Development history and activity characteristics of typical debris flows in the Grand Bend of the Yarlung Zangbo River since the Holocene
-
摘要:
雅鲁藏布江大拐弯附近晚更新世末次冰期—全新世发育多期次泥石流, 组合形成了现代大规模扇形堆积体。以派镇蹦嘎沟泥石流为例, 采用地面调查、钻孔及14C测年等方法, 研究泥石流形成年代序列、堆积深度、冲出范围等特征, 分析结果表明: 现代蹦嘎沟依然有小规模的支沟泥石流发育且广泛堆积于沟道内, 现存堆积扇区域尚未发现泥石流堆积; 距今8500年左右为蹦噶沟全新世泥石流活跃期, 单期次累积堆积深度约10.9 m; 滨湖浅水相沉积(河流相)形成的浅灰色粉细砂中的两处碳样表明雅鲁藏布江现代河床在40~100年左右沉积深度约0.4 m, 年平均沉积速率4~10 mm; 海拔2906.1~2896.7 m及2849.4~2848.2 m处钻孔依次揭露厚度为9.4 m和1.2 m饼状青灰色粉质黏土, 推测发生两次堵江事件。上述结果可为该区域全新世以来泥石流活动性特征研究提供参考。
Abstract:Multi-period debris flows have been developed in the last glacial period of the late Pleistocene-Holocene near the Grand Bend of the Yarlung Zangbo River in southeast Tibet, which combined to form a modern large-scale fan-shaped accumulation. The debris flows in the Bangga gully, Pai Town, were explored by ground survey, borehole, and 14C dating methods to investigate the chronological sequence of formation, accumulation depth, and outrush range. The analysis results show that there are still small-scale debris flows in the tributaries of the Bengga gully, and they are widely accumulated in the channel, but no debris flow accumulation has been found in the existing accumulation fan area. The Holocene debris flows in the Bunga gully were active around 8500 years ago, and the cumulative accumulation depth of a single period is about 10.9 m. The two carbon samples in the light gray silt sand formed by the shallow lake facies (fluvial facies) show that the modern riverbed of the Yarlung Zangbo River was deposited at a depth of about 0.4 m in 40 to 100 years, and the annual average deposition rate was about 4~10 mm. The boreholes at 2906.1~2896.7 m and 2849.4~2848.2 m above sea level reveal a thickness of 9.4 m and 1.2 m cake-like bluish-gray clay in turn. It is assumed that two river-blocking events occurred. The above results could provide a reference for the study of the debris flow activity characteristics since the Holocene in this region.
-
1. 研究目的(Objective)
近年来,西昆仑大红柳滩地区先后新发现白龙山锂铍多金属矿、509道班西锂铍矿、大红柳滩南锂矿等一系列锂铍矿床。现有矿床勘探成果显示,大红柳滩地区有望成为一个世界级巨型锂多金属矿集区。前人主要从锆石、铌钽铁矿等矿物开展了大红柳滩地区伟晶岩型锂矿床的成矿时代测定(220~200 Ma),然而伟晶岩的高精度定年是一个难题,需要运用不同的同位素定年进行综合研究。509道班西锂铍稀有金属矿品位高,规模大,Li2O资源量可突破百万吨,是大红柳滩地区最具代表性的矿床。挑选509道班西锂铍稀有金属矿床含矿及不含矿伟晶岩中白云母开展40Ar/39Ar同位素测年,获得精确的测年年龄,为限定区域成矿时代提供数据支撑。
