乌拉山分水岭的稳定性研究——来自χ值的证据

白鸾羲, 谭锡斌, 周朝. 2022. 乌拉山分水岭的稳定性研究——来自χ值的证据. 地质力学学报, 28(4): 513-522. doi: 10.12090/j.issn.1006-6616.2021128
引用本文: 白鸾羲, 谭锡斌, 周朝. 2022. 乌拉山分水岭的稳定性研究——来自χ值的证据. 地质力学学报, 28(4): 513-522. doi: 10.12090/j.issn.1006-6616.2021128
BAI Luanxi, TAN Xibin, ZHOU Chao. 2022. Drainage divide stability at Wulashan, northern margin of the Ordos block, China: Evidence from the analysis of χ value. Journal of Geomechanics, 28(4): 513-522. doi: 10.12090/j.issn.1006-6616.2021128
Citation: BAI Luanxi, TAN Xibin, ZHOU Chao. 2022. Drainage divide stability at Wulashan, northern margin of the Ordos block, China: Evidence from the analysis of χ value. Journal of Geomechanics, 28(4): 513-522. doi: 10.12090/j.issn.1006-6616.2021128

乌拉山分水岭的稳定性研究——来自χ值的证据

  • 基金项目:
    中国地震局地质研究所自主科技发展项目(F-21-02)
详细信息
    作者简介: 白鸾羲(1991—),女,博士,助理研究员,研究方向为构造地貌。E-mail:blx0101@126.com
    通讯作者: 谭锡斌(1985—),男,博士,研究员,主要从事活动构造和构造地貌研究。E-mail:tanxibin@sina.com
  • 中图分类号: P931.2

Drainage divide stability at Wulashan, northern margin of the Ordos block, China: Evidence from the analysis of χ value

  • Fund Project: This research is financially supported by the Independent Science and Technology Development Project of the Institute of Geology, China Earthquake Administration(Grant F-21-02)
More Information
  • 分水岭的稳定性蕴含着重要的构造和气候信息,但是对于分水岭稳定性的判别标志目前还存在争议,从而导致对某些地区分水岭的稳定性形成不一致的结论。位于鄂尔多斯北缘的乌拉山分水岭稳定性目前存在两种不同的认识:通过两侧流域形态(袭夺弯、裂点等)分析认为乌拉山分水岭正在向北迁移;通过Gilbert参数对比法认为其处于稳定状态。为了检验乌拉山分水岭的稳定性以及上述各种判定方法的可靠性,研究采用χ值对比法对乌拉山分水岭的稳定性进行了研究。χ值分析揭示:如果设置较低的基准线(海拔1300 m),则分水岭南侧顶部χ值小于北侧同一高程的χ值;如果设置较高的基准线(约1800 m),则分水岭两侧的χ值在同一高程基本保持一致。以较高的基准线获得的χ值由于更靠近分水岭而受到块体差异抬升的干扰较小,更能反映分水岭的瞬时稳定性。因此,文章支持乌拉山分水岭处于稳定状态这一认识; 同时文章对判断分水岭稳定性不同方法的局限性进行了讨论。

  • 加载中
  • 图 1  乌拉山构造位置及地质图

    Figure 1. 

    图 2  分水岭不稳定与稳定状态的高程- χ值剖面示意图(据Zhou et al., 2022b修改)

    Figure 2. 

    图 3  不同高程基准面河道χ值分布

    Figure 3. 

    图 4  乌拉山分水岭两侧河道分布

    Figure 4. 

    图 5  乌拉山分水岭两侧河道χ值-高程分布图(河道位置见图 4)

    Figure 5. 

    图 6  乌拉山分水岭两侧300 m内起伏度差异

    Figure 6. 

