Late Cenozoic development characteristics and dynamic mechanism of the main faults in the Midu area, northwestern Yunnan[BP(]Development characteristics of the main faults of the late cenozoic in the Midu area, northwestern Yunnan, and their dynamic mechanism
-
摘要:
弥渡地区位于滇西北断陷带东南缘,红河断裂带尾端与程海断裂交汇部位,是揭示滇西北断陷带形成机制及其与红河断裂带间运动学关系的关键区域。综合利用遥感解译及野外调查发现,区内主要发育有北东向的毛栗坡断裂,北西—北北西向的凤仪-定西岭断裂、弥渡断裂、密祉断裂、寅街断裂。对断裂错动地质、地貌体及擦痕的统计分析结果表明,毛栗坡断裂第四纪以左旋走滑活动为主兼具有正断分量;弧形的弥渡断裂及北西向的寅街断裂第四纪期间均以正断活动为主;上新世期间凤仪-定西岭断裂以右旋走滑为主,密祉断裂主要为伸展正断,二者第四纪期间均无明显活动。据弥渡地区主要断裂的几何形态、运动学特征及红河断裂带晚新生代活动性变化过程推测,控制弥渡盆地展布的弥渡断裂、寅街断裂等主要第四纪活动断裂是在继承和改造红河断裂带原有断层行迹的基础上形成的。上新世或更早,弥渡地区及滇西北断陷带的断裂活动与地壳张扭变形可能与红河断裂带尾端伸展变形作用有关,但第四纪期间,程海断裂基本上完全控制了弥渡地区主要活动断裂的发育,这一时期区内张扭变形的动力可能来自于川滇内弧带的顺时针旋转以及周缘南汀河断裂、畹町断裂与理塘断裂等左旋走滑断裂引起的区域性走滑拉分的共同作用。
Abstract:The Midu area is located at the southeast end of the northwestern Yunnan fault depression zone, the intersection of the Red River fault zone and the Chenghai fault. It is a key area for uncovering the formation mechanism of the Northwest Yunnan fault depression zone as well as its kinematic relationship with the Red River fault zone. Based on remote sensing interpretation and field investigation, we found five faults in the study area, namely the NE-trending Maolipo fault, NW-NNW-trending Fengyi-Dingxiling fault, Midu fault, Mizhi fault and Yinjie fault. We made statistical analysis of the fault slipping geological-landscape bodies and slickensides, and the results are produced in three aspects. Firstly, the Maolipo fault are mainly characterized by left lateral strike-slip activity with normal fault component in Quaternary. Secondly, the arc-shaped Midu fault and the NW-trending Yinjie fault are dominated by normal fault activity in Quaternary. Thirdly, during the Pliocene the Fengyi-Dingxiling fault was characterized by dextral strike-slips, while the Mizhi fault by extensional normal faults, and there was no obvious activity in both faults during the Quaternary. We inferred both from the geometry and kinematics of the main faults in the Midu area and the activity evolution of the Red River fault zone that, in the Late Cenozoic the main Quaternary active faults, such as the Midu fault and Yinjie fault, were formed on the basis of inheriting and remaking the original fault trace of the Red River fault zone. These active faults controlled the distribution of the Midu basin. The fault activity and transtensional deformation in the Midu area and the Northwest Yunnan fault depression zone during the Pliocene or even earlier could be affected by the extensional deformation at the end of the Red River fault zone. However, during the Quaternary the Chenghai fault basically controlled the development of main active faults in the Midu area. The crustal transtensional deformation in this period might be driven by the clockwise rotation of the Sichuan-Yunnan inner arc belt and the regional strike-slip pull-apart caused by the Nantinghe fault, Wanding fault and Litang fault.
