塞尔维亚蒂莫克铜金矿集区典型矿床地质特征

周小深, 刘文元, 单思齐, 陈娟, 张安顺, 谢桂青, 林新仁, 饶东平, 王虎, 林健. 2024. 塞尔维亚蒂莫克铜金矿集区典型矿床地质特征. 地质通报, 43(2~3): 270-288. doi: 10.12097/gbc.2022.08.016
引用本文: 周小深, 刘文元, 单思齐, 陈娟, 张安顺, 谢桂青, 林新仁, 饶东平, 王虎, 林健. 2024. 塞尔维亚蒂莫克铜金矿集区典型矿床地质特征. 地质通报, 43(2~3): 270-288. doi: 10.12097/gbc.2022.08.016
ZHOU Xiaoshen, LIU Wenyuan, SHAN Siqi, CHEN Juan, ZHANG Anshun, XIE Guiqing, LIN Xinren, RAO Dongping, WANG Hu, LIN Jian. 2024. Ore geology of typical deposits in the Timok Cu-Au ore field, Serbia. Geological Bulletin of China, 43(2~3): 270-288. doi: 10.12097/gbc.2022.08.016
Citation: ZHOU Xiaoshen, LIU Wenyuan, SHAN Siqi, CHEN Juan, ZHANG Anshun, XIE Guiqing, LIN Xinren, RAO Dongping, WANG Hu, LIN Jian. 2024. Ore geology of typical deposits in the Timok Cu-Au ore field, Serbia. Geological Bulletin of China, 43(2~3): 270-288. doi: 10.12097/gbc.2022.08.016

塞尔维亚蒂莫克铜金矿集区典型矿床地质特征

  • 基金项目: 紫金矿业集团股份有限公司委托重大横向课题(编号:01612012)、国家自然科学基金重点项目《氧化性富金斑岩−矽卡岩矿床碲、硒富集机制——以长江中下游九瑞、鄂东南矿集区为例》(批准号:92162217)
详细信息
    作者简介: 周小深(1997− ),男,硕士,资源与环境专业。E-mail: ZXS997youxiang@163.com
    通讯作者: 刘文元(1982− ),男,教授,从事矿床矿物学研究。E-mail: 15146@163.com
  • 中图分类号: P618.41;P618.51

Ore geology of typical deposits in the Timok Cu-Au ore field, Serbia

More Information
  • 特提斯成矿带是全球三大成矿带之一,阿普塞尼(Apuseni)−巴纳特(Banat)−蒂莫克(Timok)−斯雷德诺戈里斯基(Srednogorie)岩浆成矿带(ABTS多金属成矿带)位于特提斯成矿带西缘,由阿普塞尼–巴纳特铁铜铅锌矿集区、蒂莫克铜金矿集区和斯雷德诺戈里斯基铜金矿集区组成,成矿作用主要与晚白垩世钙碱性岩浆活动有关。塞尔维亚蒂莫克铜金矿集区作为ABTS多金属成矿带经济意义巨大的矿集区之一,总结该地区矿床地质特征及成矿规律对下一步的找矿勘查具有重要指导意义。综述了蒂莫克铜金矿集区及其典型矿床的地质特征,总结了矿集区成矿规律与动力学背景。蒂莫克铜金矿集区典型矿床形成时代集中在88 ~ 78 Ma之间,成矿作用历时10 Ma左右,矿集区内成矿作用时代呈现出由东向西逐渐年轻的趋势。矿集区中典型矿床类型主要为斑岩型(如马伊丹佩克矿床、克里韦利矿床和瓦利亚斯特尔茨矿床)和高硫化浅成低温热液-斑岩型(如博尔矿床和丘卡卢佩吉矿床),这些矿床以铜金矿化为主。矿床类型、矿化特征及矿体埋深存在的差异可能与区域上新生代右旋构造在矿集区形成的逆冲推覆构造及成矿后不均匀剥蚀有关。根据矿集区典型矿床的矿化类型及矿体埋深海拔标高的变化趋势,认为矿集区北部—西北部和丘卡卢佩吉矿床东南部仍具有一定的找矿潜力。

  • 加载中
  • 图 1  ABTS多金属成矿带所在区域简要地质图(据Gallhofer et al., 2015修改)

    Figure 1. 

