG W W, ZHU H H, SUN Y J, et al., 2016. Current status and new progress on slope deformation monitoring technologies[J]. Journal of Engineering Geology, 24(6):1088-1095. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201253353929.html
GHOSH S, VAN WESTEN C J, CARRANZA E J M, et al., 2012. Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities[J]. Engineering Geology, 128:49-62. doi: 10.1016/j.enggeo.2011.03.016
GONG W J, WANG Y S, LUO Y H, et al., 2020. Numerical verification of seismic dynamic response of Dongshan Slope in Qingchuan County[J]. Water Resources and Hydropower Engineering, 51(3):152-159. (in Chinese with English abstract)
HUANG R Q, 2005. Main characteristics of high rock slopes in southwestern China and their dynamic evolution[J]. Advances in Earth Science, 20(3):292-297. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXJZ200503004.htm
KANG Y, ZHAO C Y, ZHANG Q, et al., 2018. Research on the InSAR technique of landslide detection:A case study of Wudongde hydropower station section, Jinshajiang[J]. Journal of Geodesy and Geodynamics, 38(10):1053-1057. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-geodesy-geodynamics_thesis/0201270238264.html
LAWRENCE C M, NELSON D V, UDD E, et al., 1999. A fiber optic sensor for transverse strain measurement[J]. Experimental Mechanics, 39(3):202-209. http://link.springer.com/article/10.1007/BF02323553
LI H Z, LIU C P, HUANG X Q, et al., 2011. Study on block safety evaluation and treatment measures of high natural slope in key region of Wudongde hydropower station of Chin-sha River[J]. Resources Environment and Engineering, 25(5):468-473. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK201105024.htm
LI N, WANG B Q, MEN Y M, et al., 2018. Study on dynamic response of landslide supported by pressure-type anchor under earthquake[J]. Journal of Geomechanics, 24(4):490-497. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201804019.htm
LIEBERMAN R A, BLYLER L L, COHEN L G, 1990. A distributed fiber optic sensor based on cladding fluorescence[J]. Journal of Lightwave Technology, 8(2):212-220. doi: 10.1109/50.47873
LIU Z, LI B, HE K, et al., 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects[J]. Journal of Geomechanics, 26(1):115-124. (in Chinese with English abstract)
MCDOUGALL S, HUNGR O, 2004. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 41(6):1084-1097. doi: 10.1139/t04-052
PEREZ-HERRERA R A, LOPEZ-AMO M, 2013. Review:Fiber optic sensor networks[J]. Optical Fiber Technology, 19(6):689-699. doi: 10.1016/j.yofte.2013.07.014
QIAN Q H, 2010. New progress of Chinese rock engineering[J]. Engineering Science, 12(8):37-48. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GCKX201008007&dbcode=CJFD&year=2010&dflag=pdfdown
ROUYET L, KRISTENSEN L, DERRON M H, et al., 2017. Evidence of rock slope breathing using ground-based InSAR[J]. Geomorphology, 289:152-169. doi: 10.1016/j.geomorph.2016.07.005
SHEN H, LUO X Q, LI Y, et al., 2012. Three-dimensional stability analysis of dam abutment of Wudongde arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 31(5):1026-1033. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSLX201205021.htm
SHI B, ZHANG D, WANG B J, 2007. Distributed optical fiber monitoring technologies of geological and geotechnical engineering and its development[J]. Journal of Engineering Geology, 15(S2):109-116. (in Chinese with English abstract) http://www.gcdz.org/EN/abstract/abstract10134.shtml
SHI Y X, ZHANG Q, MENG X W, 2008. The application of distributed optical fiber sensing technology in landslide monitoring[J]. Journal of Jilin University (Earth Science Edition), 38(5):820-824. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=55136ac3a3cd4fea3f5ad41c86bcfb32&encoded=0&v=paper_preview&mkt=zh-cn
SONG S W, FENG X M, XIANG B Y, et al., 2011. Research on key technologies for high and steep rock slopes of hydropower engineering in southwest China[J]. Chinese Journal of Rock Mechanics and Engineering, 30(1):1-22. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201101002.htm
SUI H B, SHI B, ZHANG D, et al., 2008. Study on distributed optical fiber sensor-based monitoring for slope engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 27(Z2):3725-3731. (in Chinese with English abstract) http://www.researchgate.net/publication/289977418_Study_on_distributed_optical_fiber_sensor-based_monitoring_for_slope_engineering
WANG G J, XIE M W, CHAI X Q, et al., 2013. D-InSAR-based landslide location and monitoring at Wudongde hydropower reservoir in China[J]. Environmental Earth Sciences, 69(8):2763-2777. doi: 10.1007/s12665-012-2097-x