-
ALLEN C R, GILLESPIE A R, YUAN H, et al., 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. GSA Bulletin, 95(6): 686-700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2
ALLEN C R, LUO Z L, QIAN H, et al., 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China[J]. Geological Society of America Bulletin, 103(9): 1178-1199. doi: 10.1130/0016-7606(1991)103<1178:FSOAHA>2.3.CO;2
Bureau of Geology and Mineral Resources of Yunnan Province, 1990. Regional geology of Yunnan province[M]. Beijing: China Geological Press: 1-728. (in Chinese)
CHANG Z F, CHANG H, ZANG Y et al., 2016. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe fault[J]. Journal of Geomechanics, 22(3): 517-530. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201603009.htm
CHEN W J, LI Q, WANG Y P, 1996. Miocene diachronic uplift along the Ailao Mountains Red river left-lateral strike-slip shear zone[J]. Geological Review, 42(5): 385-390. (in Chinese with English abstract)
CHEN Z, BURCHFIEL B C, LIU Y, et al., 2000. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J]. Journal of Geophysical Research: Solid Earth, 105(B7): 16215-16227. doi: 10.1029/2000JB900092
CUI X F, XIE F R, ZHANG H Y, 2006. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 19(5): 485-496. doi: 10.1007/s11589-006-0501-x
FAN C, WANG G, WANG S F, et al., 2006. Structural interpretation of extensional deformation along the Dali fault system, southeastern margin of the Tibetan Plateau[J]. International Geology Review, 48(4): 287-310. doi: 10.2747/0020-6814.48.4.287
GUO S M, XIANG H F, JI F J, et al., 1996. A study on the relation between Quaternary right-lateral slip and tip extension along the Honghe fault[J]. Seismology and Geology, 18(4): 301-309. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ604.001.htm
GUO S M, JI F J, XIANG H F, et al., 2001. The Honghe active fault zone[M]. Beijing: China Ocean Press: 1-172. (in Chinese)
HAN Z J, XIANG H F, GUO S M, 2005. Sinistral shear and extension of the northern section of Lijiang Basin in northwest Yunnan in quaternary[J]. Chinese Science Bulletin, 50(5): 452-459. doi: 10.1007/BF02897462
HARRISON T M, CHEN W J, LELOUP P H, et al., 1992. An early Miocene Transition in deformation regime within the Red River Fault Zone, Yunnan, And its significance for Indo-Asian tectonics[J]. Journal of Geophysical Research: Solid Earth, 97(B5): 7159-7182. doi: 10.1029/92JB00109
HUANG X J, WU Z H, LI J C, et al., 2014. Tectonic geomorphology and Quaternary tectonic activity in the northwest Yunnan rift zone[J]. Geological Bulletin of China, 33(4): 578-593. (in Chinese with English abstract)
HUANG X L, WU Z H, WU K G, et al., 2016. The main active faults and tectonic system in Yongsheng area, northwest Yunnan[J]. Journal of Geomechanics, 22(3): 531-547. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201603010.htm
HUANG X J, WU Z H, HUANG X L, et al., 2018. Tectonic geomorphology constrains on Quaternary activity and segmentation along Chenghai-Binchuan fault zone in northwest Yunnan, China[J]. Earth Science, 43(12): 4651-4670. (in Chinese with English abstract)
HUANG X L, WU Z H, WU K G, 2018. Surface rupture of the 1515 Yongsheng earthquake in Northwest Yunnan, and its seismogeological implications[J]. Acta Geologica Sinica (English Edition), 92(4): 1324-1333. doi: 10.1111/1755-6724.13629
HUANG X L, WU Z H, LIU F, et al., 2021. Tectonic interpretation of the main paleoseismic landslides and their distribution characteristics in the Chenghai fault zone, Northwest Yunnan[J]. Earth Science Frontiers, 28(2): 125-139. (in Chinese with English abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=7105928103
, 1990. Active faults in Northwest Yunnan[M]. Beijing: Seismological Press: 1-321. (in Chinese)
Jian Zi 730 unit of the Chinese people's Liberation Army. 1978. 1: 200000 Dali hydrogeological survey results report[Z]. (in Chinese)
LACASSIN R, SCHÄRER U, LELOUP P H, et al., 1996. Tertiary deformation and metamorphism SE of Tibet: The folded Tiger-leap décollement of NW Yunnan, China[J]. Tectonics, 15(3): 605-622. doi: 10.1029/95TC03749
LELOUP P H, HARRISON T M, RYERSON F J, et al., 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan[J]. Journal of Geophysical Research: Solid Earth, 98(B4): 6715-6743. doi: 10.1029/92JB02791
LELOUP P H, LACASSIN R, TAPPONNIER P, et al., 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 251(1-4): 3-84. doi: 10.1016/0040-1951(95)00070-4
LI G R, JIN D S, 1990. Neoid activity on the Chenghai fracture[J]. Yunnan Geology, 9(1): 1-24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD199001000.htm
LI P, WANG L M, 1975. Exploration of the seismo-geological features of the Yunnan-West Sichuan region[J]. Scientia Geologica Sinica, 10(4): 308-326. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX197504001.htm
LIU G X, LI F Q, LI G R, 1986. Active tectonics and state of stress in seismic region of north-west Yunnan province, China[J]. Seismology and Geology, 8(1): 1-14. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198601000.htm
