东北非VMS矿床地质特征与研究进展

向文帅, 赵凯, 曾国平, 李福林, 王建雄, 胡鹏, 张紫程. 东北非VMS矿床地质特征与研究进展[J]. 地质通报, 2022, 41(1): 129-140. doi: 10.12097/j.issn.1671-2552.2022.01.010
引用本文: 向文帅, 赵凯, 曾国平, 李福林, 王建雄, 胡鹏, 张紫程. 东北非VMS矿床地质特征与研究进展[J]. 地质通报, 2022, 41(1): 129-140. doi: 10.12097/j.issn.1671-2552.2022.01.010
XIANG Wenshuai, ZHAO Kai, ZENG Guoping, LI Fulin, WANG Jianxiong, HU Peng, ZHANG Zicheng. Geology of VMS deposits in Northeast Africa and their research progress[J]. Geological Bulletin of China, 2022, 41(1): 129-140. doi: 10.12097/j.issn.1671-2552.2022.01.010
Citation: XIANG Wenshuai, ZHAO Kai, ZENG Guoping, LI Fulin, WANG Jianxiong, HU Peng, ZHANG Zicheng. Geology of VMS deposits in Northeast Africa and their research progress[J]. Geological Bulletin of China, 2022, 41(1): 129-140. doi: 10.12097/j.issn.1671-2552.2022.01.010

东北非VMS矿床地质特征与研究进展

  • 基金项目:
    中国地质调查局项目《北部非洲大型铜金资源基地评价》(编号: DD20190443)
详细信息
    作者简介: 向文帅(1986-),男,在读博士生, 高级工程师,从事境外地质矿产调查与研究工作。E-mail:xiangwenshuai@mail.cgs.gov.com
    通讯作者: 赵凯(1987-),男,博士,从事地质矿产及研究工作。E-mail:286877542@qq.com
  • 中图分类号: P618.4;P618.5

Geology of VMS deposits in Northeast Africa and their research progress

More Information
  • 东北非地区主要包括埃及、苏丹、厄立特里亚和埃塞俄比亚。该地区金、银、铜、锌等矿产资源丰富, 主要矿床类型为VMS(火山成因块状硫化物)矿床。自发现Ariab、Bisha等大型VMS矿床以来, 各国矿业公司在东北非地区开展勘探和开发, 并新发现大量矿床, 铜、金等矿产资源量不断增加。通过对区域内各国VMS矿床的勘查、研究进展进行梳理和总结, 以期为本地区开展矿产勘查和投资开发的企业提供参考。区内VMS矿床围岩多为双峰式偏长英质火山岩, 与火山弧岩石组合有一定相关性, 主要控矿因素为剪切带、褶皱和具有一定特征的变质火山沉积岩系, 矿床形成集中于3个阶段, 时间跨度为890 ~ 695 Ma, 矿床形成于两类古构造环境, 即洋内汇聚板块边缘的岛弧环境和弧后盆地环境。许多矿床都经历了近地表氧化和表生富集作用, 金和铜在浅层相对富集。已发现的矿床主要位于东北非努比亚地盾偏中北部地区, 集中于Barka、Gabgaba、Eastern Desert地体, 找矿有利区位于Barka、Nakasib、Keraf、Nugrus缝合带附近。

  • 加载中
  • 图 1  东北非地区主要地体与缝合带及VMS矿床分布图(据参考文献[10]修改)

    Figure 1. 

    图 2  厄立特里亚Asmara矿床矿区地质简图(据参考文献[27]修改)

    Figure 2. 

    图 3  Asmra矿床Emba Derho矿区地表铁帽野外照片

    Figure 3. 

    图 4  东北非新元古代主要构造和成矿阶段示意图(据参考文献[35]修改)

    Figure 4. 

