-
摘要:
河北四家地热异常区地势西北高、东南低,地热资源丰富。为了科学保护、合理利用该地热资源,以地热异常为研究对象,采用地温场测量、水化学及同位素测试、地球物理测量等方法手段,探讨了四家地热异常区地热资源形成机制、赋存环境及循环机理。研究表明,该地热异常区内地热井水位埋深介于-0.94~3.02 m之间,水位埋深浅; 异常中心以垂直向上对流传热为主,异常外围以传导传热为主,深部热流沿异常中心的断裂交会处上升,并产生横向迁移、扩散,在一定范围内储存起来,形成了本区的地热异常。可控源音频大地点测测深剖面解译成果表明,四家地区深部花岗岩体被切割,使深部的热流能够沿断裂上升,混合并加热赋存于四家地热异常区下部,形成该区域的地热异常。水质分析结果表明,四家地区地热流体水化学类型主要为SO42--Na+型,F-、SiO2含量与水温呈良好的正相关关系,同时F-、SiO2质量浓度严格受地温场的控制。四家地区地下热水为大气降水补给,属大气成因,区内地下热水氚值较低,为0.6~0.8T.U,通过研究认为本区地下热水年龄大于30 a。研究成果为今后在冀东及类似山区开展地热资源勘查研究具有指导意义。
Abstract:Sijia geothermal anomaly with lot geothermal energy is located in the northwestern part of Qinglong of Hebei Province.In this paper, in order to protect and utilize the geothermal resources scientifically, the geothermal anomaly is studied by means of geothermal field measurement, hydrochemistry and isotope measurement, geophysics measurement, etc. The formation mechanism, occurrence environment and circulation mechanism of geothermal resources in four abnormal geothermal areas are discussed for the first time.According to the study of this area, it is found that the buried depth of geothermal wells in the four geothermal anomalies ranges from -0.94 m to 3.02 m, which is characterized by the shallow depth of the water level.The center of the anomaly in the area is dominated by vertical upward convective heat transfer, and the periphery of the anomaly is dominated by conductive heat transfer.The deep heat flow rises along the fault junction of the anomaly center and generates lateral migration and diffusion.It is stored within a certain range and formed geothermal anomalies in this area.The interpretation results of the CSAMT show that the deep granite body in this area is cut, so that the deep heat flow can rise along the fault, and mixed and heated to the bottom of the Sijia geothermal anomaly areas to form geothermal anomalies in the area.The results of water quality analysis indicated that the hydro-chemical type of the geothermal fluid in this area is mainly SO42--Na+ type, F- and SiO2 content both have a good positive correlation with water temperature, and those mass concentration are strictly controlled by the ground temperature field.The underground hot water in this area is replenished by atmospheric precipitation, which is the cause of the atmosphere.The value of 3H of the underground hot water in the area is low, ranging from 0.6 T.U to 0.8 T.U, which directive considers that the underground hot water in this area is older than 30 years.The achievement of these results will lead the geothermal resources exploration in eastern Hebei and similar mountainous areas.
-
Key words:
- Sijia area, Hebei /
- geothermal anomaly /
- geothermal field /
- hydro-geochemistry /
- origin
-
表 1 测温井基本情况
Table 1. Summary of basic information of temperature measuring well
编号 位置 井深/m 水位埋深(水头高度)/m 井口水温/℃ 30 m埋深水温/℃ 最高水温/℃ RL01 四家村东板栗加工厂 65.00 3.02 38.2 39.9 40.8 RL02 四家村东板栗加工厂西侧路边 103.40 0.76 37.7 54.2 55.2 RL03 四家村南角村民家中 50.00 0.12 40.2 49.9 51.7 RL04 四家村西南角村民家中 54.28 2.28 26.7 36.3 37.0 RL05 四家村东北角村民家中 68.22 0.7 17.9 27.2 34.0 RL06 四家村中北部村民家中 67.32 2.11 14.9 21.4 29.1 RL07 四家村东侧民房 64.00 1.39 20.6 31.1 33.9 RL08 四家村南部河西 160.00 -0.40 43.1 47.3 48.0 RL09 四家村中河东岸 140.00 -0.94 54.8 井口封闭,仅能测得井口水温 表 2 四家地热流体水化学分析结果
Table 2. Results of hydrochemical analysis for geothermal fluids in Sijia area
编号 RL01 RL08 地点 四家板栗场 四家村中 取样时间 2019.7.21 2019.7.22 水温/℃ 40.0 46.0 K+/(mg·L-1) 5.28 5.88 Na+/(mg·L-1)) 204.50 210.90 Ca2+/(mg·L-1)) 46.93 42.87 Mg2+/(mg·L-1) 0.51 0.35 Cl-/(mg·L-1) 44.82 44.47 SO42-/(mg·L-1) 442.70 460.00 HCO3-/(mg·L-1) 60.96 39.62 CO32-/(mg·L-1) 0.00 3.00 NO3-/(mg·L-1) 1.37 < 0.20 F-/(mg·L-1) 8.93 9.26 SiO2/(mg·L-1) 55.99 60.71 Br-/(mg·L-1) < 0.10 < 0.10 Sr/(mg·L-1) 2.128 2.059 Zn2+/(mg·L-1) 0.289 0.246 Li+/(mg·L-1) 0.160 0.203 HBO2/(mg·L-1) 0.93 0.90 pH 7.82 8.57 矿化度/(g·L-1) 0.8727 0.8777 -
[1] Mongillo M A. Preface to geothermics special issue on sustainable geothermal utilization[J]. Geothermics, 2010, 39: 279-282. doi: 10.1016/j.geothermics.2010.09.011
[2] 汪集旸, 龚宇烈, 马伟斌, 等. 我国发展地热面临问题的分析及建议[C]// 首届"中国工程院/国家能源局能源论坛论文集". 北京: 化学工业出版社, 2010: 62-630.
