Late Pleistocene stratigraphic sequence and geologic significance of the Kaolao Tableland in the Yuncheng Basin
-
摘要:
古汾河改道是运城盆地新生代时期一次重要的地表巨变过程,对于古汾河改道时限目前仍存在着中更新世和晚更新世2种观点,尚未有统一的定论。研究以运城盆地栲栳塬晚更新世沉积序列为调查对象,在光释光测年的基础上,厘定了沉积序列转换的关键时限;结合碎屑锆石U-Pb同位素测年,分析了栲栳塬晚更新世沉积序列的成因及地质主控因素。研究认为:运城盆地栲栳塬晚更新世沉积序列具有双层结构的特点,下部为一套河流相砂体,上部为一套风成相黄土,二者之间的界限大约在7.6~6.3万年;碎屑锆石年龄序列对比分析认为,栲栳塬晚更新世早期的河流相沉积与运城盆地汾河古河道的沉积特征基本一致,晚更新世中期,由于峨眉台地的区域性抬升,古汾河发生改道进而退出运城盆地,栲栳塬早期的河流相沉积之上开始接受持续的风成相沉积;运城盆地晚更新世中期的构造抬升事件在鄂尔多斯盆地周缘均有响应,预示着青藏高原在该时期存在一期明显的构造隆升,其远程效应是造成汾河改道退出运城盆地的主要动力。该研究成果从沉积角度为运城盆地古汾河的改道时限提供了新的证据。
Abstract:The ancient Fen River diversion was a crucial earth's surface transformation in the Yuncheng Basin during the Cenozoic. The time frame for the diversion of the ancient Fen River is still characterized by two views: the middle Pleistocene and the late Pleistocene, which has yet to be finalized. This study investigated the late Pleistocene sedimentary sequence of the Kaolao Tableland in the Yuncheng Basin, and the critical time frame of the sedimentary sequence transition was determined based on optically stimulated luminescence (OSL) dating results. The causes of the late Pleistocene sedimentary sequence of the Kaolao Tableland and the geological factors that controlled the sequence were analyzed using detrital zircon U–Pb isotope dating. It is concluded that the late Pleistocene sedimentary sequence of the Kaolao Tableland in the Yuncheng Basin is characterized by a two-layer structure, with fluvial sands in the lower part and eolian loess in the upper part. Based on the OSL dating results, the formation time of the boundary between these two parts is between ~76–63 ka B.P. Comparative analysis of detrital zircon age sequences indicates that the early Pleistocene fluvial sands in the Kaolao Tableland and sediments in the ancient Fen River have similar age sequence characteristics. Therefore, it can be deduced that the regional tectonic uplift of the northeastern Emei Terrace in the middle of the late Pleistocene resulted in the diversion and exit of the ancient Fen River from the Yuncheng Basin and the sedimentary facies began to change from fluvial to eolian. The tectonic uplift in the middle of the late Pleistocene extensively developed around the Ordos Basin, and that indicates a significant tectonic uplift of the Tibet Plateau during this time, whose remote effect might be the major cause for the exit of the ancient Fen River from the Yuncheng Basin. This research provides new sedimentary evidence for the time frame of the ancient Fen River diversion in the Yuncheng Basin.
-
Key words:
- fluvial facies /
- eolian loess /
- ancient Fen River /
- late Pleistocene /
- Yuncheng Basin /
- Zircon U-Pb ages
-
表 1 光释光样品年龄测试结果
Table 1. Optically stimulated luminescence ages
序号 野外编号 U/ Th/ K/ 测试粒径/ 测试方法 环境剂量率/ 等效剂量/ 年龄/ (μg/g) (μg/g) % μm (Gy/ka) Gy ka 1 ZC-OSL-1 1.61 6.90 1.87 4~11 SMAR 2.92±0.22 323.51±31.98 110.63±13.65 2 ZC-OSL-2 2.52 10.80 1.83 4~11 SMAR 3.55±0.25 270.25±31.45 76.22±10.40 3 ZC-OSL-3 2.46 11.50 1.66 4~11 SMAR 3.46±0.24 220.04±16.64 63.69±6.57 4 YC03-OSL 2.76 12.30 1.60 4~11 SMAR 4.15±0.25 179.36±14.76 43.26±5.60 5 YC01-OSL 1.93 9.71 1.86 4~11 SMAR 3.82±0.23 300.26±28.10 78.54±10.76 6 SG05-OSL 11.00 12.40 1.86 4~11 SMAR 7.53±0.22 508.89±0.58 67.57±7.88 7 SG08-OSL 1.90 7.09 2.09 4~11 SMAR 3.77±0.21 467.56±48.60 124.09±17.90 表 2 ZC-Zr-1样品碎屑锆石年龄测试结果
Table 2. U-Pb ages of detrital zircons from the sample ZC-Zr-1