    图 2  蒂莫克铜金矿集区简要地质图(a, 据Jelenković et al., 2016修改)和构造图(b, 据Knaak et al., 2016修改)

    Figure 2. 

    图 3  马伊丹佩克矿床地质简图和典型照片

    Figure 3. 

    图 4  克里韦利矿床地质简图及典型照片

    Figure 4. 

    图 5  博尔矿区简要构造要素图(a, 据Antonijević et al., 2014修改)和AA’(b)和BB’(c)地质剖面图(据Jelenković et al., 2016修改)

    Figure 5. 

    图 6  博尔矿床典型照片

    Figure 6. 

    图 7  丘卡卢佩吉矿床平面地质图(a)和剖面图(b, c; b据饶东平, 2021修改)

    Figure 7. 

    图 8  蒂莫克铜金矿集区西北部平面地质图(a)、瓦利亚斯特尔茨矿床剖面图(b)和比加尔山矿床剖面图(c)(据Knaak et al., 2016修改)

    Figure 8. 

    图 9  蒂莫克铜金矿集区典型矿床平面南北向投线图(a)及其矿体埋深海拔标高图(b)(据Jelenković et al., 2016修改)

    Figure 9. 

    表 1  蒂莫克铜金矿集区典型矿床统计表

    Table 1.  Statistical table of typical ore deposits in Timok ore field

    矿床名称 矿床类型 金属量(品位) 成矿元素 赋矿围岩 蚀变类型 主要金属矿物 成岩-成矿时代/Ma 参考文献
    丘卡卢佩吉 高硫化浅成低温热液-斑岩型 Cu 1.54 Mt(2.45 %)+
    14.28 Mt(0.83 %);
    Au 86 t(1.37 g/t)+
    295 t(0.17 g/t)
    Cu、Au 安山岩 钾化、黄铁绢英岩化、青磐岩化、高级泥化 黄铁矿、黄铜矿、磁铁矿、赤铁矿、斑铜矿、辉钼矿、黝铜矿、铜蓝、辉铜矿、硫砷铜矿、金红石 辉钼矿Re-Os年龄88±0.4 Banješević et al., 2014
    Jelenković et al., 2016;
    Banješević et al., 2019;
    紫金Timok项目组, 2019
    博尔 高硫化浅成低温热液-斑岩型 Cu 0.15 Mt(0.80 %)+
    3.17 Mt(0.57 %);
    Au 3.60 t(0.20 g/t)+
    111.40 t(0.20 g/t)
    Cu、Au 安山岩 钾化、黄铁绢英岩化、绿泥石化、高级泥化 黄铁矿、黄铜矿、磁铁矿、赤铁矿、斑铜矿、辉铜矿、铜蓝、硫砷铜矿、金红石 白云母Ar-Ar年龄86.3 ± 1~86.9 ± 1.1; 辉钼矿Re-Os年龄85.94 ± 0.4~86.24 ± 0.5 Lips et al., 2004;
    Zimmerman et al., 2008;
    Jelenković et al., 2016;
    Klimentyeva et al., 2021
    马伊丹佩克 斑岩型 Cu 0.68 Mt(0.30 %)+
    1.34 Mt(0.33 %);
    Au 58.39 t(0.26 g/t)+
    24.55 t(0.06 g/t)
    Cu、Au 安山岩、石灰岩、
    片麻岩
    钾化、黄铁绢英岩化、绿泥石化、矽卡岩化 黄铁矿、黄铜矿、磁铁矿、辉钼矿、磁黄铁矿、赤铁矿、闪锌矿、方铅矿、铜蓝、硫砷铜矿、斑铜矿、褐铁矿 锆石U-Pb年龄82.73 ± 0.03; 辉钼矿Re-Os年龄83.37 ± 0.4~83.77 ± 0.5 Zimmerman et al., 2008; Vaskovic et al., 2010; Pačevski et al., 2016
    克里韦利 斑岩型 Cu 1.86 Mt(0.37 %);
    Au 35.45 t(0.07 g/t)
    Cu、Au 安山岩、
    石英闪长斑岩
    钾化、黄铁绢英岩化、绿泥石化、泥化 黄铁矿、黄铜矿、磁黄铁矿、磁铁矿、赤铁矿、斑铜矿、闪锌矿、方铅矿、辉钼矿、自然铜、孔雀石 锆石U-Pb年龄86.17 ± 0.15~86.29 ± 0.32; 辉钼矿Re-Os年龄87.88 ± 0.5 Zimmerman et al., 2008; Vaskovic et al., 2010; Antonijević et al., 2014;
    Pačevski et al., 2016
    瓦利亚斯特尔茨 斑岩型 Cu 0.28 Mt(0.26 %);
    Au 20.56 t(0.19 g/t)
    Cu、Au 安山岩、
    安山质火山碎屑岩
    钾化、青磐岩化 黄铁矿、黄铜矿、磁铁矿、斑铜矿、辉钼矿、闪锌矿、方铅矿 锆石U-Pb年龄82.5 ± 0.6,
    78.62 ± 0.44
    Knaak et al., 2016;
    Pačevski et al., 2016
    兹拉蒂博尔 浅成低温热液型 Au 16.70 t(2.69 g/t);
    Ag 47 t(7.54 g/t)
    Au、Ag 安山岩 硅化、重晶石化、黄铁绢英岩化、绿泥石化 黄铁矿、自然金、银金矿、毒砂、白铁矿、黝铜矿、黄铜矿、闪锌矿、方铅矿、金红石   林明钟, 2021
    游富华等,2020
    比加尔山 沉积岩容矿浸染型 Au 28.35 t(1.19 g/t) Au 硅质碎屑岩、火山碎屑岩、灰岩 去碳酸盐化、硅化、泥化 黄铁矿、自然金 伊利石K-Ar年龄79 ± 2.78 Knaak et al., 2016;
    Zivanovic, 2019
    下载: 导出CSV
  • [1]