LUO R J, WU Z H, HUANG X L, et al., 2015. The main active faults and the active tectonic system of Binchuan area, northwestern Yunnan[J]. Geological Bulletin of China, 34(1): 155-170. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201501013.htm
PAN G T, XIAO Q H, LU S N, et al., 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1-28. (in Chinese with English abstract)
QIAN X D, SU Y J, FU H, et al., 2011. Short-term and Impending Prediction of the Mar. 10, 2011, MS5.8, Yingjiang, Yunnan Earthquake[J]. Journal of seismological research, 34(4): 403-413. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201104002.htm
SCHOENBOHM L M, WHIPPLE K X, BURCHFIEL B C, et al., 2004. Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China[J]. GSA Bulletin, 116(7-8): 895-909. http://pdfs.semanticscholar.org/9803/5f936aae26736a2d9672f3034fde1a48fe60.pdf
SCHOENBOHM L M, BURCHFIEL B C, CHEN L Z, et al., 2006. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. GSA Bulletin, 118(5-6): 672-688. doi: 10.1130/B25816.1
SHEN Z K, LÜ J N, WANG M, et al., 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11409. http://www.geologie.ens.fr/~longmenshan/bibliography/LongmenShan/shen_etal_05.pdf
SHI X H, WANG Y, SIEH K, et al., 2018. Fault slip and GPS velocities across the Shan Plateau define a curved southwestward crustal motion around the eastern Himalayan syntaxis[J]. Journal of Geophysical Research: Solid Earth, 123(3): 2502-2518. doi: 10.1002/2017JB015206
SOCQUET A, PUBELLIER M, 2005. Cenozoic deformation in western Yunnan (China-Myanmar border)[J]. Journal of Asian Earth Sciences, 24(4): 495-515. doi: 10.1016/j.jseaes.2004.03.006
TAPPONNIER P, MOLNAR P, 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 319-324. doi: 10.1038/264319a0
TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
TAPPONNIER P, PELTZER G, ARMIJO R, 1986. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07
TAPPONNIER P, LACASSIN R, LELOUP P H, et al., 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China[J]. Nature, 343(6257): 431-437. doi: 10.1038/343431a0
TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
WANG E C E, BURCHFIEL B C, 1997. Interpretation of cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan Shear zone and the eastern Himalayan Syntaxis[J]. International Geology Review, 39(3): 191-219. doi: 10.1080/00206819709465267
WANG E, BURCHFIEL B C, ROYDEN L H, et al., 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[M]. Boulder: Geological Society of America, 327: 1-108.
WU D N, DENG Q D, 1985. The basic taphrogenic feature in Northwestern Yunnan and its formation mechanism[M]//Institute of Geology, State Seismological Administration, ed. Research on Recent Crustal Movement (1): Continental Rifting and Deep Processes. Beijing: Seismological Press: 118-132. (in Chinese)
WU Z H, ZHANG Y S, HU D G, et al., 2009. Late Quaternary normal faulting and its kinematic mechanism of eastern piedmont fault of the Haba-Yulong Snow Mountains in northwestern Yunnan, China[J]. Science in China Series D: Earth Sciences, 52(10): 1470-1484. doi: 10.1007/s11430-009-0148-2
WU Z H, LONG C X, FAN T Y, et al., 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 1-31. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201501002.htm
XIANG H F, GUO S M, RANG Y K, et al., 1986. Recent tectonic stress field in the northwest of the Yunnan province[J]. Seismology and Geology, 8(1): 15-23. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198601001.htm
XIANG H F, GUO S M, XU X W, et al., 2000. Active block division and present-day motion features of the south region of Sichuan-Yunnan province[J]. Seismology and Geology, 22(3): 253-264. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200003006.htm
XIAO K Z, TONG H M. 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166. (in Chinese with English abstract)
XU X W, GUO S M, ZHENG R Z, et al., 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences, 46(2): 210-226. http://www.onacademic.com/detail/journal_1000034849730110_f99b.html
ZHANG J G, HUANG F G, XIE Y Q, et al., 2009. Study on the activity of Red river fault in Vietnam[J]. Seismology and geology, 31(3): 389-400. (in Chinese with English abstract)
ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1
ZHANG Y Z, REPLUMAZ A, WANG G C, et al., 2015. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in South East Tibet[J]. Tectonics, 34(6): 1219-1243. doi: 10.1002/2014TC003671
ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental china[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm
常祖峰, 常昊, 臧阳, 等, 2016. 维西-乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 22(3): 517-530. doi: 10.3969/j.issn.1006-6616.2016.03.009 https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160309&journal_id=dzlxxb
陈文寄, 李齐, 汪一鹏, 1996. 哀牢山-红河左旋走滑剪切带中新世抬升的时间序列[J]. 地质论评, 42(5): 385-390. doi: 10.3321/j.issn:0371-5736.1996.05.001
国家地震局地质研究所和云南省地震局. 1990. 滇西北地区活动断裂[M]. 北京: 地震出版社: 1-321.