测试点号 含量/×10−6 同位素比值 年龄/Ma Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ ZC-Zr-1 178.0 222.0 199 11.0402 0.1939 0.4822 0.0049 2509 29 2537 21 ZC-Zr-3 31.1 268.0 638 0.2821 0.0071 0.0386 0.0003 320 57 244 2 ZC-Zr-4 19.6 115.0 226 0.5196 0.0144 0.0678 0.0006 435 63 423 4 ZC-Zr-5 8.5 64.1 111 0.3331 0.0159 0.0442 0.0006 433 145 279 4 ZC-Zr-6 7.0 62.8 103 0.2817 0.0168 0.0404 0.0006 250 139 255 4 ZC-Zr-7 160.0 155.0 247 9.1073 0.1536 0.4299 0.0035 2383 29 2305 16 ZC-Zr-8 6.9 75.3 114 0.3095 0.0172 0.0426 0.0005 328 119 269 3 ZC-Zr-9 54.9 14.1 102 10.4488 0.1983 0.4628 0.0043 2492 31 2452 19 ZC-Zr-10 13.2 68.4 132 0.5638 0.0219 0.0741 0.0008 413 83 461 5 ZC-Zr-11 55.5 31.7 139 5.9408 0.1088 0.3519 0.0031 1990 38 1944 15 ZC-Zr-12 215.5 54.2 670 5.1155 0.0827 0.3243 0.0030 1866 27 1810 15 ZC-Zr-13 6.0 69.8 93 0.3093 0.0184 0.0443 0.0007 300 147 279 4 ZC-Zr-14 27.1 24.4 67 5.1031 0.1029 0.3287 0.0030 1843 38 1832 14 ZC-Zr-15 55.0 92.1 99 5.0927 0.1013 0.3252 0.0030 1854 41 1815 14 ZC-Zr-16 232.0 601.0 275 4.8464 0.0892 0.3108 0.0024 1842 33 1745 12 ZC-Zr-17 42.5 34.2 108 5.2593 0.0967 0.3294 0.0027 1890 35 1835 13 ZC-Zr-18 69.9 119.0 410 1.5147 0.0254 0.1545 0.0012 954 35 926 6 ZC-Zr-19 87.5 154.0 166 4.5015 0.0811 0.3013 0.0027 1769 33 1698 14 ZC-Zr-20 250.0 202.0 415 9.2668 0.1540 0.4139 0.0044 2474 24 2233 20 ZC-Zr-21 87.9 84.1 132 9.0100 0.1552 0.4541 0.0051 2272 27 2414 22 ZC-Zr-22 33.0 34.5 64 6.4872 0.1475 0.3737 0.0041 2037 39 2047 19 ZC-Zr-23 271.0 52.5 590 8.8208 0.1462 0.4171 0.0037 2379 28 2247 17 ZC-Zr-24 242.0 148.0 389 10.4343 0.1845 0.4769 0.0044 2437 30 2514 19 ZC-Zr-25 51.9 51.9 72 9.4711 0.1963 0.4489 0.0047 2377 35 2390 21 ZC-Zr-26 145.5 72.3 251 10.4246 0.1710 0.4677 0.0041 2466 28 2474 18 ZC-Zr-27 106.8 146.0 150 7.7183 0.1212 0.3885 0.0032 2272 27 2116 15 ZC-Zr-28 151.0 190.0 160 10.9927 0.1621 0.4756 0.0038 2529 25 2508 17 ZC-Zr-29 117.6 123.0 147 10.5719 0.1535 0.4671 0.0041 2495 26 2471 18 ZC-Zr-30 104.2 97.9 246 5.3593 0.0908 0.3345 0.0032 1892 30 1860 15 ZC-Zr-31 94.4 126.0 111 9.4867 0.1727 0.4453 0.0042 2391 31 2374 19 ZC-Zr-33 30.0 40.9 60 4.8823 0.1041 0.3259 0.0029 1768 39 1818 14 ZC-Zr-34 89.3 111.0 117 8.7490 0.1420 0.4248 0.0032 2332 29 2282 14 ZC-Zr-35 79.6 69.0 182 5.9436 0.1270 0.3477 0.0051 2006 30 1924 24 ZC-Zr-36 149.0 203.0 301 5.0792 0.0822 0.3330 0.0028 1811 28 1853 13 ZC-Zr-37 118.0 86.5 209 8.6450 0.1388 0.4113 0.0030 2365 27 2221 14 ZC-Zr-38 305.0 170.0 519 9.8174 0.1598 0.4553 0.0041 2409 27 2419 18 ZC-Zr-39 16.8 165.0 226 0.3800 0.0130 0.0499 0.0006 428 80 314 4 ZC-Zr-40 88.7 49.1 144 10.6158 0.2174 0.4693 0.0047 2490 33 2481 21 ZC-Zr-42 23.1 327.0 339 0.2811 0.0087 0.0398 0.0004 254 68 252 3 ZC-Zr-43 72.4 65.8 176 5.1621 0.0965 0.3275 0.0030 1862 34 1826 14 ZC-Zr-44 68.6 45.6 215 4.3364 0.0796 0.2955 0.0028 1732 33 1669 14 ZC-Zr-45 42.5 63.0 82 4.9999 0.1002 0.3271 0.0030 1806 35 1824 15 ZC-Zr-46 81.1 49.9 263 4.8733 0.1316 0.2961 0.0056 1931 31 1672 28 ZC-Zr-48 20.8 176.0 368 0.3247 0.0107 0.0434 0.0004 372 74 274 2 ZC-Zr-49 352.0 220.0 855 5.7795 0.0953 0.3542 0.0029 1926 30 1955 14 ZC-Zr-50 205.0 161.0 317 10.3477 0.1869 0.4496 0.0042 2522 29 2393 19 ZC-Zr-51 45.2 91.0 61 5.8441 0.1351 0.3509 0.0036 1973 41 1939 17 ZC-Zr-52 150.0 130.0 357 5.7726 0.0950 0.3524 0.0032 1936 26 1946 15 ZC-Zr-53 59.9 77.4 69 10.3819 0.2011 0.4559 0.0048 2508 31 2421 21 ZC-Zr-54 173.5 114.0 440 5.5781 0.0857 0.3453 0.0026 1910 26 1912 12 ZC-Zr-55 256.0 217.0 611 5.8320 0.0968 0.3474 0.0030 1989 28 1922 14 ZC-Zr-56 122.5 117.0 174 9.7395 0.1684 0.4618 0.0043 2376 27 2447 19 ZC-Zr-57 54.8 41.8 99 8.7842 0.1904 0.4025 0.0044 2433 39 2181 20 ZC-Zr-58 210.0 258.0 692 