    表 1  东北非主要VMS型矿床产量及金属资源量

    Table 1.  Metal output and mineral resources of major VMS deposits in Northeast Africa

    矿床 控股方 矿石产量/(104t·a-1) 金属资源量 国家
    金/ t 铜/ 104 t 锌/ 104 t
    Bisha 紫金矿业 240 38.06 66.00 317.00 厄立特里亚
    Asmara 四川路桥 645 42.90 69.15 112.06
    Harvest 紫金矿业 26 7.84 7.52 9.27 埃塞俄比亚
    Adyabo 西藏华钰 71 8.49 2.98 -
    Ariab Ariab Mining 198 31.00 135.35 - 苏丹
    Galat Sufar Orca Gold 570 126.04 - -
    Hamama Aton Resources 83 14.86 - - 埃及
    Abu Marawat Aton Resources - 5.08 2.23 3.34
    注:除Bisha、Ariab外,其他矿床为可研设计产量; 资源量数据据各公司官网及标普数据库
    下载: 导出CSV

    表 2  Bisha矿床典型矿石类型矿化特征[33]

    Table 2.  Mineralization characteristics of the typical ores in the Bisha mine

    矿石类型 岩性 平均品位 厚度及矿化特征
    氧化带 铁帽 6 g/t Au 0~10 m厚,深棕色,Fe、Au含量高的表层
    半风化层 5~30 m厚,棕色,Fe、Au含量高的氧化物,无硫化物
    酸性淋滤带 白色硅质粘土层 6 g/t Au 0~15 m厚,白色,不规则状,硅质淋滤带
    黑色硅质含铅层 25 g/t Au 0.5~1.5 m厚,黑色,粉末状,富Au-Ag-Pb,少量黄铁矿
    次生富集带 黄铁矿砂层 10 g/t Au 0.5~5 m厚,黄色,细粒黄铁矿砂(未固结),贫Cu富Ag
    次生富集硫化物层 4.09% Cu 0.5~15 m厚,富Cu贫Au块状硫化物(黄铁矿为主)Cu含量随深度增加
    原生锌矿带 原生硫化物 5%~7% Zn 富Zn硫化物
    下载: 导出CSV
  • [1]

    Johnson P R, Zoheir B A, Ghebreab W, et al. Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield[J]. South African Journal of Geology, 2017, 120(1): 63-76. doi: 10.25131/gssajg.120.1.63

    [2]

    彭自栋, 王长乐, 赵刚, 等. 前寒武纪VMS与BIF铁矿床共生组合研究进展[J]. 矿床地质, 2017, 36(4): 905-920. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704008.htm

    [3]

    Piercey S J. An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide(VMS)deposits[J]. Geochemistry: Exploration, Environment, Analysis, 2010, 10(2): 119-136. doi: 10.1144/1467-7873/09-221

    [4]

    毛景文, 张作衡, 王义天, 等. 国外主要矿床类型、特点及找矿勘查[M]. 北京: 地质出版社, 2012.

    [5]

    Barrie C T, Nielsen F W, Aussant C H. The Bisha volcanic-associated massive sulfide deposit, western Nakfa Terrane, Eritrea[J]. Economic Geology, 2007, 102(4): 717-738. doi: 10.2113/gsecongeo.102.4.717

    [6]

    蒋文程, 张有军, 谭宁, 等. 厄立特里亚阿斯马拉Asmara铜金多金属成矿带研究进展[J]. 矿产勘查, 2017, 8(4): 700-707. doi: 10.3969/j.issn.1674-7801.2017.04.023

    [7]

    Be'eri-Shlevin Y, Katzir Y, Whitehouse M J, et al. Contribution of pre Pan-African crust to formation of the Arabian Nubian Shield: New secondary ionization mass spectrometry U-Pb and O studies of zircon[J]. Geology, 2009, 37: 899-902.

    [8]

    Stern R J. Arc Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 319-351. doi: 10.1146/annurev.ea.22.050194.001535

    [9]

    Hargrove U S, Stern R J, Kimura J I, et al. How juvenile is the Arabian-Nubian shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi'r Umq suture zone, Saudi Arabia[J]. Earth & Planetary Science Letters, 2006, 252(3/4): 308-326.