  • CASTELLTORT S, GOREN L, WILLETT S D, et al., 2012. River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain[J]. Nature Geoscience, 5(10): 744-748. doi: 10.1038/ngeo1582

    CHEN L C, 2002. Paleoearthquakes, the law of strong earthquake recurrence and potential sites for the occurrence of future strong earthquakes in the Hetao fault-depression zone[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)

    DENG Q D, CHENG S P, MIN W, et al., 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block[J]. Journal of Geomechanics, 5(3): 13-21. (in Chinese with English abstract)

    DENG Q D, LIAO Y H, 1996. Paleoseismology along the range-front fault of Helan Mountains, north central China[J]. Journal of Geophysical Research: Solid Earth, 101(B3): 5873-5893. doi: 10.1029/95JB01814

    FORTE A M, WHIPPLE K X, 2018. Criteria and tools for determining drainage divide stability[J]. Earth and Planetary Science Letters, 493: 102-117. doi: 10.1016/j.epsl.2018.04.026

    FORTE A M, WHIPPLE K X, 2019. Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox[J]. Earth Surface Dynamics, 7(1): 87-95. doi: 10.5194/esurf-7-87-2019

    GILBERT G K, 1877. Geology of the Henry mountains[R]. Washington: Government Printing Office.

    GOREN L, WILLETT S D, HERMAN F, et al., 2014. Coupled numerical-analytical approach to landscape evolution modeling[J]. Earth Surface Processes and Landforms, 39(4): 522-545. doi: 10.1002/esp.3514

    HE C Q, CHENG Y L, RAO G, et al., 2018. Geomorphological signatures of the evolution of active normal faults along the Langshan Mountains, North China[J]. Geodinamica acta, 30(1): 163-182. doi: 10.1080/09853111.2018.1458935

    HE C Q, RAO G, YANG R, et al., 2019. Divide migration in response to asymmetric uplift: Insights from the Wula Shan horst, North China[J]. Geomorphology, 339: 44-57. doi: 10.1016/j.geomorph.2019.04.024

    HE C Q, YANG C J, TUROWSKI J M, et al., 2021. Constraining tectonic uplift and advection from the main drainage divide of a mountain belt[J]. Nature communications, 12(1): 544. doi: 10.1038/s41467-020-20748-2

    HE Z T, MA B Q, HAO Y J, et al., 2020. Surface rupture geomorphology and vertical slip rates constrained by terraces along the Wulashan piedmont fault in the Hetao Basin, China[J]. Geomorphology, 358: 107116. doi: 10.1016/j.geomorph.2020.107116

    BEESON H W, MCCOY S W, KEEN-ZEBERT A, 2017. Geometric disequilibrium of river basins produces long-lived transient landscapes[J]. Earth and Planetary Science Letters, 475: 34-43. doi: 10.1016/j.epsl.2017.07.010

    HOWARD A D, 1994. A detachment-limited model of drainage basin evolution[J]. Water resources research, 30(7), 2261-2285. doi: 10.1029/94WR00757

    KIRBY E, WHIPPLE K, 2001. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 29(5): 415-418. doi: 10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2

    KIRBY E, WHIPPLE K X, 2012. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 44: 54-75. doi: 10.1016/j.jsg.2012.07.009

    KIRBY J R, PARRILA R K, PFEIFFER S L, 2003. Naming speed and phonological awareness as predictors of reading development[J]. Journal of Educational Psychology, 95(3): 453-464. doi: 10.1037/0022-0663.95.3.453

    LI J B, RAN Y K, GUO W S, 2007. Division of Quaternary beds and environment evolution in Hubao basin in China[J]. Quaternary Sciences, 27(4): 632-644. (in Chinese with English abstract)

    LI Y B, RAN Y K, CHEN L C, et al., 2015. The latest surface rupture events on the major active faults and great historical earthquakes in Hetao fault-depression zone[J]. Seismology and Geology, 37(1): 110-125. (in Chinese with English abstract)

    LIN L L, LI X M, ZHANG H P, et al., 2021. River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos Block[J]. Journal of Geomechanics, 27 (2): 294-303. (in Chinese with English abstract)