3.7252 0.0818 0.2509 0.0032 1754 33 1443 16 ZC-Zr-59 109.9 71.9 310 4.9964 0.0911 0.3158 0.0028 1873 33 1769 14 ZC-Zr-60 159.4 52.4 455 5.8807 0.1222 0.3431 0.0043 2009 25 1902 21 ZC-Zr-61 63.2 118.0 92 5.8926 0.1198 0.3513 0.0032 1974 35 1941 15 ZC-Zr-62 7.4 68.9 143 0.3139 0.0156 0.0427 0.0006 350 113 270 3 ZC-Zr-63 22.9 47.4 40 4.3841 0.1139 0.3076 0.0033 1688 51 1729 16 ZC-Zr-64 41.5 66.9 80 5.1611 0.1066 0.3291 0.0030 1857 39 1834 15 ZC-Zr-65 83.4 125.0 95 9.2125 0.1785 0.4353 0.0037 2377 34 2329 16 ZC-Zr-66 9.5 75.8 186 0.3220 0.0133 0.0421 0.0005 428 88 266 3 ZC-Zr-68 5.0 62.4 58 0.3527 0.0229 0.0461 0.0007 487 156 290 5 ZC-Zr-69 77.4 118.0 157 5.1547 0.1026 0.3174 0.0038 1915 34 1777 19 ZC-Zr-70 36.3 4.9 86 7.6336 0.1864 0.3970 0.0047 2206 39 2155 22 ZC-Zr-71 31.4 446.0 357 0.3435 0.0122 0.0463 0.0005 339 78 292 3 ZC-Zr-72 35.2 61.8 67 5.2428 0.1118 0.3185 0.0028 1943 40 1782 14 ZC-Zr-73 208.0 194.0 304 9.8833 0.1682 0.4546 0.0040 2433 31 2416 18 ZC-Zr-74 196.3 109.0 357 9.3918 0.1663 0.4410 0.0038 2387 31 2355 17 ZC-Zr-75 154.1 77.1 419 5.4923 0.0902 0.3406 0.0030 1902 31 1890 14 ZC-Zr-76 59.6 181.0 35 5.1197 0.1492 0.3317 0.0042 1828 53 1847 20 ZC-Zr-77 180.0 164.0 231 11.3982 0.1651 0.4871 0.0045 2547 25 2558 20 ZC-Zr-78 100.3 143.0 189 5.5238 0.0798 0.3460 0.0028 1881 26 1916 13 ZC-Zr-79 66.7 97.2 131 5.1919 0.0913 0.3367 0.0031 1817 30 1871 15 ZC-Zr-80 148.0 256.0 249 5.3470 0.0685 0.3361 0.0026 1872 20 1868 13 ZC-Zr-81 261.8 44.0 502 10.8036 0.0939 0.4687 0.0028 2517 12 2478 12 ZC-Zr-82 91.2 56.7 172 8.6002 0.1040 0.4248 0.0031 2298 17 2282 14 ZC-Zr-83 75.2 101.0 137 5.9456 0.0797 0.3577 0.0030 1955 22 1971 14 ZC-Zr-84 33.8 52.4 64 5.1114 0.0910 0.3308 0.0034 1833 34 1842 17 ZC-Zr-85 28.2 130.0 120 1.1959 0.0293 0.1327 0.0012 787 54 803 7 ZC-Zr-86 52.5 78.4 51 10.1950 0.1988 0.4567 0.0049 2473 33 2425 22 ZC-Zr-87 49.1 36.2 126 5.3148 0.0934 0.3371 0.0028 1865 33 1873 14 ZC-Zr-88 58.5 76.5 64 10.3817 0.1800 0.4674 0.0041 2465 30 2472 18 ZC-Zr-89 152.1 43.4 600 3.6819 0.0564 0.2603 0.0019 1665 28 1492 10 ZC-Zr-90 81.2 88.8 175 5.6034 0.1152 0.3492 0.0039 1896 35 1931 19 ZC-Zr-91 172.2 42.8 548 4.9117 0.1059 0.3012 0.0035 1924 35 1697 17 ZC-Zr-92 114.9 86.5 188 9.4665 0.1569 0.4502 0.0039 2372 28 2396 17 ZC-Zr-93 7.6 207.0 249 0.1381 0.0077 0.0198 0.0003 256 131 126 2 ZC-Zr-94 14.3 124.0 271 0.3047 0.0118 0.0434 0.0005 254 88 274 3 ZC-Zr-95 9.5 95.8 103 0.4088 0.0210 0.0574 0.0008 287 122 360 5 ZC-Zr-96 44.0 48.1 105 4.8837 0.0924 0.3297 0.0031 1755 35 1837 15 ZC-Zr-97 89.4 37.5 221 6.2711 0.1077 0.3753 0.0038 1972 62 2054 18 ZC-Zr-98 42.4 65.1 108 4.0810 0.0914 0.2842 0.0037 1694 37 1612 19 ZC-Zr-99 84.8 111.0 184 5.1797 0.0918 0.3282 0.0026 1866 31 1830 13 ZC-Zr-100 13.4 85.8 165 0.4931 0.0197 0.0646 0.0007 443 93 403 4 ZC-Zr-101 10.5 126.0 160 0.3281 0.0156 0.0425 0.0006 461 107 269 4 ZC-Zr-102 16.9 131.0 298 0.3390 0.0128 0.0477 0.0006 333 89 301 4 -
[1] AN Z S, LIU X D, 2000. History and variability of monsoon climate in East Asia[J]. Chinese Science Bulletin, 45(3): 238-249. (in Chinese) doi: 10.1360/csb2000-45-3-238
[2] CHEN X Q, SHI W, HU J M, et al. , 2016. Sedimentation of the Pliocene-Pleistocene Chaizhuang section in the central of Linfen Basin, North China and its tectonic significance[J]. Journal of Geomechanics, 22(4): 984-993. (in Chinese with English abstract)
[3] CUI J W, LI Z H, LIU F, et al. , 2018. Redefinition of the sedimentary time of the Salawusu Formation in the Hongsibu Basin, Ningxia and its significance[J]. Journal of Geomechanics, 24(2): 283-292. (in Chinese with English abstract)