2. 研究方法(Methods)
白云母单矿物挑选由廊坊市宇恒矿岩技术服务有限公司完成。挑选出纯度 > 99%的白云(40 mg) 先用超声波清洗干净后,被封进石英瓶中送核反应堆中接受中子照射,总时间为2160 min,同期接受中子照射的监控标准样ZBH-25黑云母标准年龄为(132.7±1.2) Ma,K含量为7.6%。使用石墨炉升温加热,每一个阶段加热10 min,净化20 min。质谱分析是在多接收稀有气体质谱仪GVHelixMC上进行的,每个峰值均采集20组数据。所有的数据在回归到时间零点值后再进行质量歧视校正、大气氩校正、空白校正和干扰元素同位素校正。用ArArCALC程序计算坪年龄及正、反等时线。坪年龄误差以2σ给出。
3. 研究结果(Results)
白云母测试样品分别取自509道班西Ⅰ、Ⅱ号脉群Ⅰ-19、Ⅱ-1矿体及石英闪长岩岩体中含电气石伟晶岩,样品编号为TC11-1、TC37-1、DLT004、DLT006,采样位置见图 1。宏微观特征显示,白云母与锂辉石形成共生组合,表明两者同时期形成,因此白云母形成年龄也代表了成矿时代。
图 1. 509道班西锂铍矿地质简图、白云母坪年龄谱图和反等时线年龄图1—第四系冲洪积相; 2—巴颜喀拉山群上组下段; 3—巴颜喀拉山群中组上段; 4—晚石炭世石英闪长岩; 5—含黑电气石花岗伟晶岩; 6—晚石炭世二长花岗岩; 7—含石榴子石白云母黑电气石伟晶岩脉; 8—含锂辉石伟晶岩脉; 9—右旋断层; 10—采样点; SKT—南昆仑地体; TST—甜水海地体; AKTS—阿克塔什锂矿床; DHLT—大红柳滩南锂矿床; BLS—白龙山锂矿床; Sp—锂辉石; Ab—钠长石; Ms—白云母; Qz—石英; Pl—斜长石Figure 1. Geological sketch and plateau age and inverse isochron age of Pegmatite type rare metal lithium deposit in western 509 Daoban1-Quaternary alluvial-diluvial facies; 2-Lower Member of Upper Formation of Bayan Khara Mountain Group; 3-Upper Member of Middle Formation of Bayankhara Mountain Group; 4-Late Carboniferous quartz diorite; 5-Black tourmaline granitic pegmatite; 6-Late Carboniferous monzogranite; 7-Garnet-bearing muscovite black tourmaline dikes; 8-Spodumene viritic dikes; 9-Dextral fault; 10-Sampling point; SKT-South Kunlun terrane; TST-Tian shui hai Terrane; AKTS-Aktash lithium deposit; DHLT-Dahongliutan South Lithium deposit; BLS-Bailongshan Lithium deposit; Sp-Spodumene; Ab-Albite; Ms-White mica; Qz-Quartz; Pl -Plagioclase测试数据见表 1。所有样品皆表现出稳定的年龄图谱,坪年龄和等时线及反等时线年龄结果一致, 数据可靠,平均后得到白云母的形成年龄:TC11-1为(184.59±1.81)Ma、TC37-1为(179.36±1.84) Ma、DLT004为(182.79 ± 1.85) Ma、DLT006为(181.95 ± 1.89) Ma(图 1)。
表 1. 伟晶岩脉中白云母40Ar/39Ar同位素分析结果Table 1. 40 Ar/39 Ar isotopic data of muscovite from pegmatite vein4. 结论(Conclusion)
白云母40Ar/39Ar定年结果显示,509道班西锂辉石伟晶岩形成于185~179 Ma,首次精确限定了该区的成矿时代。作为西昆仑大红柳滩地区重要的伟晶岩型锂矿,揭示其形成时代将为西昆仑—甜水海地区找寻同期花岗伟晶岩型锂矿提供借鉴。
5. 基金项目(Fund support)
本文为国家重点研发计划“我国西部伟晶岩型锂等稀有金属成矿规律与勘查技术”(2021YFC2901900)、“第二次青藏高原综合科学考察研究”项目“西昆仑—喀喇昆仑稀有金属资源现状与远景评估”(2019QZKK080201)联合资助的成果。
