贺兰山构造带深部电性结构与动力学机制

徐大兴, 邵兆刚, 陈宣华, 张进江, 徐盛林, 李冰, 张义平, 余苇, 邓文兵, 丁奕文. 2024. 贺兰山构造带深部电性结构与动力学机制. 地质通报, 43(11): 1921-1936. doi: 10.12097/gbc.2024.02.008
引用本文: 徐大兴, 邵兆刚, 陈宣华, 张进江, 徐盛林, 李冰, 张义平, 余苇, 邓文兵, 丁奕文. 2024. 贺兰山构造带深部电性结构与动力学机制. 地质通报, 43(11): 1921-1936. doi: 10.12097/gbc.2024.02.008
XU Daxing, SHAO Zhaogang, CHEN Xuanhua, ZHANG Jinjiang, XU Shenglin, LI Bing, ZHANG Yiping, YU Wei, DENG Wenbing, DING Yiwen. 2024. Deep electrical structure and dynamic mechanism of the Helanshan tectonic belt. Geological Bulletin of China, 43(11): 1921-1936. doi: 10.12097/gbc.2024.02.008
Citation: XU Daxing, SHAO Zhaogang, CHEN Xuanhua, ZHANG Jinjiang, XU Shenglin, LI Bing, ZHANG Yiping, YU Wei, DENG Wenbing, DING Yiwen. 2024. Deep electrical structure and dynamic mechanism of the Helanshan tectonic belt. Geological Bulletin of China, 43(11): 1921-1936. doi: 10.12097/gbc.2024.02.008

贺兰山构造带深部电性结构与动力学机制

  • 基金项目: 中国地质调查局项目 《深部地质调查》 (编号:DD20230008)、《西北重要构造廊带深部地质调查》(编号:DD20230229)、《鄂尔多斯盆地及周缘地质构造调查》(编号:DD20242780)、中国地质科学院与中国石油长庆油田分公司合作项目《鄂尔多斯盆地西部及其周缘断裂系统与构造演化综合研究》(编号: 2021DA0404)、《鄂尔多斯盆地西部综合地球物理调查工程》(编号:ZY20-XA202-TPGC272)、中国地质科学院基本科研业务费项目《鄂尔多斯盆地西部断裂系统与构造演化研究》(编号:JKY202207)
详细信息
    作者简介: 徐大兴(1996− ),男,在读博士生,构造地质学专业。E−mail: xudax@stu.pku.edu.cn
    通讯作者: 邵兆刚(1970− ),男,博士,研究员,从事区域地质与深部构造研究。E−mail: shaozhaogang@sina.com
  • 中图分类号: P54;P631.3+25

Deep electrical structure and dynamic mechanism of the Helanshan tectonic belt

More Information
  • 贺兰山构造带是华北克拉通西部中生代以来的典型陆内构造变形区域。对野外采集的大地电磁数据进行分析与反演,获取贺兰山构造带的深部电性结构。结果揭示,贺兰山构造带上地壳发育逆冲推覆构造,中下地壳存在完整且厚实的地壳根。大地电磁测深剖面显示,贺兰山构造带西北部的河套盆地深部存在向NW方向上涌的低电阻率通道,东南部的银川地堑与鄂尔多斯盆地存在地幔物质上涌的特征。贺兰山构造带晚侏罗世WNW—ESE向挤压的褶皱冲断带与白垩纪以来的构造隆升过程和西太平洋板块俯冲作用相关,记录了早期深部地幔物质向NW方向上涌的现象。在新生代西太平洋板块持续俯冲与回撤过程中,以及青藏高原向东北缘扩展的联合控制下,贺兰山构造带的邻区深部地幔物质向地壳上涌,导致鄂尔多斯盆地深部岩石圈发生减薄,地幔物质与地壳发生交代作用,在刚性的贺兰山块体限制下,形成现今的盆山构造格局。

  • 加载中
  • 图 1  华北克拉通构造域分布(a,据Chen et al., 2022修改)、贺兰山及周缘构造体系图(b,构造体系据Kind et al., 2002; Xiao et al., 2003; Zuza et al., 2016; Li et al., 2021; Zhang et al., 2022修改)和贺兰山构造带地质简图(c,底图据宁夏省地质局, 1974, 1978, 1980a,b,c修改; 构造单元划分据赵红格, 2003; 杨向阳, 2018修改)

    Figure 1. 