[3] 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评价[J]. 中国地质, 2013, 40(1) : 312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021
[4] 程立群, 徐一鸣, 杜立新, 等. 冀东燕山中段地热地质条件分析与资源潜力评价[J]. 矿产勘查, 2020, 11(12) : 2637-2646. doi: 10.3969/j.issn.1674-7801.2020.12.008
[5] 河北省区域地质矿产调查研究所, 河北省北京市天津市区域地质志[M]. 北京: 地质出版社, 2005.
[6] 河北省地质矿产局. 河北省北京市天津市区域地质志[M]. 北京: 地质出版社, 1989: 322-586.
[7] 刘俊长, 龚红蕾, 刘军恒, 河北省莫霍面和深部构造与矿集区的关系[J]. 物探与化探, 2011, 35(6) : 758-761. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201106009.htm
[8] 余恒昌, 邓孝, 陈碧婉, 等. 矿山地热与热害治理[M]. 北京: 煤炭工业版社, 1991: 46-93.
[9] 河北省地矿局. 河北地热[M]. 北京: 地质出版社, 2013.
[10] 河北省地矿局. 河北地下水[M]. 北京: 地质出版社, 2013.
[11] 邱楠生, 唐博宁, 朱传庆. 中国大陆地区温泉分布的深部热背景[J]. 地质学报, 2022, 96(1) : 195-207. doi: 10.3969/j.issn.0001-5717.2022.01.016
[12] 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 117-132.
[13] 陈墨香. 华北地热[M]. 北京: 科学出版社, 1988.
[14] 沈照理, 朱宛华, 钟佐璨. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 71.
[15] 任天培. 水文地质学[M]. 北京: 地质出版社, 1986.
[16] Fournier R O, Rowe J J. The solubitity of amorphous silica in water at high temperature and high pressures[J]. American Mineralogist, 1977, 62: 1052.
[17] Fournier R O. Application of Water geochemistry to geothermal exploration and reservoir engineering[C]//Ryhack L, Muffer L J P. Geothermal Systems: Principle and Case Histories, 1981: 113.
[18] Payne B R. Water balance of Lake Chala and its relation to groundwater from tritium an stable isotope data[J]. Journal of Hydrology, 1970, 11(1) : 47-58. doi: 10.1016/0022-1694(70)90114-9
[19] Chen J S, Zhao X, Fan Z C, et al. Isotope method for confined groundwater recharge of the lower reaches of Heihe River, Inner Mongolia, China[J]. Acta Geologica Sinica, 2007, 81(4) : 668-673. doi: 10.1111/j.1755-6724.2007.tb00990.x
[20] Jiang Y J, Yuan D X, Xie S Y, et al. Groundwater quality and land use in a typical karst agricultural region[J]. Journal of Geographical Sciences, 2006, 16(4) : 405-414. doi: 10.1007/s11442-006-0403-9
[21] Montoroi J P, Grunberger O, Nasri S. Groundwater geochemistry of a small reservoir catchment in Central Tunisia[J]. Applied Geochemistry, 2002, 17: 1047-1060. doi: 10.1016/S0883-2927(02)00076-8
[22] 张卫民. 应用SiO2地热温度计估算地热储温度——以赣南横泾地区若干温泉为例[J]. 地球学报, 2001, 22(2) : 185-188. doi: 10.3321/j.issn:1006-3021.2001.02.018
[23] 王莹, 周训, 于湲, 等. 应用地热温标估算地下热储温度[J]. 现代地质, 2007, 21(4) : 605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003
[24] 刘明亮, 何曈, 吴启帆, 等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6) : 2221-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006032.htm
[25] 赵敬波, 周训, 方斌, 等. 天津地区深层地下热水井水动力特征[J]. 现代地质, 2011, 25(2) : 363-392. doi: 10.3969/j.issn.1000-8527.2011.02.021
[26] 郭清海. 岩浆热源型地热系统释义[J]. 地质学报, 2022, 96(1) : 208-214. doi: 10.3969/j.issn.0001-5717.2022.01.017
[27] 汪洋, 汪集旸, 邓普福, 等. 中国大陆地壳和岩石圈铀、钍、钾丰度的大地热流约束[J]. 地球物理学进展, 2001, 16(3) : 47-56. doi: 10.3969/j.issn.1004-2903.2001.03.006
[28] 刘光亚. 基岩地下水[M]. 北京: 地质出版社, 1979: 52-58.
[29] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7) : 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002
[30] Wang G L, Wang W L, Zhang W, et al. The status quo and prospect of geothermal resources exploration and development in Beijing- Tianjin-Hebei region in China[J]. China Geology, 2020, 3: 173-181. doi: 10.31035/cg2020013
[31] Wang G L, Zhang W, Ma F, et al. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 2018, 1: 273-285. doi: 10.31035/cg2018021
① 徐一鸣, 程立群、郝文辉, 等. 河北省青龙满族自治县西部山区地热资源调查评价报告. 河北省地矿局第八地质大队, 2019.
② 贺鹏起, 杨立顺, 尚福平, 等. 河北省秦皇岛市地热资源调查评价. 河北省地矿局第八地质大队, 2003.
③ 张双增, 吴连亨, 梁国庆, 等. 青龙县幅1: 5万地质图说明书. 河北省地质调查院, 1996.
④ 张双增, 吴连亨, 梁国庆, 等. 肖营子幅1: 5万地质图说明书. 河北省地质调查院, 1996.