    Antonijević I. 2011. The Novo Okno copper deposit of olistostrome origin (Bor, eastern Serbia)[J]. Geoloski anali Balkanskoga poluostrva, 72: 101−109.

    [2]

    Antonijević I, Mijatović P. 2014. The copper deposits of Bor, eastern Serbia: geology and origin of the deposits[J]. Geoloski anali Balkanskoga poluostrva, 75: 59−74.

    [3]

    Banješević M. 2010. Upper cretaceous magmatic suites of the Timok magmatic complex[J]. Geoloski Anali Balkanskoga poluostrva, 71: 13−22.

    [4]

    Banjesević M, Ingram S, Large D. 2014. Copper−gold exploration and discovery in the Timok Magmatic Complex, Serbia[C]//EGU General Assembly Conference Abstracts: 16450.

    [5]

    Banješević M, Large D. 2014. Geology and mineralization of the new copper and gold discovery south of Bor Timok magmatic complex[C]//Proceedings of the XVI Serbian Geological Congress, Serbian Geological Society, Donji Milanovac: 739−741.

    [6]

    Banješević M, Cvetković V, von Quadt A, et al. 2019. New constraints on the main mineralization event inferred from the latest discoveries in the Bor Metallogenetic Zone (BMZ, East Serbia)[J]. Minerals, 9(11): 672. doi: 10.3390/min9110672

    [7]

    Baker T. 2019. Gold copper endowment and deposit diversity in the Western Tethyan magmatic belt, southeast Europe: Implications for exploration[J]. Economic Geology, 114(7): 1237−1250. doi: 10.5382/econgeo.4643

    [8]

    Berza T, Constantinescu E, Vlad S L N. 1998. Upper Cretaceous magmatic series and associated mineralisation in the Carpathian–Balkan Orogen[J]. Resource Geology, 48(4): 291−306. doi: 10.1111/j.1751-3928.1998.tb00026.x

    [9]

    Cail T L, Cline J S. 2001. Alteration associated with gold deposition at the Getchell Carlin−type gold deposit, north−central Nevada[J]. Economic Geology, 96(6): 1343−1359. doi: 10.2113/gsecongeo.96.6.1343

    [10]

    Ciobanu C L, Cook N J, Stein H. 2002. Regional setting and geochronology of the Late Cretaceous Banatitic magmatic and metallogenetic belt[J]. Mineralium Deposita, 37(6): 541−567.