    图 2  大地电磁测站布置方式示意图(a)和大地电磁数据采集分析流程图(b)

    Figure 2. 

    图 3  Bahr阻抗张量拟断面图(a)和Caldwell相位张量拟断面图(b)

    Figure 3. 

    图 4  MT测线相位张量图

    Figure 4. 

    图 5  MT测线地质廊带与玫瑰花图及感应矢量图

    Figure 5. 

    图 6  MT测线静态位移及静态校正对比图

    Figure 6. 

    图 7  二维反演的均方根(RMS)误差曲线图

    Figure 7. 

    图 8  MT测线构造廊带与浅层反演模型构造解释及前人地球物理资料解释图

    Figure 8. 

    图 9  MT测线视电阻率与相位曲线图

    Figure 9. 

    图 10  深层TE模式反演构造解释图

    Figure 10. 

    图 11  贺兰山构造带地质构造演化模式图

    Figure 11. 

  • [1]

    Bahr K. 1911. Geological noise in magnetotelluric data: a classification of distortion types[J]. Physics of the Earth and Planetary Interiors, 66(1/2): 24−38.

    [2]

    Bai D H, Unsworth M J, Meju M A. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3: 358−362. doi: 10.1038/ngeo830

    [3]

    Berdichevsky M N, Dmitriev V L. 2002. Magnetotelluric in the Context of the Theory of Ill−Posed Problems[R]. Society of Exploration Geophysicists, Tulsa.

    [4]

    Bureau of Geology of Ningxia Province. 1974. Geological map of Zhongwei (1: 200 000) [DB]. China Geological Survey (in Chinese).

    [5]

    Bureau of Geology of Ningxia Province. 1978. Geological map of Barenberi (1: 200 000) [DB]. China Geological Survey (in Chinese).

    [6]

    Bureau of Geology of Ningxia Province. 1980a. Geological Map of Shizuishan City (1: 200 000) [DB]. China Geological Survey (in Chinese).

    [7]

    Bureau of Geology of Ningxia Province. 1980b. Geological map of Alxa Left Banner (1: 200 000) [DB]. China Geological Survey (in Chinese).

    [8]

    Bureau of Geology of Ningxia Province. 1980c. Geological Map of Yinchuan City (1: 200 000) [DB]. China Geological Survey (in Chinese).

    [9]

    Cai J, Chen X, Xu X, et al. 2017. Rupture mechanism and seismotectonics of the Ms 6.5 Ludian earthquake inferred from three−dimensional magnetotelluric imaging[J]. Geophysical Research Letters, 44(3): 1275−1285. doi: 10.1002/2016GL071855

    [10]

    Caldwell T G, Bibby H M, Brown C. 2004. The magnetotelluric phase tensor[J]. Geophysical Journal International, 158: 457−469. doi: 10.1111/j.1365-246X.2004.02281.x

    [11]

    Chen X H, Shao Z G, Xiong X X, et al. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995−1020 (in Chinese with English abstract).

    [12]

    Chen X H, Dong S W, Shi W, et al. 2022. Construction of the Continental Asia in Phanerozoic: A Review[J]. Acta Geologica Sinica−English Edition, 96(1): 26−51. doi: 10.1111/1755-6724.14867

    [13]

    Cheng B, Zhao D, Cheng S, et al. 2016. Seismic tomography and anisotropy of the Helan−Liupan tectonic belt: Insight into lower crustal flow and seismotectonics[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2608−2635. doi: 10.1002/2015JB012692

    [14]

    Cui Y, Li Y, Si X, Yang L, et al. 2019. Tectonic controls on near−surface variations in CH4 and CO2 concentrations along the northwestern margin of the Ordos Block, China[J]. Geofluids, 2019(1): 1−10.

    [15]

    Dai H K, Zheng J P, Xiong Q, et al. 2019. Fertile lithospheric mantle underlying ancient continental crust beneath the northwestern North China craton: Significant effect from the southward subduction of the Paleo−Asian Ocean[J]. GSA Bulletin, 131(1/2): 3−20.

    [16]

    Dan W, Li X H, Guo J H, et al. 2012. Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?[J]. Gondwana Research, 4: 838−864.