-
表 1 测年取样样品及其位置统计表
Table 1. Statistical table of the samples for dating and their locations
样品位置及取样编号 样品照片 表 2 漂木样品测年结果
Table 2. Dating results of the driftwood samples
样品编号 埋深/m 放射性碳年龄 公历校正 测年概率/% ZK135-1 12.6 7120+/-30 a B.P. 6062—5977 cal.B.C. 76.0 5948—5919 cal.B.C. 19.4 ZK135-4 13.0 7220+/-30 a B.P. 6100—6011 cal.B.C. 76.7 6219—6135 cal.B.C. 18.7 ZK135-3 38.5 7810+/-30 a B.P. 6696—6568 cal.B.C. 93.4 ZK139-2 61.0 9370+/-40 a B.P. 8753—8547 cal.B.C. 93.7 ZK139-1 61.8 9420+/-30 a B.P. 8792—8622 cal.B.C. 95.4 表 3 蹦嘎沟泥石流物源分布及时间变化特征
Table 3. Source distribution and temporal variation characteristics of the sources in the Bengga gully
编号 类型 面积/m2 厚度/m 体积/×104 m3 影像日期 BH01 崩滑物源 95734 4.21 40.29 2007-9-17 BH02 崩滑物源 26254 3.13 8.21 2007-9-17 BH03 崩滑物源 44733 3.54 15.81 2007-9-17 BH04 崩滑物源 51883 3.66 18.98 2007-9-17 BH05 崩滑物源 12012 2.61 3.14 2007-9-17 BH06 崩滑物源 76095 3.99 30.39 2007-9-17 BH07 崩滑物源 483453 6.10 294.98 2013-10-9 BH08 崩滑物源 67118 3.88 26.04 2013-10-9 BH09 崩滑物源 126595 4.49 56.81 2013-10-9 BH10 崩滑物源 134525 4.55 61.21 2014-11-8 BH11 崩滑物源 5820 2.21 1.29 2017-12-4 BH12 崩滑物源 8658 2.43 2.10 2017-12-4 BH13 崩滑物源 7208 2.33 1.68 2018-12-26 BH14 崩滑物源 15242 2.76 4.21 2021-1-23 GD01 沟道堆积 4149 2.05 0.85 2007-9-17 GD02 沟道堆积 16190 2.80 4.53 2007-9-17 GD03 沟道堆积 47282 3.58 16.93 2014-11-8 GD04 沟道堆积 71395 3.94 28.09 2018-12-26 -
BERNHARDT H, REISS D, HIESINGER H, et al., 2017. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard)[J]. Geomorphology, 296: 132-141. doi: 10.1016/j.geomorph.2017.08.049
CHEN J, CUI Z J, 2014. Development features of the Early Pleistocene debris-flow deposits at the Baima Mountain Pass, Yunnan Province and their paleoclimatic and tectonic significance[J]. Arid Land Geography, 37(2): 203-211. (in Chinese with English abstract)
CHENG Z L, TIAN J C, ZHANG Z B, et al., 2009. Analysis on environment of disasters resulting from river blockage in Tibet[J]. Journal of Catastrophology, 24(1): 26-30. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2009.01.006
HAN L M, 2018. Geological hazard characteristics and risk assessment of Brahmaputra from Wolong to Zhibai stream segment[D]. Chengdu: Chengdu University of Technology.