[4] CUI X F, XIE F R, LI R S, et al. , 2010. Heterogeneous features of state of tectonic stress filed in north china and deep stress in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 29(S1): 2755-2761. (in Chinese with English abstract)
[5] DONG X P, LI Z H, CUI J W, et al. , 2022. Discovery of periglacial phenomena in the late stage of Last Glacial Maximum at the upper to middle reaches of Qingshuihe River, Ningxia, China[J]. Journal of Earth Sciences and Environment, 44(3): 524-534. (in Chinese with English abstract)
[6] DONG X P, CUI J W, JIANG X H et al. , 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt in the northeastern Tibet Plateau[OL/J]. Journal of Geomechanics, DOI: 10.12090/j.issn.1006-6616.2023048. (in Chinese with English abstract)
[7] GUO L Z, XUE Y Q, 1958. The pleistocene sediments of the lower reaches of the Fenho and the Sushui: their origin and bearings on the geomorphological evolution of these two rivers[J]. Quaternary Sciences, 1(1): 107-117. (in Chinese)
[8] HAN H Y, MI F S, LIU H Y, 2001. Geomorphological structure in the Weihe Basin and neotectonic movement[J]. Journal of Seismological Research, 24(3): 251-257. (in Chinese with English abstract)
[9] HAN H Y, ZHANG Y, YUAN Z X, 2002. The evolution of Weihe down-faulted basin and the movement of the fault blocks[J]. Journal of Seismological Research, 25(4): 362-368. (in Chinese with English abstract)
[10] HAN X M, LIU F, ZHANG W T, et al. , 2015. Analyzing the variation characteristics of stress field in Hetao seismic belt using focal mechanism data[J]. Seismology and Geology, 37(4): 1030-1042. (in Chinese with English abstract)
[11] HU J M, YAN J Y, CHENG Y, et al. , 2022. Geological records of late Cenozoic tectono-sedimentary-paleoclimatic events in China[J]. Geology and Resources, 31(3): 303-330. (in Chinese with English abstract)
[12] HU X M, 1997. The change of fromer Fen river on EMEI platform[J]. Journal of Anhui Normal University (Natural Science), 20(2): 154-158. (in Chinese with English abstract)
[13] HU X M, YANG J C, 2001. The evolution and its contributing factors of Linfen Basin since middle Quaternary[J]. Journal of Shanghai Teachers University (Natural Sciences), 30(3): 72-76. (in Chinese with English abstract)
[14] HU X M, GUO J X, HU X Y, 2010. The development of Morpho-sediment of Quaternary in Fenhe River graben basins and the neotectonic movement[J]. Acta Geographica Sinica, 65(1): 73-81. (in Chinese with English abstract)
[15] HU X M, CHEN M J, WANG D T, et al. , 2012. The Sequence difference in the times in the geomorphic-sedimentary evolution in the Fenwei graben basins during the middle-late Quaternary and its tectonic significance[J]. Quaternary Sciences, 32(5): 849-858. (in Chinese with English abstract)
[16] HUANG T, LI Z H, LIU F, et al. , 2018. The current situation of desertification in the Hongsibu Basin, Ningxia, and its main geological controlling factors[J]. Journal of Geomechanics, 24(4): 505-514. (in Chinese with English abstract)
[17] JIA L Y, ZHANG X J, YE P S, et al. , 2016. Development of the alluvial and lacustrine terraces on the northern margin of the Hetao Basin, Inner Mongolia, China: implications for the evolution of the Yellow River in the Hetao area since the late pleistocene[J]. Geomorphology, 263: 87-98. doi: 10.1016/j.geomorph.2016.03.034
[18] JIA L Y, HU D G, WU H H, et al. , 2017. Yellow River terrace sequences of the Gonghe-Guide section in the northeastern Qinghai-Tibet: implications for plateau uplift[J]. Geomorphology, 295: 323-336. doi: 10.1016/j.geomorph.2017.06.007