    [17]

    Darby B J, Ritts B D. 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold−thrust belt, China[J]. Earth and Planetary Science, 205: 13−24. doi: 10.1016/S0012-821X(02)01026-9

    [18]

    Dong H, Wei W B, Ye G F, et al. 2014. Three−dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: Evidence of regional lithospheric modification[J]. Geochemistry Geophysics Geosystems, 15: 2414−2425. doi: 10.1002/2014GC005270

    [19]

    Dong H, Wei W, Jin S, et al. 2020. Shaping the surface deformation of central and south Tibetan Plateau: Insights from magnetotelluric array data[J]. Journal of Geophysical Research: Solid Earth, 125(9): 1−20.

    [20]

    Dong Y P, Li W, Zhang F F, et al. 2021. Formation and evolution of the Helan Mountain in the northern section of the North−South Tectonic Belt[J]. Journal of Northwest University (Natural Science Edition), 51(6): 951−968 (in Chinese with English abstract).

    [21]

    Egbert G D, Booker J R. 1986. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 87: 173−194. doi: 10.1111/j.1365-246X.1986.tb04552.x

    [22]

    Faure M, Lin W, Chen Y. 2012. Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block?[J]. Terra Nova, 24(6): 456−466. doi: 10.1111/ter.12002

    [23]

    Feucht D W, Bedrosian P A, Sheehan A F. 2019. Lithospheric signature of late Cenozoic extension in electrical resistivity structure of the Rio Grande rift, New Mexico, USA[J]. Journal of Geophysical Research: Solid Earth, 124(3): 2331−2351. doi: 10.1029/2018JB016242

    [24]

    Gao X, Guo B, Chen J H, et al. 2018. Rebuilding of the lithosphere beneath the western margin of the Ordos: Evidence from multiscale seismic tomography[J]. Chinese Journal of Geophysics, 61(7): 2736−2749 (in Chinese with English abstract).

    [25]

    Han J, Zhao L G, Sun X Y, et al. 2022. Electrical structures of the Yinchuan Basin and adjacent area, western North China Craton, inferred from magnetotelluric imaging[J]. Journal of Asian Earth Sciences, 227: 1−14.

    [26]

    Huang F, He L J, Wu Q J. 2015. Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton[J]. Chinese Journal of Geophysics, 58(10): 3671−3686 (in Chinese with English abstract).

    [27]

    Huang J L, Zhao D P. 2006. High−resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 111(9): 1−21.

    [28]

    Huang L T, Shen X Z, Zheng W J, et al. 2020. Moho properties of western Ordos block and surrounding regions constrained by teleseismic receiver functions and its tectonic implication[J]. Chinese Journal of Geophysics, 63(3): 871−885 (in Chinese with English abstract).

    [29]

    Huang, X F, Shi W, Chen P, et al. 2015. Superposed deformation in the Helanshan Structural Belt: Implications for Mesozoic intracontinental deformation of the North China Plate[J]. Journal of Asian Earth Sciences, 114: 140−154. doi: 10.1016/j.jseaes.2015.05.027

    [30]

    Huang X F, Feng S Y, Gao R, et al. 2016. High−resolution crustal structure of the Yinchuan basin revealed by deep seismic reflection profiling: implications for deep processes of basin[J]. Earthquake Science, 29(2): 83−92. doi: 10.1007/s11589-016-0148-1

    [31]

    Hu X Y, Lin W, Yang W, et al. 2020. A review on developments in the electrical structure of craton lithosphere[J]. Science China Earth Sciences, 50(11): 1533−1554 (in Chinese with English abstract).

    [32]

    Jia C Z, Wei G Q, Li B L, et al. 2003. Tectonic evolution of two−epoch foreland basins and its control for natural gas accumulation in China′s mid−western areas[J]. Acta Petrolei Sinica, 24(2): 13−17 (in Chinese with English abstract).

    [33]

    Jones A G. 2013. Imaging and observing the electrical Moho[J]. Tectonophysics. 609: 423−436.

