Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica
-
摘要:
东南极拉斯曼丘陵高级变质长英质岩石中铁钛氧化物的局部聚集与高级变质作用过程中的深熔作用有关,并非原岩富集这些组分。深熔作用造成惰性组分如铁钛氧化物滞留原地或略有聚集及活动性组分的迁移,而流体挥发组分优先聚集于熔体之中。当体系中水含量较低、处于不饱和状态时,深熔作用过程中形成局部"熔体",其结晶所成的浅色体不具低共结组分,没有熔体结晶结构,不是真正的熔体,可能是(准)熔体。较粗粒的浅色体或伟晶岩也是与深熔作用有关的产物,其形成早于花岗岩脉或岩体,而与花岗质岩浆分异无关。伴随(准)熔体的出现,体系中组分的萃取、分异效果较为明显,即可造成组分分异,形成截然不同的异地、二相分异结构,分别形成固相残留物(组成可以不固定)和(准)熔体相。固相残留体中富铝、铁组分,形成矽线石和铁钛氧化物团块,其中少或无挥发分;与此对应,短距离迁移浅色体中往往贫铁钛组分,可见石榴子石、偶见铁钛氧化物矿物。这种挥发分不饱和状态下的深熔作用基本属于封闭体系,整体失水不显著,高级变质岩中的一些特征矿物如矽线石、石榴子石、堇青石、尖晶石的形成也与这种分异作用有关,但组分迁移范围有限,并可保存组分分异各阶段的产物。拉斯曼丘陵长英质岩系中大量铁钛氧化物和矽线石类矿物组合的形成,反映了临界状态下的局部或差异抬升,变形作用的非均匀性及相伴随的组分分异作用,很可能相当于早期格林维尔期构造的泛非期再活动。
Abstract:Fe-Ti oxide minerals can be locally aggregated or enriched in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica. The enrichment is related to anatexis and subsequent high-grade metamorphism, not inherited from the protolith. The partial melting process was responsible for the residues or local enrichment of the inert Fe-Ti-Al elements and the migration of mobile components, and the volatiles were preferentially incorporated in the melt. In the water-deficient system, the local "melt" in anatexis crystallized to form the leucosomes without melt texture or minimum eutectic composition, suggesting the meta-melt feature, not real melt. The coarse leucosome or pegmatite occurred in anataxis as pre-granitic vein or body and had nothing to do with the late stage differentiation of the granitic magma. Together with the presence of the meta-melt, the substantial differentiation of the components resulted in solid residues and corresponding meta-melt phases, with the former enriched in Al, Fe elements and sillimanite, Fe-Ti oxide minerals occurred. On the contrary, the leucosomes with possible short distance migration of components were poor in Fe, Ti compositions, and seldom formed garnet and Fe-Ti oxides. The volatile-unsaturated anatexis was an essentially closed system and the total dehydration effect was not obvious. The presence of some typical minerals in high-grade metamorphism of the quartzofeldspathic gneisses, such as sillimanite, garnet, cordierite and spinel, was derived from component differentiation in partial melting of the rocks. However, the components migration was limited, and the evolving stages of metamorphism and differentiation could be preserved. Voluminous Fe-Ti oxides and sillimanite in the quartzofeldspathic gneisses suggest the possible local or differential uplifting of the area, the heterogeneity of deformation and accompanying components differentiation, corresponding to the reactivation of the earlier structures in the Pan-African event.
-
Key words:
- Fe-Ti oxides /
- anatexis /
- component differentiation /
- Pan-African event /
- Larsemann Hills
-
表 1 拉斯曼丘陵赤铁-钛铁矿及相关矿物的电子探针成分分析
Table 1. Microprobe composition of Fe-Ti oxides and related minerals in the Larsemann Hills
矿物成分/% Sil Mgt Hem-Ilm Ilm-Hem Spr Spl Bt1 Bt2 SiO2 35.81 0.02 0.02 0.02 10.84 0.03 37.91 38.27 TiO2 0.01 0.03 45.63 18.48 0.03 0.01 4.36 4.40 Al2O3 63.11 0.10 0.00 0.02 64.41 62.61 14.75 14.94 Cr2O3 0.04 0.28 0.03 0.15 0.11 0.31 0.05 0.04 MgO 0.12 0.08 0.87 0.26 14.30 12.07 17.57 17.94 CaO 0 0 0 0 0 0 0 0 MnO 0 0 0.02 0 0.01 0 0.01 0 FeO 0.49 92.63 53.05 75.18 10.19 25.71 10.37 9.80 ZnO 0.005 0 0 0.027 0.068 0 0.017 Na2O 0 0.04 0 0 0 0.01 0.12 0.11 K2O 0 0 0 0 0 0 10.57 10.45 Total 100.54 93.18 99.62 94.09 99.92 100.83 95.70 95.96 O 5 4 3 3 20 4 11 11 Si 0.9741 0.0009 0.0005 0.0006 1.3092 0.0008 2.7754 2.7814 Ti 0.0002 0.0012 0.9001 0.4567 0.0029 0.0002 0.2402 0.2406 Al 2.0238 0.0060 0.0008 9.1689 1.9590 1.2729 1.2802 Cr 0.0043 0.0111 0.0004 0.0039 0.0102 0.0064 0.0031 0.0022 Fe3+ 0.0100 Mg 0.0049 0.0061 0.0006 0.0128 2.5749 0.4777 1.9179 1.9441 Ca 0 Mn 0.0005 0.0010 0.0004 Fe2+ 3.9618 1.1635 2.0655 1.0291 0.5709 0.6353 0.5958 Zn 0.0002 0.0022 0.0013 0.0009 Na 0.0040 0 0.0005 0.0172 0.0157 K 0.9860 0.9671 注:电子探针WDS(波谱仪)分析在中国地质科学院地质研究所电子探针室完成,仪器型号JXA-8230,电压15KV,电流20nA,束斑直径5 μm,标样为天然或合成的矿物和氧化物,主要氧化物的分析误差约为1%。其中Hem-Ilm、Ilm-Hem为铁、钛氧化物混溶体,前者以赤铁矿(Hem)为主,后者以钛铁矿(Ilm)为主。矿物缩写:Sil-矽线石;Mgt-磁铁矿;Hem-赤铁矿;Ilm-钛铁矿;Spl-尖晶石;Bt-黑云母(Bt1和Bt2分别为早期和晚期黑云母);Spr-假蓝宝石 -
ARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the progress granite, Larsemann hills: additional evidence for early Palaeozoicorogenesis within the east Antarctic shield and implications for Gondwanaassembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275
DIRKS PHGM, CARSON C J, WILSON C J L, 1993. The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica[J]. Antarctic Science, 5(2): 179-192. doi: 10.1017/S0954102093000240
GREW E S, CARSON C J, CHRISTY A G, et al., 2013. Boron- and phosphate-rich rocks in the Larsemann Hills, Prydz Bay, East Antarctica: tectonic implications[J]. Geological Society, London, Special Publications, 383(1): 73-94. doi: 10.1144/SP383.8
HARLEY S L, 2008. Refining the P-T records of UHT crustal metamorphism[J]. Journal of Metamorphic Geology, 26(2): 125-154. doi: 10.1111/j.1525-1314.2008.00765.x
LI M, LIU X C, ZHAO Y, 2010. A review of research on late Neoproterozoic-early Paleozoic (Pan-African) granitoids from East Antarctica[J]. Chinese Journal of Polar Research, 22(4): 348-374. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-JDYZ201004004.htm
LIU X C, ZHAO Y, HU J M, 2013. The c. 1000~900 Ma and c. 550~500 Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and supercontinent evolution. Geological Society, London, Special Publications, 383(1): 95-112.
MARSHAK S, ALKMIM F, JORDT-EVANGELISTA H, 1992. Proterozoic crustal extension and the generation of dome-and-keel structure in an Archaean granite-greenstone terrane[J]. Nature, 357(6378): 491-493. doi: 10.1038/357491a0
PIAZOLO S, DACZKO N R, SILVA D, et al., 2020. Melt-present shear zones enable intracontinental orogenesis[J]. Geology, 48(7): 643-648. doi: 10.1130/G47126.1
REN L D, ZHAO Y, LIU X H, et al., 1992. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing: 145-153.
REN L D, 2005. On back reaction[J]. Earth Science Frontiers, 12(4): 630-636. (in Chinese with English abstract) http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRVDAQ000072000002023507000001&idtype=cvips&gifs=Yes
REN L D, YANG C H, WANG Y B, et al., 2009. Formation of sillimanite in the high-grade quartzofeldspathic gneisses and its relations with deformation-metamorphism-anatexis: a case study in the Larsemann Hills, east Antarctica[J]. ActaPetrologicaSinica, 25(8): 1937-1946. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908020.htm
REN L D, ZONG S, WANG Y B, et al., 2021. Formation process and petrological implication of the borosilicate assemblage grandidierite, prismatine and tourmaline in the high-grade quartzofeldspathic gneisses in the Larsemann Hills, East Antarctica[J]. ActaPetrologicaSinica, 37(2): 575-588. (in Chinese with English abstract)
RIESCO M, STÜWE K, RECHE J, et al., 2004. Silica depleted melting of pelites. Petrogenetic grid and application to the Susqueda Aureole, Spain[J]. Journal of Metamorphic Geology, 22(5): 475-494. doi: 10.1111/j.1525-1314.2004.00527.x
RODAROBLES E R, PEREZ A P, ROLDAN F V, et al., 1999. The granitic pegmatites of the Fregeneda area (Salamanca, Spain): Characteristics and petrogenesis[J]. Mineralogical Magazine, 63(4): 535-558. doi: 10.1180/002646199548709