    [11]

    Cioflica G. 1994. K−Ar ages of Alpine granitoids in the Hauzesti−Drinova area (Poiana Ruscai Mountains, Romania)[J]. Rev. Roum. Geol., 38: 3−8.

    [12]

    Clark A H, Ullrich T D. 2004. 40Ar−39Ar age data for andesitic magmatism and hydrothermal activity in the Timok Massif, eastern Serbia: implications for metallogenetic relationships in the Bor copper−gold subprovince[J]. Mineralium Deposita, 39(2): 256−262. doi: 10.1007/s00126-003-0370-3

    [13]

    Cline J S, Hofstra A H, Muntean J L, et al. 2005. Carlin−type gold deposits in Nevada: Critical geologic characteristics and viable models[J]. Economic Geology, 100: 451−484.

    [14]

    Cook N J, Ciobanu C L. 2001. Paragenesis of Cu−Fe ores from Ocna de Fier−Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting[J]. Mineralogical Magazine, 65(3): 351−372. doi: 10.1180/002646101300119457

    [15]

    Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801−818. doi: 10.2113/gsecongeo.100.5.801

    [16]

    Cooke D R, Hollings P, Wilkinson J J, et al. 2014. Geochemistry of porphyry deposits[J]. Treatise on Geochemistry, 13: 357−381.

    [17]

    Đorđević M. 2005. Volcanogenic Turonian and epiclastics of senonian in the Timok magmatic complex between Bor and the Tupižnica mountain, eastern Serbia[J]. Geoloski Anali Balkanskoga Poluostrva, (66): 63−71.

    [18]

    Drew L J. 2006. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits: Applications to central Europe[R]. US Department of the Interior, US Geological Survey: 2005−5272.

    [19]

    Dupont A, Vander Auwera J, Pin C, et al. 2002. Trace element and isotope (Sr, Nd) geochemistry of porphyry−and skarn−mineralising Late Cretaceous intrusions from Banat, western South Carpathians, Romania[J]. Mineralium Deposita, 37(6): 568−586.

    [20]

    Einaudi M T, Hedenquist J W, Inan E E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments[J]. Society of Economic Geologists, 10: 285−313.

    [21]

    Fügenschuh B, Schmid S M. 2005. Age and significance of core complex formation in a very curved orogen: Evidence from fission track studies in the South Carpathians (Romania)[J]. Tectonophysics, 404(1/2): 33−53.

    [22]

    Gallhofer D, Quadt A, Peytcheva I, et al. 2015. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian‐Balkan orogen[J]. Tectonics, 34(9): 1813−1836. doi: 10.1002/2015TC003834

    [23]

    Handler R, Neubauer F, Velichkova S H, et al. 2004. 40Ar/39Ar age constraints on the timing of magmatism and post−magmatic cooling in the Panagyurishte region, Bulgaria[J]. Swiss Bulletin of Mineralogy and Petrology, 84(1): 119−132.

    [24]

    Jankovic S. 1990. Types of copper deposits related to volcanic environment in the Bor district, Yugoslavia[J]. Geologische Rundschau, 79(2): 467−478. doi: 10.1007/BF01830639

    [25]

    Jankovic S, Herrington R J, Kozelj D. 1998. The Bor and Madjanpek copper–gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia)[C]//Porphyry and Hydrothermal Copper and Gold Deposits: 169−178.