    [34]

    Kind R, Yuan X, Saul J, et al. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian Plate subduction[J]. Science, 298: 1219−1221. doi: 10.1126/science.1078115

    [35]

    Komabayashi T, Omori S, Maruyama S. 2004. Petrogenetic grid in the system MgO−SiO2−H2O up to 30 GPa, 1600°C: applications to hydrous peridotite subducting into the Earth’s deep interior[J]. Journal of Geophysical Research: Solid Earth, 109(B3): 1−21.

    [36]

    Komiya T, Maruyama S. 2007. A very hydrous mantle under the western Pacific region: Implications for formation of marginal basins and style of Archean plate tectonics[J]. Gondwana Research, 11(1/2): 132−147.

    [37]

    Li B, Zuza A V, Chen X H, et al. 2021. Cenozoic multi−phase deformation in the Qilian Shan and out−of−sequence development of the northern Tibetan Plateau[J]. Tectonophysics, 808: 1−19.

    [38]

    Li C J, Bai D H, Xue S, et al. 2017. A magnetotelluric study of the deep electric structure beneath the Ordos Block[J]. Chinese Journal of Geophysics, 60(5): 1788−1799 (in Chinese with English abstract).

    [39]

    Li W, Jiang D Z, Dong Y M, et al. 2022. Mesozoic contractional deformation in central East Asia: Constraints from deformation and sedimentary record of the Helanshan fold and thrust belt, North China Craton[J]. Gondwana Research, 107: 235−255. doi: 10.1016/j.gr.2022.03.011

    [40]

    Li X, Chen Y, Tian X B, et al. 2022. Magnetotelluric evidence for distributed lithospheric modification beneath the Yinchuan−Jilantai rift system and its implications for Late Cenozoic rifting in western North China[J]. Journal of Geophysical Research: Solid Earth, 127(3): 1−25.

    [41]

    Liu B J, Feng S Y, Ji J F, et al. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin: results of deep seismic reflection rofiling[J]. Science China Earth Sciences, 60: 589−601.

    [42]

    Liu B J, Feng S Y, Ji J F, et al. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin: Results of deep seismic reflection profiling[J]. Science China Earth Sciences, 47(2): 179−190 (in Chinese with English abstract).

    [43]

    Liu J H, Zhang P Z, Zheng D W, et al. 2010. Pattern and timing of late Cenozoic rapid exhumation and uplift of the Helan Mountain, China[J]. Science China Earth Sciences, 53(3): 345−355. doi: 10.1007/s11430-010-0016-0

    [44]

    Luo W F, Hu Z F, Zhang J Q, et al. Application of CSAMT and logging combined constrained inversion in oil shale identification in the southeast uplift area of Songliao Basin[J]. Geological Bulletin of China, 43(5): 692−700 (in Chinese with English abstract).

    [45]

    Min G, Yin B X, Chen J C, et al. 2022. Deep electrical structure and dynamic mechanism of the Yinchuan Graben on the western margin of the Ordos Block[J]. Geosciences Journal, 26(1): 95−112. doi: 10.1007/s12303-021-0014-6

    [46]

    Min G, Yuan H L, Wang X B, et al. 2023. Crustal and upper mantle electrical structure and uplift mechanism of the Liupanshan orogenic belt in the NE Tibetan Plateau[J]. Tectonphysics, 853: 1−14.

    [47]

    Mohan L, Rastogi B K, Chaudhary P. 2015. Magnetotelluric studies in the epicenter zone of 2001, Bhuj earthquake[J]. Journal of Asian Earth Sciences, 98: 75−84. doi: 10.1016/j.jseaes.2014.10.019

    [48]

    Murphy B S, Egbert G D. 2017. Electrical conductivity structure of southeastern North America: Implications for lithospheric architecture and appalachian topographic rejuvenation[J]. Earth and Planetary Science Letters, 462: 66−75. doi: 10.1016/j.jpgl.2017.01.009

    [49]

    Qiao H Z, Yin C Q, Xiao W J, et al. 2022. Paleoproterozoic polyphase deformation in the Helanshan Complex: Structural and geochronological constraints on the tectonic evolution of the Khondalite Belt, North China Craton[J]. Precambrian Research, 368: 1−17.