[19] JIANG F C, FU J L, WANG S B, et al. , 2007. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 175(1): 62-70. doi: 10.1016/j.quaint.2007.03.022
[20] JIN H L, LI M Q, SU Z Z, et al. , 2006. Climatic change reflected by Stratigraphical magnetic susceptibility in Salawusu River basin, North China since 220 ka BP[J]. Journal of Desert Research, 26(5): 680-686. (in Chinese with English abstract)
[21] JIN H L, LI M Q, SU Z Z, et al. , 2007. Sedimentary age of strata in the Salawusu River Basin and climatic changing[J]. Acta Geologica Sinica, 81(3): 307-315. (in Chinese with English abstract)
[22] LI S Z, YU S, ZHAO S J, et al. , 2013. Tectonic transition and plate reconstructions of the east Asian continental magin[J]. Marine Geology & Quaternary Geology, 33(3): 65-94. (in Chinese with English abstract)
[23] LI S Z, CAO X Z, WANG G Z, et al. , 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract)
[24] LI Y L, YANG J C, 1994. Environmental evolution of Yuncheng daline lake (Shanxi, China)[J]. Geographical Research, 13(1): 70-74. (in Chinese with English abstract)
[25] LI Y L, YANG J C, SU Z Z, 1994. Neotectonic movement and palaeochannel evolution in Yuncheng Basin[J]. Earthquake Research in Shanxi(1): 3-6. (in Chinese with English abstract)
[26] LI Z C, LI W H, LI Y X, et al. , 2015. Sedimentary facies of the Cenozoic in Weihe Basin[J]. Journal of Palaeogeography, 17(4): 529-540. (in Chinese with English abstract)
[27] LI Z C, LI W H, LI Y X, et al. , 2016. Cenozoic stratigraphy and Paleoenvironments in the Weihe area, Shaanxi Province[J]. Journal of Stratigraphy, 40(2): 168-178. (in Chinese with English abstract)
[28] LI Z H, JIANG B Y, DONG X P, et al. , 2020a. Collapses of loess at the front of the Emei tableland in the Yuncheng basin and their major geological controlling factors[J]. Coal Geology & Exploration, 48(2): 171-178. (in Chinese with English abstract)
[29] LI Z H, CUI J W, LI C Z, et al. , 2020b. Late Pleistocene sedimentary features and the palaeoclimatic background in Hongsibao Basin[J]. Coal Geology & Exploration, 48(6): 233-242. (in Chinese with English abstract)
[30] LI Z Y, LI Y X, LI W H, et al. , 2021. Sedimentary characteristics of Paleogene-Neogene in Fenwei Basin[J]. Chinese Journal of Geology, 56(4): 1120-1133. (in Chinese with English abstract)
[31] LIN X D, YUAN H Y, XU P, et al. , 2017. Zonational characteristics of earthquake focal mechanism solutions in North China[J]. Chinese Journal of Geophysics, 60(12): 4589-4622. (in Chinese with English abstract)
[32] LIU B H, WU F, ZHANG X J, et al., 2023. Late Pleistocene element geochemistry and its implications for environmental change in Hongsibu Basin, northeastern margin of Qinghai-Tibet Plateau[J/OL].Geological Bulletin of China: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html. (in Chinese with English abstract)
[33] LIU S D, LI G K, LI Y X, et al. , 1988. Discussion on the formation and evolution of the Yellow River from the characteristics of Quaternary sediments in the eastern plain of Henan Province[J]. Henan Geology, 6(2): 20-24. (in Chinese)
[34] LIU Y S, HU Z C, GAO S, et al. , 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[35] LIU Y S, GAO S, HU Z C, et al. , 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
[36] LIU Y S, HU Z C, ZONG K Q, et al. , 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
[37] LUDWIG K R, 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[M]. Berkeley, California: Berkeley Geochronology Center: 39.