    [26]

    Jelenković R, Milovanović D, Koželj D, et al. 2016. The mineral resources of the Bor metallogenic zone: a review[J]. Geologia Croatica, 69(1): 143−155. doi: 10.4154/GC.2016.11

    [27]

    Kincaid C, Griffiths R W. 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 425(6953): 58−62. doi: 10.1038/nature01923

    [28]

    Klimentyeva D, Driesner T, von Quadt A, et al. 2021. Silicate−replacive high sulfidation massive sulfide orebodies in a porphyry Cu−Au system: Bor, Serbia[J]. Mineralium Deposita, 56(8): 1423−1448. doi: 10.1007/s00126-020-01023-2

    [29]

    Knaak M, Márton I, Tosdal R M, et al. 2016. Geologic setting and tectonic evolution of porphyry Cu−Au, polymetallic replacement, and sedimentary rock−hosted au deposits in the northwestern area of the timok magmatic complex, Serbia[J]. Economic Geology, 19: 1−28.

    [30]

    Kolb M, Von Quadt A, Peytcheva I, et al. 2013. Adakite−like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian arc[J]. Journal of Petrology, 54(3): 421−451. doi: 10.1093/petrology/egs072

    [31]

    Koželj D I. 2002. Epithermal gold mineralization in the Bor metallogenic zone—morphogenetic types, structural−texture varieties and potentiality[C]// Koželj. Proceedings of the international symposium. Bor: Institut za Bakar Bor: 57−70.

    [32]

    Krstekanić N, Willingshofer E, Broerse T, et al. 2021. Analogue modelling of strain partitioning along a curved strike−slip fault system during backarc−convex orocline formation: Implications for the Cerna−Timok fault system of the Carpatho−Balkanides[J]. Journal of Structural Geology, 149: 104386. doi: 10.1016/j.jsg.2021.104386

    [33]

    Lips A L W, Herrington R J, Stein G, et al. 2004. Refined timing of porphyry copper formation in the Serbian and Bulgarian portions of the Cretaceous Carpatho−Balkan Belt[J]. Economic Geology, 99(3): 601−609. doi: 10.2113/gsecongeo.99.3.601

    [34]

    Minkovska V, Peybernès B, Nikolov T. 2002. Palaeogeography and geodynamic evolution of the Balkanides and Moesian ‘microplate’(Bulgaria) during the earliest Cretaceous[J]. Cretaceous Research, 23(1): 37−48. doi: 10.1006/cres.2001.0299

    [35]

    Neubauer F. 2002. Contrasting late cretaceous with neogene ore provinces in the Alpine−Balkan−Carpathian−Dinaride collision belt[J]. Geological Society, London, Special Publications, 204(1): 81−102.

    [36]

    Popov P N. 1987. Tectonics of the Banat−Srednogorie rift[J]. Tectonophysics, 143(1/3): 209−216.

    [37]

    Pačevski A, Cvetković V, Šarić K, et al. 2016. Manganese mineralization in andesites of Brestovačka Banja, Serbia: evidence of sea−floor exhalations in the Timok Magmatic Complex[J]. Mineralogy and Petrology, 110(4): 491−502. doi: 10.1007/s00710-016-0425-7

    [38]

    Quadt von A, Moritz R, Peytcheva I, et al. 2005. Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria[J]. Ore Geology Reviews, 27(1/4): 95−126.

    [39]

    Quadt von A, Peytcheva I, Heinrich C, et al. 2007. Upper Cretaceous magmatic evolution and related Cu–Au mineralization in Bulgaria and Serbia[C]//Ninth Biennial Meeting of the Society for Geology Applied to Mineral Deposits SGA, Dublin. Dublin: Irish Association for Economic Geology: 861−864.

    [40]

    Radtke A S, Heropoulos C, Fabbi B P, et al. 1972. Data on major and minor elements in host rocks and ores, Carlin gold deposit, Nevada[J]. Economic Geology, 67(7): 975−978. doi: 10.2113/gsecongeo.67.7.975

    [41]

    Schmid S M, Bernoulli D, Fügenschuh B, et al. 2008. The Alpine−Carpathian−Dinaridic orogenic system: correlation and evolution of tectonic units[J]. Swiss Journal of Geosciences, 101(1): 139−183. doi: 10.1007/s00015-008-1247-3

    [42]

    Selverstone J. 2005. Are the Alps collapsing?[J]. Annual Review of Earth and Planetary Sciences, 33(1): 113−132. doi: 10.1146/annurev.earth.33.092203.122535

    [43]

    Sillitoe R H. 2000. Gold−rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery[J]. Reviews in Economic Geology, 13: 315−345.