    [50]

    Rippe D, Unsworth M J, Currie C A. 2013. Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: Implications for rheology[J]. Journal of Geophysical Research: Solid Earth, 118(10): 5601−5624. doi: 10.1002/jgrb.50255

    [51]

    Rodi W, Mackie R L. 2001. Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion[J]. Geophysics, 66(1): 174−187. doi: 10.1190/1.1444893

    [52]

    Shen X, Liu M, Gao Y, Wang W, et al. 2017. Lithospheric structure across the northeastern margin of the Tibetan Plateau: Implications for the plateau's lateral growth[J]. Earth and Planetary Science Letters, 459: 80−92. doi: 10.1016/j.jpgl.2016.11.027

    [53]

    Shi G Z, Soares C J, Shen C B, et al. 2019. Combined detrital zircon fission track and U−Pb dating of the Late Paleozoic to Early Mesozoic sandstones in the Helanshan, western Ordos fold−thrust belt: Constraints for provenance and exhumation history[J]. Journal of Geodynamics, 130: 57−71.

    [54]

    Shi G Z, Shen C B, Zattin M, et al. 2019. Late Cretaceous−Cenozoic exhumation of the Helanshan Mt Range, western Ordos fold−thrust belt, China: Insights from structural and apatite fission track analyses[J]. Journal of Asian Earth Sciences, 176: 196−208. doi: 10.1016/j.jseaes.2019.02.016

    [55]

    Shi W, Dong S, Hu J. 2020. Neotectonics around the Ordos block, North China: A review and new insights[J]. Earth−Science Reviews, 200: 1−34.

    [56]

    Sifré D, Gardés E, Massuyeau M, et al. 2014. Electrical conductivity during incipient melting in the oceanic low−velocity zone[J]. Nature, 509: 81−85. doi: 10.1038/nature13245

    [57]

    Sun J P, Dong Y P. 2019. Triassic tectonic interactions between the Alxa Massif and Ordos Basin: Evidence from integrated provenance analyses on sandstones, North China[J]. Journal of Asian Earth Sciences, 169: 162−181. doi: 10.1016/j.jseaes.2018.08.002

    [58]

    Vauchez A, Barruol G, Tommasi A. 1997. Why do continents break−up parallel to ancient orogenic belts?[J]. Terra Nova, 9(2): 62−66. doi: 10.1111/j.1365-3121.1997.tb00003.x

    [59]

    Wannamaker P E, Jiracek G R, Stodt, J A, et al. 2002. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 107: 1−21.

    [60]

    Wang S J, Liu B J, Tian X F, et al. 2018. Crustal P−wave velocity structure in the northeastern margin of the Qinghai−Tibetan Plateau and insights into crustal deformation[J]. Science China Earth Sciences, 61: 1221−1237. doi: 10.1007/s11430-017-9227-7

    [61]

    Wang T F. 2020. Discussion on the Liupanshan−Helanshan Collision Zone[J]. Geotectonica et Metallogenia, 44(5): 845−851 (in Chinese with English abstract).

    [62]

    Wang W, Cai G, Lai G, et al. 2023. Three−dimensional S−wave velocity structure of the crust and upper mantle for the normal fault system beneath the Yinchuan Basin from joint inversion of receiver function and surface wave[J]. Science China Earth Sciences, 66(5): 997−1014 (in Chinese with English abstract). doi: 10.1007/s11430-022-1059-y

    [63]

    Wei W B, Ye G F, Jin S, et al. 2008. Geoelectric structure of lithosphere beneath eastern North China: features of a thinned lithosphere from magnetotelluric soundings[J]. Earth Science Frontier, 15(4): 204−216 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60055-X

    [64]

    Wu G J, Tan H B, Sun K, et al. 2020. Characteristics and tectonic significance of gravity anomalies in the Helanshan−Yinchuan Graben and adjacent areas[J]. Chinese Journal of Geophysics, 63(3): 1002−1013 (in Chinese with English abstract).

    [65]

    Wu J, Lin Y A, Flament N, et al. 2022. Northwest Pacific−Izanagi plate tectonics since cretaceous times from western Pacific mantle structure[J]. Earth and Planetary Science Letters, 583: 1−14.

    [66]

    Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1−19.

    [67]

    Xu L B, Wei W B, Jin S, et al. 2017. Study of deep electrical structure along a profile from northern Ordos block to Yinshan orogenic belt[J]. Chinese Journal of Geophysics, 60(2): 575−584 (in Chinese with English abstract).