[38] MA Z Y, DONG X P, ZHANG Q, et al. , 2020. Sedimentary response to the uplift of the Liupan Shan since the Late Pleistocene and its environmental effects[J]. Coal Geology & Exploration, 48(5): 152-164. (in Chinese with English abstract)
[39] PAN B T, WANG J P, GAO H S, et al. , 2005. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges[J]. Chinese Science Bulletin, 50(7): 657-664. doi: 10.1360/03wd0290
[40] QI Y, XU H B, ZHANG J X, et al. , 2011. Geochemistry, geochronology and geological significance of Gufengshan granodiorite in Linfen Grabben basin[J]. Geological Review, 57(4): 565-573. (in Chinese with English abstract)
[41] QI Y, LUO J H, WU J D, et al. , 2016. Geochemical and Sr-Nd-Pb isotopic composition of the Canfang and Gufengshan granodiorite plutons in central-southern North China[J]. Acta Petrologica Sinica, 32(7): 2015-2028. (in Chinese with English abstract)
[42] QIN B C, FANG W X, ZHANG J G, et al. , 2021. Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe Rift Valley[J]. Journal of Geomechanics, 27 (6): 1035-1050. (in Chinese with English abstract)
[43] QIU D W, GONG W B, YAN J Y, et al. , 2021. Geological environment changes during the late Pleistocene-Holocene on the E'mei tableland in the northern Yuncheng basin, Shanxi Province: implications for the distribution of human settlements[J]. Journal of Geomechanics, 27(2): 326-338. (in Chinese with English abstract)
[44] SHANG Y, PRINS M A, BEETS C J, et al. , 2018. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra[J]. Quaternary Science Reviews, 182: 131-143. doi: 10.1016/j.quascirev.2018.01.001
[45] SUN J M, XU L L, 2007. River terraces in the Fenwei Graben, Central China, and the relation with the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Sciences, 27(1): 20-26. (in Chinese with English abstract)
[46] SUO Y H, LI S Z, DAI L M, et al. , 2012. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 28(8): 2602-2618. (in Chinese with English abstract)
[47] SUO Y H, LI S Z, CAO X Z, et al. , 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249-267. (in Chinese with English abstract)
[48] WANG Q, LI C G, TIAN G Q, et al. , 2000. Great changes of surface system and tectonic setting of salt lake formation in Yuncheng Basin since 7.1 Ma[J]. Science in China (Series D), 30(4): 420-428. (in Chinese)
[49] WIEDENBECK M, ALLÉ P, CORFU F, et al. , 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
[50] WU M J, LIN X D, XU P, 2011. Analysis of focal mechnism and tectonic stress field features in northern part of north China[J]. Journal of Geodesy and Geodynamics, 31(5): 39-43. (in Chinese with English abstract)
[51] WU X H, JIANG F C, WANG S M, et al. , 1998. On problem of the Yellow River passing through the Sanmen Gorge and flowing east into sea[J]. Quaternary Sciences, 18(2): 188. (in Chinese with English abstract)
[52] XING Z Y, ZHAO B, TU M Y, et al. , 2005. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 12(2): 247-262. (in Chinese with English abstract)
[53] XU H L, WANG C D, 2010. Preliminary study on the relationship between the Fluvial geomorphology and the Neotectonic movement in Yellow River in Zhengzhou prehistoric times[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 31(6): 101-106. (in Chinese with English abstract)
[54] YAN J Y, 2021. Late Cenozoic tectonic-sedimenatary, uplifting and denudational process of the Yuncheng Basin and northern Gushan Mountain[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
[55] YAN J Y, HU J M, WANG D M, et al. , 2021. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic[J]. Geological Bulletin of China, 40(5): 623-648. (in Chinese with English abstract)
[56] YANG S Y, CAI J G, LI C X, et al. , 2001. New discussion about the run-through time of the Yellow River[J]. Marine Geology & Quaternary Geology, 21(2): 15-20. (in Chinese with English abstract)
[57] YAO W B, JI X Q, ZHAO Z, 2004. Sedimental features of loess in Yuncheng basin[J]. Shanxi Architecture, 30(9): 23-24. (in Chinese with English abstract)
[58] ZHANG L, LIU J Q, QIN X G, 2018. The environmental effects and mechanism of the Yellow River flooding into the Huaibei Plain during Quaternary: a brief review[J]. Quaternary Sciences, 38(2): 441-453. (in Chinese with English abstract)
[59] ZHONG Q M, SHAO B, HOU G T, 2022. Numerical simulation and analysis of lithospheric stress field in Fenwei graben[J]. Progress in Geophysics, 37(1): 152-163. (in Chinese with English abstract)
[60] ZHOU Q S, ZHANG X J, YE P S, et al. , 2017. The distribution and period division of Holocene palaeo channels of the Yellow River in Hetao area[J]. Journal of Geomechanics, 23(3): 339-347. (in Chinese with English abstract)
[61] 安芷生, 刘晓东, 2000. 东亚季风气候的历史与变率[J]. 科学通报, 45(3): 238-249. doi: 10.3321/j.issn:0023-074X.2000.03.002
[62] 陈兴强, 施炜, 胡健民, 等, 2016. 华北临汾盆地中部柴庄上新世-更新世剖面沉积学特征及其构造意义[J]. 地质力学学报, 22(4): 984-993.