WANG L Q, YIN Y P, HUANG B L, et al., 2020. Damage evolution and stability analysis of the Jianchuandong Dangerous Rock Mass in the Three Gorges Reservoir Area[J]. Engineering Geology, 265:105439. doi: 10.1016/j.enggeo.2019.105439
WU S Z, YAN F Z, MEI Y T, 2005. Activities of the Reshuitang fault at the dam site region of the Wudongde hydropower station on the Jinshajiang river[J]. Journal of Engineering Geology, 13(4):455-460. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200504004.htm
XIAO W J, LIAO J M, ZHANG L L, 2018. Shaking table test on seismic dynamic responses of isolated mountains[J]. China Earthquake Engineering Journal, 40(3):582-590. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ201803026.htm
XIE M W, HUANG J X, WANG L W, et al., 2016. Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir[J]. Environmental Earth Sciences, 75(8):1-13. http://link.springer.com/article/10.1007/s12665-016-5446-3
XU Q M, YANG D Y, GE Z S, et al., 2006. Terraces along Sanduizi-Wudongde section of Jinsha River[J]. Scientia Geographica Sinica, 26(5):609-615. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200605015.htm
YI X L, TANG H M, WU Y P, et al., 2016. Application of the PPP-BOTDA distributed optical fiber sensor technology in the monitoring of the Baishuihe landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 35(Z1):3084-3091. (in Chinese with English abstract) http://www.researchgate.net/publication/317028869_Research_on_displacement_conversion_for_real-time_slope_monitoring_based_on_fiber_optical_sensing_technology
YIN Y P, 2009. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17(1):29-38. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200901005.htm
YIN Y P, WANG H D, GAO Y L, et al., 2010a. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China[J]. Landslides, 7(3):339-349. doi: 10.1007/s10346-010-0220-1
YIN Y P, ZHENG W M, LIU Y P, et al., 2010b. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China[J]. Landslides, 7(3):359-365. doi: 10.1007/s10346-010-0225-9
丁勇, 施斌, 崔何亮, 等, 2005.光纤传感网络在边坡稳定监测中的应用研究[J].岩土工程学报, 27(3): 338-342. http://www.cqvip.com/qk/95758x/2005003/15090933.html
董文文, 朱鸿鹄, 孙义杰, 等, 2016.边坡变形监测技术现状及新进展[J].工程地质学报, 24(6):1088-1095. http://www.cqvip.com/QK/98122X/201606/671080931.html
龚文俊, 王运生, 罗永红, 等, 2020.青川县东山斜坡地震动力响应数值验证[J].水利水电技术, 51(3):152-159. http://www.cnki.com.cn/Article/CJFDTotal-SJWJ202003021.htm
黄润秋, 2005.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展, 20(3):292-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200503005
康亚, 赵超英, 张勤, 等, 2018. InSAR滑坡探测技术研究:以金沙江乌东德水电站段为例[J].大地测量与地球动力学, 38(10):1053-1057. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201810012
李会中, 刘冲平, 黄孝泉, 等, 2011.金沙江乌东德水电站枢纽区高位自然边坡块体安全性评价与处理措施研究[J].资源环境与工程, 25(5):468-473. http://www.cqvip.com/QK/82916A/20115/39673284.html
李楠, 汪班桥, 门玉明, 等, 2018.压力型锚杆支护滑坡的地震动力响应特性研究[J].地质力学学报, 24(4):490-497. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180406&journal_id=dzlxxb
刘铮, 李滨, 贺凯, 等, 2020.地震作用下高陡岩质斜坡动力响应规律研究[J].地质力学学报, 26(1):115-124. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200112&journal_id=dzlxxb
钱七虎, 2010.中国岩石工程技术的新进展[J].中国工程科学, 12(8):37-48. http://www.cnki.com.cn/Article/CJFDTotal-GCKX201008007.htm
沈辉, 罗先启, 李野, 等, 2012.乌东德拱坝坝肩三维抗滑稳定分析[J].岩石力学与工程学报, 31(5):1026-1033. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201205021.htm
施斌, 张丹, 王宝军, 2007.地质与岩土工程分布式光纤监测技术及其发展[J].工程地质学报, 15(S2):109-116. http://www.gcdz.org/CN/abstract/abstract10134.shtml
史彦新, 张青, 孟宪玮, 2008.分布式光纤传感技术在滑坡监测中的应用[J].吉林大学学报(地球科学版), 38(5):820-824. http://d.wanfangdata.com.cn/Periodical/cckjdxxb200805016
宋胜武, 冯学敏, 向柏宇, 等, 2011.西南水电高陡岩石边坡工程关键技术研究[J].岩石力学与工程学报, 30(1):1-22. http://www.cqvip.com/QK/96026X/20111/39146875.html
隋海波, 施斌, 张丹, 等, 2008.边坡工程分布式光纤监测技术研究[J].岩石力学与工程学报, 27(Z2):3725-3731. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2008S2068.htm
吴世泽, 严福章, 梅应堂, 2005.金沙江乌东德水电站区热水塘断层活动性研究[J].工程地质学报, 13(4):455-460. http://www.cqvip.com/Main/Detail.aspx?id=20793051
肖文静, 廖佳名, 张亮亮, 2018.孤立山体地震动力响应的振动台试验研究[J].地震工程学报, 40(3):582-590. http://d.old.wanfangdata.com.cn/Periodical_xbdzxb201803026.aspx
胥勤勉, 杨达源, 葛兆帅, 等, 2006.金沙江三堆子-乌东德河段阶地研究[J].地理科学, 26(5):609-615. http://www.cnki.com.cn/Article/CJFDTotal-DLKX200605015.htm
易贤龙, 唐辉明, 吴益平, 等, 2016. PPP-BOTDA分布式光纤技术在白水河滑坡监测中的应用[J].岩石力学与工程学报, 35(Z1):3084-3091. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2016S1056.htm
殷跃平, 2009.汶川八级地震滑坡特征分析[J].工程地质学报, 17(1):29-38. http://d.wanfangdata.com.cn/Periodical/gcdzxb200901004
-