    LIU Y D, TAN X B, YE Y J, et al., 2020. Role of erosion in creating thrust recesses in a critical-taper wedge: An example from Eastern Tibet[J]. Earth and Planetary Science Letters, 540: 116270. doi: 10.1016/j.epsl.2020.116270

    PERRON J T, ROYDEN L, 2013. An integral approach to bedrock river profile analysis[J]. Earth Surface Processes and Landforms, 38(6): 570-576. doi: 10.1002/esp.3302

    RAN Y K, CHEN L C, YANG X P, et al., 2003. Recurrence characteristics of late Quaternary strong earthquakes on the major active faults along the northern border of Ordos Block[J]. Science in China (Series D): Earth Sciences, 46(2): 189-200. . (in Chinese with English abstract)

    RAO G, LIN A M, YAN B, et al., 2014. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China[J]. Tectonophysics, 636: 270-285. doi: 10.1016/j.tecto.2014.08.019

    RAO G, LIN A M, YAN B, 2015. Paleoseismic study on active normal faults in the southeastern Weihe Graben, central China[J]. Journal of Asian Earth Sciences, 114: 212-225. doi: 10.1016/j.jseaes.2015.04.031

    RAO G, CHEN P, HU J M, et al., 2016. Timing of Holocene paleo-earthquakes along the Langshan Piedmont Fault in the western Hetao Graben, North China: Implications for seismic risk[J]. Tectonophysics, 677-678: 115-124. doi: 10.1016/j.tecto.2016.03.035

    RAO G, HE C Q, CHENG Y L, et al., 2018. Active normal faulting along the Langshan Piedmont Fault, North China: Implications for slip partitioning in the western Hetao Graben[J]. The Journal of Geology, 126(1): 99-118. doi: 10.1086/694748

    SCHWANGHART W, SCHERLER D, 2014. Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth surface sciences[J]. Earth Surface Dynamics, 2 (1): 1-7. doi: 10.5194/esurf-2-1-2014

    SHI F, TAN X B, ZHOU C, et al., 2021. Impact of asymmetric uplift on mountain asymmetry: Analytical solution, numerical modeling, and natural examples[J]. Geomorphology, 389: 107862. doi: 10.1016/j.geomorph.2021.107862

    SU Q, WANG X Y, LU H Y, et al., 2020. Dynamic Divide Migration as a Response to Asymmetric Uplift: An Example from the Zhongtiao Shan, North China[J]. Remote Sensing, 12(24): 4188. doi: 10.3390/rs12244188

    STOKES M F, GOLDBERG S L, PERRON J T, 2018. Ongoing river capture in the Amazon[J]. Geophysical Research Letters, 45(11): 5545-5552. doi: 10.1029/2018GL078129

    STRUTH L, GARCIA-CASTELLANOS D, VIAPLANA-MUZAS M, et al., 2019. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: From endorheism to exorheism[J]. Geomorphology, 327: 554-571. doi: 10.1016/j.geomorph.2018.11.033

    The Research Group on Active Fault System around Ordos Massif, State Seismological Bureau (RGAFSO), 1988. Active fault system Around Ordos Massif[M], Beijing, China: Seismological Press: 1-335. (in Chinese)

    TUCKER G E, SLINGERLAND R, 1997. Drainage basin responses to climate change[J]. Water Resources Research, 33(8): 2031-2047. doi: 10.1029/97WR00409

    VACHERAT A, BONNET S, MOUTHEREAU F, 2018. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain)[J]. Earth Surface Dynamics, 6(2): 369-387. doi: 10.5194/esurf-6-369-2018

    WHIPPLE K X, FORTE A M, DIBIASE R A, et al., 2017. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution[J]. Journal of Geophysical Research: Earth Surface, 122(1): 248-273. doi: 10.1002/2016JF003973

    WHIPPLE K X, TUCKER G E, 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. doi: 10.1029/1999JB900120

    WILLETT S D, MCCOY S W, PERRON J T, et al., 2014. Dynamic reorganization of river basins[J]. Science, 343(6175): 1248765. doi: 10.1126/science.1248765

    WOBUS C, WHIPPLE K X, KIRBY E, et al., 2006. Tectonics from topography: Procedures, promise, and pitfalls[M]//WILLETT S D, HOVIUS N, BRANDON M T, et al. Tectonics, Climate, and Landscape Evolution. Boulder: geological society of America, 55-74.