HOYOS N, MONSALVE O, BERGER G W, et al., 2015. A climatic trigger for catastrophic Pleistocene-Holocene debris flows in the eastern Andean Cordillera of Colombia[J]. Journal of Quaternary Science, 30(3): 258-270. doi: 10.1002/jqs.2779
HUANG C C, GUO Y Q, ZHANG Y Z, et al., 2019. Holocene sedimentary stratigraphy and pre-historical catastrophes over the Lajia Ruins within the Guanting Basin in Qinghai province of China[J]. Scientia Sinica Terrae, 49(2): 434-455. (in Chinese) doi: 10.1360/N072017-00378
JABOYEDOFF M, CARREA D, DERRON M H, et al., 2020. A review of methods used to estimate initial landslide failure surface depths and volumes[J]. Engineering Geology, 267: 105478. doi: 10.1016/j.enggeo.2020.105478
LEONG E C, CHENG Z Y, 2022. A geometry-modelling method to estimate landslide volume from source area[J]. Landslides, 19(8): 1971-1985. doi: 10.1007/s10346-022-01864-0
LI C P, WANG P, QIAN D, et al., 2015. Ages of the recent two episodes of glacially dammed lakes along the upstream of the Yarlung Zangbo Gorge[J]. Seismology and Geology, 37(4): 1136-1146. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2015.04.016
LI Y H, ZHANG X Y, CUI Z J, et al, 2002. Periodic coupling of debris flow active periods and climate periods during Quaternary[J]. Quaternary Sciences, 22(4): 340-348. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2002.04.006
LI Y J, MENG X M, STEVENS T, et al., 2021. Distinct periods of fan aggradation and incision for tributary valleys of different sizes along the Bailong River, eastern margin of the Tibetan Plateau[J]. Geomorphology, 373: 107490. doi: 10.1016/j.geomorph.2020.107490
LIU X W, 2015. Analysis of the meteorological and hydrological charateristics in the Yarlung Zangbo River Basins[D]. Beijing: Tsinghua University. (in Chinese with English abstract)
LIU Y P, MONTGOMERY D R, HALLET B, et al., 2006. Quaternary glacier blocking events at the entrance of Yarlung Zangbo great canyon, Southeast Tibet[J]. Quaternary Sciences, 26(1): 52-62. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2006.01.007
MALIK I, TIE Y B, OWCZAREK P, et al., 2013. Human-planted alder trees as a protection against debris flows (a dendrochronological study from the Moxi Basin, Southwestern China)[J]. Geochronometria, 40(3): 208-216. doi: 10.2478/s13386-013-0113-x
MONTGOMERY D R, HALLET B, LIU Y P, et al., 2004. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet[J] Quaternary Research, 62(2): 201-207. doi: 10.1016/j.yqres.2004.06.008
MARC O, HOVIUS N, MEUNIER P, et al, 2015. Transient changes of landslide rates after earthquakes[J]. Geology, 43(10): 883-886. doi: 10.1130/G36961.1
ŠILHÁN K, TICHAVSKY R, 2016. Recent increase in debris flow activity in the Tatras Mountains: Results of a regional dendrogeomorphic reconstruction[J]. CATENA, 143: 221-231. doi: 10.1016/j.catena.2016.04.015
TANG C, ZHU J, DING J, et al, 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8: 485-497. doi: 10.1007/s10346-011-0269-5
TIE Y B, MALIK I, OWCZAREK P, 2014. Dendrochronological Dating of debris flow historical events in high mountain area: Take Daozao debris flow as an example[J]. Mountain Research, 32(2): 226-232. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2014.02.013
WANG H Y, TONG K Y, HU G, et al., 2021. Dam and megafloods at the first bend of the Yangtze River since the Last Glacial Maximum[J]. Geomorphology, 373: 107491. doi: 10.1016/j.geomorph.2020.107491
WANG P, WANG H Y, HU G, et al., 2021. A preliminary study on the development of dammed paleolakes in the Yarlung Tsangpo River Basin, southeastern Tibet[J]. Earth Science Frontiers, 28(2): 35-45. (in Chinese with English abstract)
YANG H, CUI C G, WANG X F, et al. 2019. Research progresses of precipitation variation over the Yarlung Zangbo River basin under global climate warming[J]. Torrential Rain and Disasters, 38(6): 565-575.
ZHANG P Q, LIU X H, KONG P, 2008. Evidence for glacial movement since last glacial period in the Great Canyon, Yarlung Zangbo, SE Tibet and its tectono-environmental implications[J]. Chinese Journal of Geology, 43(3): 588-602. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.2008.03.013
ZHANG P Q, GAO M X, LEI Y L, et al, 2009. Quantitative terrain analysis of the great canyon region of Yalungzangbo River, Tibet and discussion of its origin[J]. Journal of Earth Science: 34(4): 595-603.