    [68]

    Yang X Y. 2018. The study of the deformation characteristic of the Helanshan tectonic belts[D]. Doctoral Dissertation of Northwestern University (in Chinese with English abstract).

    [69]

    Yang X Y, Dong Y P. 2018. Mesozoic and Cenozoic multiple deformations in the Helanshan Tectonic Belt, Northern China[J]. Gondwana Research, 60: 34−53. doi: 10.1016/j.gr.2018.03.020

    [70]

    Yang X Y, Dong Y P. 2020. Multiple phases of deformation in the southern Helanshan tectonic Belt, northern China[J]. Journal of Asian Earth Sciences, 201: 1−22.

    [71]

    Ye G F, Wang G S, Jin S, et al. 2020. Three−dimensional electrical structure and deep dynamics of the Khondalite Belt and adjacent areas in the Western Block of the North China Craton[J]. Precambrian Research, 350: 1−14.

    [72]

    Yin H X, Ye G F, Yi X C, et al. 2023. The ancient eastward−dipping subduction zone reactivated during the Mesozoic between the Alxa and Ordos Blocks: Electrical evidence from an extended MT profile[J]. Tectonphysics, 864: 1−14.

    [73]

    Yin Y, Wei W, Jin S, Santosh M. 2017. Fossil oceanic subduction zone beneath the western margin of the Trans−North China Orogen: Magnetotelluric evidence from the Lüliang Complex[J]. Precambrian Research, 303: 54−74. doi: 10.1016/j.precamres.2017.01.012

    [74]

    Zhang J, Ma Z J, Ren W J. 2000. The mechanism of the difference between the northern part and the southern part of the fold and thrust belt on the western edge of the ordos basin, China[J]. Geotectonica et Metallogenia, 24(2): 124−133 (in Chinese with English abstract).

    [75]

    Zhang Y Q, Liao C Z, Shi W, et al. 2007. Jurassic Deformation in and Around the Ordos Basin North China[J]. Earth Science Frontiers, 14(2): 182−196. doi: 10.1016/S1872-5791(07)60016-5

    [76]

    Zhang Y P, Chen X H, Zuza A V, et al. 2022. Testing the cenozoic lower crustal flow beneath the Qinling Orogen, northeastern Tibetan Plateau[J]. Journal of Structural Geology, 165: 1−17.

    [77]

    Zhao H G. 2003. Structural characteristics and the evolution in western Ordos Basin[D]. Doctoral Dissertation of Northwestern University (in Chinese with English abstract).

    [78]

    Zhao L, Sun X, Zhan Y, et al. 2023. Characteristics of the three−dimensional deep electrical structure in the Helan Mountains−Yinchuan Basin and its geodynamic implications[J]. Science China Earth Sciences, 66(3): 505−520 (in Chinese with English abstract). doi: 10.1007/s11430-022-1014-y

    [79]

    Zheng J P, Dai H K. 2018. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin mountain respond in the North China Craton[J]. Science China Earth Sciences, 61: 406−424 (in Chinese with English abstract). doi: 10.1007/s11430-017-9166-8

    [80]

    Zuza A V, Cheng X G, Yin A. 2016. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan–Nan Shan thrust belt[J]. Geosphere, 12(2): 501−532. doi: 10.1130/GES01254.1

    [81]

    陈宣华, 邵兆刚, 熊小松, 等. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995−1020. doi: 10.12029/gc20190504

    [82]

    董云鹏, 李玮, 张菲菲, 等. 2021. 南北构造带北段贺兰山的形成与演化[J]. 西北大学学报(自然科学版), 51(6): 951−968.

    [83]

    高翔, 郭飚, 陈九辉, 等. 2018. 地幔上涌对鄂尔多斯西缘岩石圈的改造: 来自远震多尺度层析成像的证据[J]. 地球物理学报, 61(7): 2736−2749. doi: 10.6038/cjg2018L0319

    [84]

    胡祥云, 林武乐, 杨文采, 等. 2020. 克拉通岩石圈电性结构研究进展[J]. 中国科学: 地球科学, 50(11): 1533−1554.