SONG H F, XU Z Y, LIU Z H, 2005. Geochemical characteristics and origin of garnet migmatitic granites in Daqingshan area, Inner Mongolia[J]. Acta Petrologicaet Mineralogica, 24(5): 489-495. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200505022.htm
STÜWE K, BRAUN H M, PEER H, 1989. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica[J]. Australian Journal of Earth Sciences, 36(2): 219-241. doi: 10.1080/08120098908729483
THOMPSON AB, 1983. Fluid-absent metamorphism[J]. Journal of the Geological Society, 140(4): 533-547. doi: 10.1144/gsjgs.140.4.0533
TONG L X, LIU X H, XU P, et al., 1996. Occurrence of sapphirine-bearing hyperthine-quartzite in the Larsemann Hills, east Antarctica and its geological implication[J]. Chinese Science Bulletin, 41(13): 1205-1208. (in Chinese) doi: 10.1360/csb1996-41-13-1205
TONG L X, ZHANG Z Y, LIU X H, et al., 1997. Mineralogical characteristics of cordierites in Krn-Hy-Crdgranulites from the Larsemann Hills, East Antarctica[J]. ActaPetrologicaSinica, 13(3): 395-405. (in Chinese with English abstract) http://www.oalib.com/paper/1473025
TONG L X, LIU X H, WANG Y B, et al., 2012. Metamorphism evolution of peliticgranulites from the Larsemann Hills, East Antarctica[J]. ActaGeologicaSinica, 86(8): 1273-1290. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201208011&dbcode=CJFD&year=2012&dflag=pdfdown
TONG L X, LIU X H, WANG Y B, et al., 2014. Metamorphic P-T paths of metapeliticgranulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013
VERNON R H, COLLINS W J, 1988. Igneous microstructures in migmatites[J]. Geology, 16(12): 1126-1129. doi: 10.1130/0091-7613(1988)016<1126:IMIM>2.3.CO;2
VIELZEUF D, HOLLOWAY J R, 1988. Experimental determination of the fluid-absent melting relations in the peliticsystem[J]. Contributions to Mineralogy and Petrology, 98(3): 257-276. doi: 10.1007/BF00375178
WANG Y B, LIU D Y, CHUNG S L, et al., 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07
WEI C J, ZHANG Y Y, DONG J, 2021. Some advances and research approaches on granulite[J]. ActaPetrologicaSinica, 37(1): 52-64. (in Chinese with English abstract)
WU X W, XU Z Y, LIU Z H, et al., 2013. Geology and petrography of the garnet granite in Daqingshan area, Inner Mongolia[J]. Geology and Resources, 22(5): 347-354, 359. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201305001.htm
ZHAO Y, SONG B, WANG Y B, et al., 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing: 153-169.
李淼, 刘晓春, 赵越, 2010. 东南极新元古代晚期-早古生代(泛非期)花岗岩类研究综述[J]. 极地研究, 22(4): 348-374. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201004004.htm
任留东, 2005. 论逆(熔)反应[J]. 地学前缘, 12(4): 630-636. doi: 10.3321/j.issn:1005-2321.2005.04.036
任留东, 杨崇辉, 王彦斌, 等, 2009. 长英质高级片麻岩中夕线石的形成与变形-变质-深熔作用的关系: 以南极拉斯曼丘陵区为例[J]. 岩石学报, 25(8): 1937-1946. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908020.htm
任留东, 宗师, 王彦斌, 等, 2021. 东南极拉斯曼丘陵硼硅酸盐矿物组合硅硼镁铝矿-硼柱晶石-电气石的形成过程及其岩石学意义[J]. 岩石学报, 37(2): 575-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202102015.htm
宋海峰, 徐仲元, 刘正宏, 2005. 内蒙古大青山地区石榴混合花岗质岩石地球化学特征及成因[J]. 岩石矿物学杂志, 24(5): 489-495. doi: 10.3969/j.issn.1000-6524.2005.05.022
仝来喜, 刘小汉, 徐平, 等, 1996. 东南极拉斯曼丘陵含假蓝宝石紫苏辉石石英岩的发现及其地质意义[J]. 科学通报, 41(13): 1205-1208. doi: 10.3321/j.issn:0023-074X.1996.13.014
仝来喜, 张振禹, 刘小汉, 等, 1997. 东南极拉斯曼丘陵柱晶紫苏堇青麻粒岩中堇青石的矿物学特征[J]. 岩石学报, 13(4): 395-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB703.009.htm
仝来喜, 刘小汉, 王彦斌, 等, 2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化[J]. 地质学报, 86(8): 1273-1290. doi: 10.3969/j.issn.0001-5717.2012.08.010
魏春景, 张媛媛, 董杰, 2021. 麻粒岩的研究进展与方法[J]. 岩石学报, 37(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202101007.htm
吴新伟, 徐仲元, 刘正宏, 等, 2013. 内蒙古大青山地区石榴花岗岩的地质特征和岩相学特征[J]. 地质与资源, 22(5): 347-354, 359. doi: 10.3969/j.issn.1671-1947.2013.05.001