    [10]

    Johnson P R, Andresen A, Collins A S, et al. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 2011, 61(3): 167-232. doi: 10.1016/j.jafrearsci.2011.07.003

    [11]

    Stern R J, Ali K A, Abdelsalam M G, et al. U-Pb Zircon geochronology of the eastern part of the Southern Ethiopian Shield[J]. Precambrian Research, 2012, 206/207: 159-167. doi: 10.1016/j.precamres.2012.02.008

    [12]

    Kröner A, Stern R J. AFRICA | Pan-African Orogeny[C]//Encyclopedia of Geology. Elsevier, 2005: 1-12.

    [13]

    Abdelsalam M, Stern B. Sutures and shear zones in the Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 1996, 23: 289-310. doi: 10.1016/S0899-5362(97)00003-1

    [14]

    Drury S A, Berhe S M. Accretion tectonics in northern Eritrea revealed by remotely sensed imagery[J]. Geological Magazine, 1993, 130: 170-190.

    [15]

    Zoheir B A, Johnson P R, Goldfarb R J, et al. Orogenic gold in the Egyptian Eastern Desert: Widespread gold mineralization in the late stages of Neoproterozoic orogeny[J]. Gondwana Research, 2019, 75: 184-217. doi: 10.1016/j.gr.2019.06.002

    [16]

    Kusky T M, Abdelsalam M, Tucker R D, et al. Evolution of the East African and related orogens, and the assembly of Gondwana[J]. Precambrian Research, 2003, 123(2/4): 81-85.

    [17]

    Andersson U B, Ghebreab W, Teklay M. Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 2006, 44: 45-65. doi: 10.1016/j.jafrearsci.2005.11.006

    [18]

    Ali K A, Azer M K, Gahlan H A, et al. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt[J]. Gondwana Research, 2010, 18: 583-595. doi: 10.1016/j.gr.2010.03.002

    [19]

    Teklay M. Neoproterozoic arc-back-arc system analog to modern arcback-arc systems: evidence from tholeiite-boninite association, serpentinite mudflows, and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield[J]. Precambrian Research, 2006, 145: 81-92. doi: 10.1016/j.precamres.2005.11.015

    [20]

    Grenne T, Pedersen R B, Bjerkgård T, et al. Neoproterozoic evolution of Western Ethiopia: igneous geochemistry, isotope systematics and U-Pb ages[J]. Geological Magazine, 2003, 140: 373-395. doi: 10.1017/S001675680300801X

    [21]

    Tsige L. Metamorphism and gold mineralization of the Kenticha-Katawicha area; Adola belt, southern Ethiopia[J]. Journal of African Earth Sciences, 2006, 45: 16-33. doi: 10.1016/j.jafrearsci.2006.01.002

    [22]

    Botros N S. Ore Deposits in the Arabian-Nubian Shield[C]//Hamimi Z, Fowler A R, Liégeois J P, et al. The Geology of the Arabian-Nubian Shield. Springer International Publishing, 2021: 585-631.

    [23]

    Woldemichael B W, Kimura J I, Dunkley D J, et al. SHRIMP U-Pb zircon geochronology and Sr-Nd isotopic systematic of the Neoproterozoic Ghimbi-Nedjo mafic to intermediate intrusions of Western Ethiopia: a record of passive margin magmatism at 855 Ma?[J]. International Journal of Earth Sciences, 2009, 99: 1773-1790.

    [24]

    Johnson N. NI 43-101 Independent Technical Report Block 14 project, Republic of the Sudan[EB/OL]. (2014-05-11)[2021-09-01]. https://orcagold.com/projects/block-14-gold-project/technical-studies/.