    [85]

    黄柳婷, 沈旭章, 郑文俊, 等. 2020. 远震接受函数确定的鄂尔多斯西部及邻区Moho面性质和构造意义[J]. 地球物理学报, 63(3): 871−885. doi: 10.6038/cjg2020N0210

    [86]

    黄方, 何丽娟, 吴庆举. 2015. 鄂尔多斯盆地深部热结构特征及其对华北克拉通破坏的启示[J]. 地球物理学报, 58(10): 3671−3686. doi: 10.6038/cjg20151020

    [87]

    贾承造, 魏国齐, 李本亮, 等. 2003. 中国中西部两期前陆盆地的形成及其控气作用[J]. 石油学报, 24(2): 13−17. doi: 10.3321/j.issn:0253-2697.2003.02.003

    [88]

    李晨晶, 白登海, 薛帅, 等. 2017. 鄂尔多斯地块深部岩石圈电性结构研究[J]. 地球物理学报, 60(5): 1788−1799. doi: 10.6038/cjg20170515

    [89]

    刘保金, 酆少英, 姬计法, 等. 2017. 贺兰山和银川盆地的岩石圈结构和断裂特征——深地震反射剖面结果[J]. 中国科学: 地球科学, 47(2): 179−190.

    [90]

    罗卫锋, 胡志方, 张家强, 等. 2024. CSAMT和测井联合约束反演在松辽盆地东南隆起区油页岩识别中的应用[J]. 地质通报, 43(5): 693−700. doi: 10.12097/gbc.20210517001

    [91]

    宁夏省地质局. 1974. 中卫地质图 (1: 200 000) [DB]. 中国地质调查局.

    [92]

    宁夏省地质局. 1978. 巴伦别立地质图 (1: 200 000) [DB]. 中国地质调查局.

    [93]

    宁夏省地质局. 1980a. 石嘴山市地质图 (1: 200 000) [DB]. 中国地质调查局.

    [94]

    宁夏省地质局. 1980b. 阿拉善左旗地质图 (1: 200 000) [DB]. 中国地质调查局.

    [95]

    宁夏省地质局. 1980c. 银川市地质图 (1: 200 000) [DB]. 中国地质调查局.

    [96]

    万天丰. 2020. 论六盘山−贺兰山碰撞带[J]. 大地构造与成矿学, 44(5): 845−851.

    [97]

    王未来, 蔡光耀, 来贵娟, 等. 2023. 基于接收函数和面波联合反演的银川盆地下方正断层系统三维壳幔S波速度结构[J]. 中国科学: 地球科学, 53(5): 988−1005.

    [98]

    魏文博, 叶高峰, 金胜, 等. 2008. 华北地区东部岩石圈导电性结构研究——减薄的华北岩石圈特点[J]. 地学前缘, 15(4): 204−216. doi: 10.3321/j.issn:1005-2321.2008.04.024

    [99]

    吴桂桔, 谈洪波, 孙凯, 等. 2020. 贺兰山—银川地堑及邻区重力异常特征及构造意义[J]. 地球物理学报, 63(3): 1002−1013. doi: 10.6038/cjg2020N0233

    [100]

    许林斌, 魏文博, 金胜, 等. 2017. 鄂尔多斯地块北部至阴山造山带深部电性结构特征研究[J]. 地球物理学报, 60(2): 575−584. doi: 10.6038/cjg20170212

    [101]

    杨向阳. 2018. 贺兰构造带构造变形特征研究[D]. 西北大学博士学位论文.

    [102]

    赵红格. 2003. 鄂尔多斯盆地西部构造特征及演化[D]. 西北大学博士学位论文.

    [103]

    赵凌强, 孙翔宇, 詹艳, 等. 2023. 贺兰山−银川盆地三维深部电性结构特征及其地球动力学意义[J]. 中国科学: 地球科学, 53(3): 481−496.

    [104]

    张进, 马宗晋, 任文军. 2000. 鄂尔多斯盆地西缘逆冲带南北差异的形成机制[J]. 大地构造与成矿学, 24(2): 124−133. doi: 10.3969/j.issn.1001-1552.2000.02.004

    [105]

    郑建平, 戴宏坤. 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆−山耦合[J]. 中国科学: 地球科学, 48(4): 436−456.

  • 加载中

(11)

计量
  • 文章访问数:  155
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2024-02-19
修回日期:  2024-07-10
刊出日期:  2024-11-15

目录