[63] 崔加伟, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地萨拉乌苏组地层时代重新厘定及意义[J]. 地质力学学报, 24(2): 283-292.
[64] 崔效锋, 谢富仁, 李瑞莎, 等, 2010. 华北地区构造应力场非均匀特征与煤田深部应力状态[J]. 岩石力学与工程学报, 29(S1): 2755-2761.
[65] 董晓朋, 李振宏, 崔加伟, 等, 2022. 宁夏清水河中上游发现末次冰期最盛期冰缘遗迹群[J]. 地球科学与环境学报, 44(3): 524-534.
[66] 董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列特征及年代学研究进展[OL/J]. 地质力学学报,DOI:10.12090/j.issn.1006-6616.2023048
[67] 郭令智, 薛禹群, 1958. 从第四纪沉积物讨论山西汾河与涑水在地貌演化上的关系[J]. 第四纪研究, 1(1): 107-117.
[68] 韩恒悦, 米丰收, 刘海云, 2001. 渭河盆地带地貌结构与新构造运动[J]. 地震研究, 24(3): 251-257.
[69] 韩恒悦, 张逸, 袁志祥, 2002. 渭河断陷盆地带的形成演化及断块运动[J]. 地震研究, 25(4): 362-368.
[70] 韩晓明, 刘芳, 张文韬, 等, 2015. 基于震源机制资料分析河套地震带的应力场变化特征[J]. 地震地质, 37(4): 1030-1042. doi: 10.3969/j.issn.0253-4967.2015.04.008
[71] 胡健民, 闫纪元, 程瑜, 等, 2022. 中国晚新生代构造-沉积-古气候事件的地质记录[J]. 地质与资源, 31(3): 303-330.
[72] 胡晓猛, 1997. 古汾河在峨嵋台地上的变迁[J]. 安徽师范大学学报(自然科学版), 20(2): 154-158.
[73] 胡小猛, 杨景春, 2001. 临汾盆地中更新世中晚期以来的演化历史及成因分析[J]. 上海师范大学学报(自然科学版), 30(3): 72-76.
[74] 胡小猛, 郭家秀, 胡向阳, 2010. 汾河地堑湖盆第四纪地貌-沉积特征的构造控制[J]. 地理学报, 65(1): 73-81.
[75] 胡小猛, 陈美君, 王杜涛, 等, 2012. 汾渭地堑系列湖盆第四纪中晚期地貌与沉积阶段性演化的时间序次差异及其构造指示意义[J]. 第四纪研究, 32(5): 849-858.
[76] 黄婷, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地地表沙漠化现状及其地质主控因素[J]. 地质力学学报, 24(4): 505-514.
[77] 靳鹤龄, 李明启, 苏志珠, 等, 2006. 220 ka 以来萨拉乌苏河流域地层磁化率与气候变化[J]. 中国沙漠, 26(5): 680-686.
[78] 靳鹤龄, 李明启, 苏志珠, 等, 2007. 萨拉乌苏河流域地层沉积时代及其反映的气候变化[J]. 地质学报, 81(3): 307-315.
[79] 李三忠, 余珊, 赵淑娟, 等, 2013. 东亚大陆边缘的板块重建与构造转换[J]. 海洋地质与第四纪地质, 33(3): 65-94.
[80] 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060
[81] 李有利, 杨景春, 1994. 运城盐湖沉积环境演化[J]. 地理研究, 13(1): 70-74.
[82] 李有利, 杨景春, 苏宗正, 1994. 运城盆地新构造运动与古河道演变[J]. 山西地震(1): 3-6.
[83] 李智超, 李文厚, 李永项, 等, 2015. 渭河盆地新生代沉积相研究[J]. 古地理学报, 17(4): 529-540.
[84] 李智超, 李文厚, 李永项, 等, 2016. 陕西渭河地区新生代地层及沉积环境演化[J]. 地层学杂志, 40(2): 168-178.
[85] 李兆雨, 李永项, 李文厚, 等, 2021. 汾渭盆地古近系-新近系沉积特征[J]. 地质科学, 56(4): 1120-1133.