虢顺民, 向宏发, 计凤桔, 等, 1996. 红河断裂带第四纪右旋走滑与尾端拉张转换关系研究[J]. 地震地质, 18(4): 301-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ604.001.htm
虢顺民, 计凤桔, 向宏发, 等, 2001. 红河活动断裂带[M]. 北京: 海洋出版社: 1-172.
韩竹军, 向宏发, 虢顺民, 2005. 滇西北丽江盆地北部区第四纪时期的左旋剪切拉张[J]. 科学通报, 50(4): 356-362. doi: 10.3321/j.issn:0023-074X.2005.04.010
黄小巾, 吴中海, 李家存, 等, 2014. 滇西北裂陷带的构造地貌特征与第四纪构造活动性[J]. 地质通报, 33(4): 578-593. doi: 10.3969/j.issn.1671-2552.2014.04.013
黄小巾, 吴中海, 黄小龙, 等, 2018. 滇西北程海-宾川断裂带第四纪分段活动性的构造地貌表现与限定[J]. 地球科学, 43(12): 4651-4670. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201812029.htm
黄小龙, 吴中海, 吴坤罡, 等, 2016. 滇西北永胜地区主要活动断裂与活动构造体系[J]. 地质力学学报, 22(3): 531-547. doi: 10.3969/j.issn.1006-6616.2016.03.010 https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160310&journal_id=dzlxxb
黄小龙, 吴中海, 刘锋, 等, 2021. 滇西北程海断裂带主要古地震滑坡及其分布特征的构造解释[J]. 地学前缘, 28(2): 125-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102011.htm
李光容, 金德山, 1990. 程海断裂带挽近期活动性研究[J]. 云南地质, 9(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199001000.htm
李玶, 汪良谋, 1975. 云南川西地区地震地质基本特征的探讨[J]. 地质科学, 10(4): 308-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197504001.htm
刘光勋, 李方全, 李桂荣, 1986. 我国滇西北地震活动区的活动构造与应力状态[J]. 地震地质, 8(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198601000.htm
罗睿洁, 吴中海, 黄小龙, 等, 2015. 滇西北宾川地区主要活动断裂及其活动构造体系[J]. 地质通报, 34(1): 155-170. doi: 10.3969/j.issn.1671-2552.2015.01.013
潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm
钱晓东, 苏有锦, 付虹, 等, 2011. 2011年云南盈江5.8级地震及震前短临跟踪预测[J]. 地震研究, 34(4): 403-413. doi: 10.3969/j.issn.1000-0666.2011.04.001
吴大宁, 邓起东, 1985. 滇西北裂陷区的基本特征及其形成机制[M]//国家地震局地质研究所. 现代地壳运动研究-1-大陆裂谷与深部过程. 北京: 地震出版社: 118-132.
吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 34(1): 1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002
向宏发, 虢顺民, 冉勇康, 等, 1986. 滇西北地区的现代构造应力场[J]. 地震地质, 8(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198601001.htm
向宏发, 虢顺民, 徐锡伟, 等, 2000. 川滇南部地区活动地块划分与现今运动特征初析[J]. 地震地质, 22(3): 253-264. doi: 10.3969/j.issn.0253-4967.2000.03.006
向宏发, 韩竹军, 虢顺民, 陈立春, 张晚霞. 2004. 红河断裂带大型右旋走滑运动定量研究的若干问题[J]. 地球科学进展, (S1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ2004S1010.htm
肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200201&journal_id=dzlxxb
徐锡伟, 闻学泽, 郑荣章, 等, 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学D辑: 地球科学, 33(S1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm
云南省地质矿产局, 1990. 云南省区域地质志[M]. 北京: 中国地质出版社: 1-728.
张建国, 皇甫岗, 谢英情, 等, 2009. 越南红河断裂活动性研究[J]. 地震地质, 31(3): 389-400. doi: 10.3969/j.issn.0253-4967.2009.03.002
郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb
中国人民解放军建字七三〇部队. 1978. 1: 20万大理幅水文地质普查成果报告[Z].