    WU L J, SHI J S, ZHANG Y, L et al., 2020. Ostracod characteristics of the eastern Hetao Basin and its sedimentary environmental significance during the Middle and Late Quaternary. Journal of Geomechanics, 26 (1): 125-134. (in Chinese with English abstract)

    XU Y R, HE H L, DENG Q D, et al., 2018. The CE 1303 Hongdong earthquake and the Huoshan Piedmont fault, Shanxi graben: Implications for magnitude limits of normal fault earthquakes[J]. Journal of Geophysical Research: Solid Earth, 123(4): 3098-3121. doi: 10.1002/2017JB014928

    YANITES B J, EHLERS T A, BECKER J K, et al., 2013. High magnitude and rapid incision from river capture: Rhine River, Switzerland[J]. Journal of Geophysical Research: Earth Surface, 118(2): 1060-1084. doi: 10.1002/jgrf.20056

    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract)

    ZHOU C, TAN X B, LIU Y D, et al., 2022a. A cross-divide contrast index (C) for assessing controls on the main drainage divide stability of a mountain belt[J]. Geomorphology, 398: 108071. doi: 10.1016/j.geomorph.2021.108071

    ZHOU C, TAN X B, LIU Y D, et al., 2022b. Ongoing Westward Migration of Drainage Divides in Eastern Tibet, Quantified from Topographic Analysis[J]. Geomorphology, 402: 108123. doi: 10.1016/j.geomorph.2022.108123

    陈立春, 2002. 河套断陷带的古地震、强震复发规律和未来可能强震地点[D]. 北京: 中国地震局地质研究所.

    邓起东, 程绍平, 闵伟, 等, 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报, 5(3): 13-21. doi: 10.3969/j.issn.1006-6616.1999.03.003 https://journal.geomech.ac.cn/article/id/ce0c903c-5b5b-4bae-8ff8-da7e64e27f52

    国家地震局《鄂尔多斯周缘断裂系》课题组, 1988. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社: 1-335.

    李建彪, 冉勇康, 郭文生, 2007. 呼包盆地第四纪地层与环境演化[J]. 第四纪研究, 27(4): 632-644. doi: 10.3321/j.issn:1001-7410.2007.04.020

    李彦宝, 冉勇康, 陈立春, 等, 2015. 河套断陷带主要活动断裂最新地表破裂事件与历史大地震[J]. 地震地质, 37(1): 110-125. doi: 10.3969/j.issn.0253-4967.2015.01.009

    林玲玲, 李雪梅, 张会平, 等, 2021. 鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究[J]. 地质力学学报, 27(2): 294-303. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2021.27.02.027

    冉勇康, 陈立春, 杨晓平, 等, 2003. 鄂尔多斯地块北缘主要活动断裂晚第四纪强震复发特征[J]. 中国科学(D辑), 33(S1): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1014.htm

    吴利杰, 石建省, 张翼龙, 等, 2020. 河套盆地东部第四纪中晚期介形类特征及其沉积环境意义[J]. 地质力学学报, 26(1): 125-134. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2020.26.01.013

    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2019.25.05.062

  • 加载中

(6)

计量
  • 文章访问数:  2026
  • PDF下载数:  49
  • 施引文献:  0
出版历程
收稿日期:  2021-09-26
修回日期:  2022-01-23
刊出日期:  2022-08-28

目录