[86] 李振宏, 姜博宇, 董晓朋, 等, 2020a. 运城盆地峨眉台地前缘黄土塌陷现状及地质主控因素[J]. 煤田地质与勘探, 48(2): 171-178.
[87] 李振宏, 崔加伟, 李朝柱, 等, 2020b. 红寺堡盆地晚更新世沉积特征及古气候背景[J]. 煤田地质与勘探, 48(6): 233-242.
[88] 林向东, 袁怀玉, 徐平, 等, 2017. 华北地区地震震源机制分区特征[J]. 地球物理学报, 60(12): 4589-4622.
[89] 刘博华, 吴芳, 张绪教, 等, 2023. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义[J/OL]. 地质通报: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html.
[90] 刘书丹, 李广坤, 李玉信, 等, 1988. 从河南东部平原第四纪沉积物特征探讨黄河的形成与演变[J]. 河南地质, 6(2): 20-24.
[91] 马兆颖, 董晓朋, 张庆, 等, 2020. 六盘山晚更新世以来抬升过程沉积响应及环境效应[J]. 煤田地质与勘探, 48(5): 152-164.
[92] 潘保田, 王均平, 高红山, 等, 2005. 河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示[J]. 科学通报, 50(3): 255-261.
[93] 齐玥, 徐鸿博, 张竞雄, 等, 2011. 临汾断陷盆地孤峰山花岗闪长岩的地球化学和年代学及其地质意义[J]. 地质论评, 57(4): 565-573.
[94] 齐玥, 罗金海, 巫嘉德, 等, 2016. 华北中南部蚕坊和孤峰山花岗闪长岩体的地球化学特征和Sr-Nd-Pb同位素组成[J]. 岩石学报, 32(7): 2015-2028
[95] 秦帮策, 方维萱, 张建国, 等, 2021. 汾河裂谷晋中盆地内第四纪沉积序列与沉积环境恢复[J]. 地质力学学报, 27 (6): 1035-1050.
[96] 仇度伟, 公王斌, 闫纪元, 等, 2021. 山西运城盆地北部峨嵋台地晚更新世-全新世地质环境变化及其对人类聚落分布的影响[J]. 地质力学学报, 27(2): 326-338.
[97] 孙继敏, 许立亮, 2007. 汾渭地堑的河流阶地对第四纪时期印度-欧亚板块碰撞带的构造响应[J]. 第四纪研究, 27(1): 20-26. doi: 10.3321/j.issn:1001-7410.2007.01.003
[98] 索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化[J]. 岩石学报, 28(8): 2602-2618.
[99] 索艳慧, 李三忠, 曹现志, 等, 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249-267.
[100] 王强, 李彩光, 田国强, 等, 2000. 7.1Ma以来运城盆地地表系统巨变及盐湖形成的构造背景[J]. 中国科学(D辑), 30(4): 420-428.
[101] 武敏捷, 林向东, 徐平, 2011. 华北北部地区震源机制解及构造应力场特征分析[J]. 大地测量与地球动力学, 31(5): 39-43.
[102] 吴锡浩, 蒋复初, 王苏民, 等, 1998. 关于黄河贯通三门峡东流入海问题[J]. 第四纪研究, 18(2): 188.
[103] 邢作云, 赵斌, 涂美义, 等, 2005. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 12(2): 247-262.
[104] 徐海亮, 王朝栋, 2010. 史前郑州地区黄河河流地貌与新构造活动关系初探[J]. 华北水利水电学院学报, 31(6): 101-106.
[105] 闫纪元, 2021. 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究[D]. 北京: 中国地质科学院.
[106] 闫纪元, 胡健民, 王东明, 等, 2021. 黄淮海平原晚新生代重大地质事件[J]. 地质通报, 40(5): 623-648.
[107] 杨守业, 蔡进功, 李从先, 等, 2001. 黄河贯通时间的新探索[J]. 海洋地质与第四纪地质, 21(2): 15-20. doi: 10.16562/j.cnki.0256-1492.2001.02.003
[108] 姚文兵, 季秀卿, 赵政, 2004. 运城盆地黄土沉积特征[J]. 山西建筑, 30(9): 23-24. doi: 10.3969/j.issn.1009-6825.2004.09.016
[109] 张磊, 刘嘉麒, 秦小光, 2018. 第四纪黄河入淮成因机制与环境效应的研究现状及存在问题[J]. 第四纪研究, 38(2): 441-453. doi: 10.11928/j.issn.1001-7410.2018.02.15
[110] 仲启蒙, 邵博, 侯贵廷, 2022. 汾渭地堑岩石圈的应力场数值模拟与分析[J]. 地球物理学进展, 37(1): 152-163.
[111] 周青硕, 张绪教, 叶培盛, 等, 2017. 河套地区全新世黄河古河道的分布及期次划分[J]. 地质力学学报, 23(3): 339-347. doi: 10.3969/j.issn.1006-6616.2017.03.002