ZHAO Q Y, WEI M J, SONG B, et al., 2013. TL evidence of debris flow developments in the Late Pleistocene of Yunnan Jiangjia Valley Basin[J]. Nuclear Electronics & Detection Technology, 33(7): 865-868. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-0934.2013.07.021
ZHAO W J, 2015. The Formation characteristics and geomorphical evolution of the landslides and debris flow fans in Guide basin, the upper reaches of the Yellow River[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
ZHU S, 2012. River Landform and geological environment evolution in the Yarlung Zangbo River Vally[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
ZHU S, WU Z H, ZHAO X T, et al, 2013. The age of glacial dammed lakes in the Yarlung Zangbo River Grand Bend during Late Quaternary by OSL[J]. Acta Geoscientia Sinica, 34(2): 246-250. (in Chinese with English abstract)
陈剑, 崔之久, 2014. 云南白马雪山垭口早更新世泥石流的发育特征及其古气候和构造意义[J]. 干旱区地理, 37(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201402001.htm
程尊兰, 田金昌, 张正波, 等, 2009. 西藏江河堵溃灾害及成灾环境分析[J]. 灾害学, 24(1): 26-30. doi: 10.3969/j.issn.1000-811X.2009.01.006
黄春长, 郭永强, 张玉柱, 等, 2019. 青海官亭盆地喇家遗址全新世地层序列与史前灾难研究[J]. 中国科学: 地球科学, 49(2): 434-455. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201902008.htm
韩立明, 2018. 雅鲁藏布江卧龙至直白河段地质灾害发育特征及危险性评价[D]. 成都: 成都理工大学.
李翠平, 王萍, 钱达, 等, 2015. 雅鲁藏布江大峡谷入口河段最近两期古堰塞湖事件的年龄[J]. 地震地质, 37(4): 1136-1146. doi: 10.3969/j.issn.0253-4967.2015.04.016
刘湘伟, 2015. 雅鲁藏布江流域水文气象特性分析[D]. 北京: 清华大学.
李永化, 张小咏, 崔之久, 等, 2002. 第四纪泥石流活动期与气候期的阶段性耦合过程[J]. 第四纪研究, 22(4): 340-348. doi: 10.3321/j.issn:1001-7410.2002.04.006
刘宇平, MONTGOMERY D R, HALLET B, 等, 2006. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件[J]. 第四纪研究, 26(1): 52-62. doi: 10.3321/j.issn:1001-7410.2006.01.007
铁永波, MALIK I, OWCZAREK P, 2014. 树木年代学在高寒山区泥石流历史事件重建中的应用: 以磨西河流域倒灶沟为例[J]. 山地学报, 32(2): 226-232. doi: 10.3969/j.issn.1008-2786.2014.02.013
王萍, 王慧颖, 胡钢, 等, 2021. 雅鲁藏布江流域古堰塞湖群的发育及其地质意义初探[J]. 地学前缘, 28(2): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102004.htm
杨浩, 崔春光, 王晓芳, 等, 2019. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 38(6): 565-575. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201906001.htm
张沛全, 刘小汉, 孔屏, 2008. 雅鲁藏布江大拐弯地区末次冰期以来的冰川活动证据及其构造-环境意义[J]. 地质科学, 43(3): 588-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803014.htm
张沛全, 高明星, 雷永良, 等, 2009. 西藏雅鲁藏布江大拐弯地区量化地貌特征及其成因[J]. 地球科学(中国地质大学学报): 34(4): 595-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904005.htm
赵秋月, 魏明建, 宋波, 等, 2013. 晚更新世云南蒋家沟流域泥石流发育的热释光证据[J]. 核电子学与探测技术, 33(7): 865-868. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE201307020.htm
赵无忌, 2015. 黄河上游贵德盆地滑坡泥石流扇发育特征及地貌演化过程[D]. 北京: 中国地质大学(北京).
祝嵩, 2012. 雅鲁藏布江河谷地貌与地质环境演化[D]. 北京: 中国地质科学院.
祝嵩, 吴珍汉, 赵希涛, 等, 2013. 用OSL方法确定雅鲁藏布江大拐弯第四纪晚期冰川堰塞湖年龄[J]. 地球学报, 34(2): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302017.htm
-