    [25]

    Ghebreab W, Greiling R O, Solomon S. Structural setting of Neoproterozoic mineralization, Asmara district, Eritrea[J]. Journal of African Earth Sciences, 2009, 55(5): 219-235. doi: 10.1016/j.jafrearsci.2009.05.001

    [26]

    Barrie C T, Hannington M D. Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings: introduction[J]. Rev. Econ. Geol., 1999, 8: 1-11

    [27]

    Neil S. Asmara Project Feasibility Study NI43-101 Technical Report[Z]. SENET(Pty)Limited, 2013: 1-150.

    [28]

    成曦晖, 徐九华, 王建雄, 等. 厄立特里亚阿斯马拉VMS矿床S、Pb同位素对成矿物质来源的约束[J]. 中国有色金属学报, 2017, 27(4): 795-810. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201704017.htm

    [29]

    Sandy M A, Christopher M, David G T. NI43-101 Technical Report on a Mineral Resource Estimate at the Terakimti Prospect, Harvest Property[EB/OL]. (2014-02-14)[2021-09-01]. https://eastafricametals.com/harvest/#reports.

    [30]

    East Africa Metals. THE Harvest Project[EB/OL]. (2015-10-18)[2021-09-01]. https://eastafricametals.com/harvest/.

    [31]

    East Africa Metals. THE Adyabo Project[EB/OL]. (2016-05-31)[2021-09-01]. https://eastafricametals.com/adyabo/.

    [32]

    韩世礼. 埃塞俄比亚施瑞地区VMS型矿床成矿机制及成矿规律研究[D]. 中南大学博士学位论文, 2013.

    [33]

    Gribble P, Melnyk J, Munro P. Bisha Mine, Eritrea, Africa. NI 43-101 Techncial Report[Z]. Nevsun Resources Ltd., 2013.

    [34]

    Teklay M, Haile T, Kröner A, et al. A Back-arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea[J]. Gondwana Research, 2003, 6(4): 629-640. doi: 10.1016/S1342-937X(05)71012-1

    [35]

    Bosc R, Tamlyn N, Kachrillo J J. The Hassai Mine project VMS resources update Red Sea State, Sudan. NI 43-101 Technical Report[Z]. La Mancha Resources Inc, 2012.

    [36]

    Plyley B, Kachrillo J J, Bennett M, et al. Hassai South Cu-Au VMS deposit, Sudan, resource estimate, NI 43-101 Technical Report[Z]. La Mancha Resources Inc., 2009.

    [37]

    Matt B. NI 43-101 independent technical report Hamama west deposit, Abu Marawat concession, Arab Republic of Egypt[EB/OL]. (2017-01-01)[2021-09-01]. https://www.atonresources.com/investors/reports-and-presentations/.

    [38]

    Javier Orduña. Gold and base metal deposits of the Abu Marawat Concession, Egypt[EB/OL]. (2018-03-04)[2021-09-01]. https://www.atonresources.com/investors/reports-and-presentations/.

    [39]

    Perelló J, Sillitoe R H, Brockway H, et al. Metallogenic inception of the Arabian-Nubian Shield: Daero Paulos porphyry copper prospect, Eritrea[J]. Gondwana Research, 2020, 88: 106-125. doi: 10.1016/j.gr.2020.06.021

    [40]

    Faisal M, Yang X, Khalifa I H, et al. Geochronology and geochemistry of Neoproterozoic Hamamid metavolcanics hosting largest volcanogenic massive sulfide deposits in Eastern Desert of Egypt: Implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 2020, 344: 105751. doi: 10.1016/j.precamres.2020.105751

    [41]

    Barrie C T, Abdalla M A F, Hamer R D. Volcanogenic Massive Sulphide-Oxide Gold Deposits of the Nubian Shield in Northeast Africa[C]//Bouabdellah M Slack J F. Mineral Deposits of North Africa. Cham. : Springer International Publishing(Mineral Resource Reviews), 2016: 417-435.

    [42]

    Ghebretensae G F, Yao H Z, Zhao J H, et al. Neoproterozoic magmatism in the southern Arabian-Nubian Shield: implications for petrogenesis and tectonic setting[J]. Arabian Journal of Geosciences, 2019, 44: 6525-6545.