    [44]

    Sillitoe R H. 2010. Porphyry copper systems[J]. Economic geology, 105(1): 3−41. doi: 10.2113/gsecongeo.105.1.3

    [45]

    Starostin V I. 1970. Bor and Maidanpek copper deposits in Yugoslavia[J]. International Geology Review, 12(4): 370−380. doi: 10.1080/00206817009475244

    [46]

    Strashimirov S, Petrunov R, Kanazirski M. 2002. Porphyry−copper mineralisation in the central Srednogorie zone, Bulgaria[J]. Mineralium deposita, 37(6): 587−598.

    [47]

    Vaskovic N, Jovic V, Matovic V. 2010. Early Cretaceous glauconite formation and Late Cretaceous magmatism and metallogeny of the East Serbian part of the Carpathoe Balkanides[C]//Acta Mineralogica−Petrographica, Field Guide Series, 25: 1−32.

    [48]

    Van der Toorn J, Davidovic D, Hadjieva N, et al. 2013. A new sedimentary rock−hosted gold belt in eastern Serbia[C]// 12th Biennial SGA Meeting: Mineral deposit research for a high−tech world: 691−694.

    [49]

    Velojić M, Jelenkovic R, Cvetkovic V. 2020. Fluid Evolution of the Čukaru Peki Cu−Au Porphyry System (East Serbia) inferred from a fluid inclusion study[J]. Geologia Croatica, 73(3): 197−209. doi: 10.4154/gc.2020.14

    [50]

    Wortel M J R, Spakman W. 2000. Subduction and slab detachment in the Mediterranean−Carpathian region[J]. Science, 290(5498): 1910−1917. doi: 10.1126/science.290.5498.1910

    [51]

    Zimmerman A, Stein H J, Hannah J L, et al. 2008. Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans−South Carpathians, constrained by high precision Re–Os molybdenite ages[J]. Mineralium Deposita, 43(1): 1−21. doi: 10.1007/s00126-007-0149-z

    [52]

    Zivanovic J. 2019. Structural, stratigraphic and temporal constraints of gold mineralization in the Bigar Hill deposit, Timok region, Serbia[D]. University of British Columbia: 1−207.

    [53]

    韩宁, 江思宏, 白大明, 等. 2019. 东欧南部阿普塞尼-巴纳特-蒂莫克-斯雷德诺戈里斯基(ABTS)铜-金成矿带地质特征[J]. 地质通报, 38(11): 1920−1937. doi: 10.12097/j.issn.1671-2552.2019.11.015

    [54]

    黄腾骁, 王勤, 王亮亮. 2019. 塞尔维亚博尔州Majdanpek矿区2019年生产勘探设计[R]. 紫金矿业集团股份有限公司.

    [55]

    林明钟. 2021. 塞尔维亚东部Z. Brdo金矿床地质特征及矿床成因分析[J]. 矿产勘查, 12(12): 2341−2348.

    [56]

    饶东平. 2021. 多元素分析在岩性及含矿性判别的应用——以塞尔维亚佩吉铜金矿床为例[J]. 矿产勘查, 12(4): 980−988.

    [57]

    宋国学, 秦克章, 李光明, 等. 2018. 中硫型浅成低温热液金多金属矿床基本特征、研究进展与展望[J]. 岩石学报, 34(3): 748−762.

    [58]

    闫宝文, 苏金健, 郭红乐. 2019. 塞尔维亚博尔州VK矿区斑岩型铜矿床2019年生产勘探设计[R]. 紫金矿业集团股份有限公司.

    [59]

    游富华, 王国平, 王勤. 2020. 塞尔维亚博尔地区Bor-Veliki Krivelj铜矿区Zlatno Brdo金矿床2020年度勘探地质设计[R]. 紫金矿业集团股份有限公司.

    [60]

    紫金Timok项目组. 2019. 塞尔维亚2019年生产勘探设计[R]. 紫金矿业集团股份有限公司.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  405
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2022-08-17
修回日期:  2022-12-30
刊出日期:  2024-03-15

目录