    [43]

    Ghebretensae G F, Yao H Z, Zhao K, et al. Petrogenesis and tectonic implications of the Neoproterozoic adakitic and A-type granitoids in the southern Arabian-Nubian shield[J]. Arabian Journal of Geosciences, 2019, 12(14): 428. doi: 10.1007/s12517-019-4575-x

    [44]

    Avigad D, Stern R J, Beyth M, et al. Detrital zircon U-Pb geochronology of Cryogenian diamictites and lower Paleozoic sandstone in Ethiopia(Tigrai): age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian-Nubian Shield[J]. Precambrian Research, 2007, 154: 88-106. doi: 10.1016/j.precamres.2006.12.004

    [45]

    Ali K A, Azer M K, Gahlan H A, et al. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt[J]. Gondwana Research, 2010, 18: 583-595. doi: 10.1016/j.gr.2010.03.002

    [46]

    Stern R J, Avigad D, Miller N R, et al. Geological Society of Africa Presidential Review #10: Evidence for the Snowball Earth Hypothesis in the Arabian-Nubian Shield and the East African Orogen[J]. Journal of African Earth Sciences, 2006, 44: 1-20. doi: 10.1016/j.jafrearsci.2005.10.003

    [47]

    Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18: 1-75. doi: 10.1016/S0169-1368(01)00016-6

    [48]

    Fritz H, Abdelsalam M, Ali K A, et al. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution[J]. Journal of African Earth Sciences, 2013, 86: 65-106. doi: 10.1016/j.jafrearsci.2013.06.004

    [49]

    Tornos F, Peter J M, Allen R, et al. Controls on the siting and style of volcanogenic massive sulphide deposits[J]. Ore Geology Reviews, 2015, 68: 142-163. doi: 10.1016/j.oregeorev.2015.01.003

    [50]

    李文渊. 块状硫化物矿床的类型、分布和形成环境[J]. 地球科学与环境学报, 2007, 4: 331-344. doi: 10.3969/j.issn.1672-6561.2007.04.001

    [51]

    侯增谦, 韩发, 夏林圻, 等. 现代与古代海底热水成矿作用——以若干火山成因块状硫化物矿床为例[M]. 北京: 地质出版社, 2003: 1-11.

    [52]

    Herrington R, Maslennikov V, Zaykov V, et al. Classification of VMS deposits: Lessons from the South Uralides[J]. Ore Geology Reviews, 2005, 27(1/4): 203-237.

    [53]

    王登红. 块状硫化物矿床的地球化学找矿标志[J]. 地质科技情报, 1994, (2): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.017.htm

    [54]

    Genna D, Gaboury D. Use of semi-volatile metals as a new vectoring tool for VMS exploration: Example from the Zn-rich McLeod deposit, Abitibi, Canada[J]. Journal of Geochemical Exploration, 2019, 207: 106358. doi: 10.1016/j.gexplo.2019.106358

    [55]

    Feltrin L, Bertelli M. Using Clustered Heat Maps in Mineral Exploration to Visualize Volcanic-Hosted Massive Sulfide Alteration and Mineralization[J]. Natural Resources Research, 2020, 29(1): 311-344. doi: 10.1007/s11053-019-09586-2

    [56]

    Hendrickson M D. Geologic interpretation of aeromagnetic and chemical data from the Oaks Belt, Wabigoon subprovince, Minnesota: implications for Au-rich VMS deposit exploration[J]. Canadian Journal of Earth Sciences, 2015, 53: 176-188.

    [57]

    甘凤伟, 王京彬, 朱思才, 等. 埃塞俄比亚北部VMS型铜多金属矿快速勘查方法[J]. 矿产勘查, 2018, 9(8): 1611-1621. doi: 10.3969/j.issn.1674-7801.2018.08.019

  • 加载中

(4)

(2)

计量
  • 文章访问数:  2327
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2021-01-11
修回日期:  2021-11-19
刊出日期:  2022-01-15

目录