Micro-geochemical characteristic of pyrites in the Heilangou gold deposit of penglai area and its implications for ore-forming fluid, Jiaodong gold province
-
摘要:
胶东地区是中国最大的金矿集区, 金矿成因类型一直存在较大争议。黑岚沟金矿床是胶东蓬莱地区最大的金矿床, 曾以产出"明金"而闻名胶东。采用LA-ICP-MS方法分析黑岚沟金矿各成矿阶段黄铁矿中微量元素的组成、变化趋势及相关性, 探讨了Au的富集沉淀过程。通过野外地质调查, 结合矿相学和背散射图像观察, 将主成矿阶段(S1~S3)的黄铁矿(Py1~Py3)进一步划分为6个亚类; 通过微量元素分析发现, 研究区黄铁矿As含量高, 为富砷黄铁矿, 从早到晚, 黄铁矿中Cu、As、Ag、Au、Zn、Co、Ni、Pb、Sb、Bi等微量元素变化趋势不一致, As与Au在各阶段均呈现极强的正相关性, Cu-Zn、Ag-Sb等多对元素具有高的正相关性, Pb与Bi在Py1-1、Py2-1和Py2-2三个黄铁矿亚类中也具有较高的正相关性, 大部分黄铁矿亚类中Co与Ni存在正相关关系, Co/Ni元素含量比值为1.1~3.3, 说明黄铁矿主要为岩浆热液成因。黑岚沟金矿成矿流体是富Au-As流体, S1阶段与S3阶段微量元素相对富集, 说明成矿流体活动持续时间较长, 具有脉动式活动的特点, 金由多次活动的富Au-As流体多次沉淀成矿。
Abstract:In China, the largest gold concentration area is Jiaodong, in which the genetic type of gold deposits has always been controversial.Heilangou gold deposit is the largest one in Penglai area of Jiaodong and was well-known for producing gold nugget.In this paper, LA-ICP-MS was used to analyze the composition, variation trend and correlation of trace elements in pyrite of Heilangou gold deposit, and to discuss the formation of Au.Through field investigation, combined with mineralogy and backscatter electron image(BSE), the pyrite(Py1~Py3)in the main metallogenic stage(S1~S3)is divided into six subtypes.Through trace element analysis, it is found that the change trends of Cu, As, Ag, Au, Zn, Co, Ni, Pb, Sb and Bi are inconsistent from early to later stage.As and Au show strong positive correlation in every pyrite subtype, Cu-Zn, Ag-Sb and several other element pairs have high correlation, Pb-Bi has an upper correlation especially in three subtypes of Py1-1, Py2-1 and Py2-2, and also Co-Ni in most pyrite subtypes.The Co/Ni ratio is mainly in the range of 1.1 ~ 3.3, which indicates that the pyrite is mainly of magmatic hydrothermal origin.The ore-forming fluid of Heilangou gold deposit is rich in Au-As, and the trace elements are relatively enriched in S1 and S3 stages, which indicates that the ore-forming fluid activity lasts for a relatively long time and has the pulsating characteristics.Gold is precipitated by the fluid rich in Au-As for multiple activities and several times.
-
Key words:
- As-rich pyrite /
- LA-ICP-MS /
- trace element /
- /
- Heilangou gold deposit /
- Jiaodong
-
图 1 胶东半岛区域地质和金矿分布简图(据参考文献[1]修改)
Figure 1.
表 1 黑岚沟金矿床矿物生成顺序
Table 1. Mineral paragenetic sequence of Heilangou gold deposit
表 2 黑岚沟金矿床不同亚类黄铁矿结构特征
Table 2. Structural characteristics of different subtypes of pyrite in Heilangou gold deposit
成矿阶段 黄铁矿世代 形态特征 矿物共生组合 背散射图像表现 黄铁矿-石英阶段S1 Py1-1 他形颗粒,多呈聚集产出,常位于黄铁矿颗粒的边部 乳白色石英 亮色 Py1-2 他形颗粒,多呈聚集产出,占据了黄铁矿颗粒大部 暗色 石英-黄铁矿阶段S2 Py2-1 位于黄铁矿颗粒核部、孔隙结构发育 烟灰色石英 成分均一 Py2-2 位于黄铁矿颗粒边部、表面光滑 成分均一 石英-多金属硫化物阶段S3 Py3-1 表面光滑,多金属硫化物包体较少 烟灰色石英、多金属硫化物 成分均一 Py3-2 表面粗糙,含有较多的多金属硫化物包体 成分均一 表 3 不同亚类黄铁矿原位微区微量元素分析结果
Table 3. In-situ microanalyses results of different subtypes of pyrites
10-6 亚类 编号 Cu As Ag Au Zn Co Ni Pb Sb Bi Au/As Co/Ni 平均检出限 0.35 2.22 0.11 0.036 1.55 0.09 0.80 0.12 0.42 0.030 Py1-1 HLG-01 281.0 28500 286 73.00 310 12.7 5.3 25400.0 54.0 0.360 0.0026 2.4 HLG-02 520.0 16500 89 14.90 439 0.3 4.3 3080.0 60.0 0.031 0.0009 0.1 HLG-03 70.0 45700 34 67.10 2.3 3.0 2.2 1900.0 4.4 0.059 0.0015 1.4 HLG-04 40.9 43900 35 53.40 7.3 1.6 1.5 1900.0 8.0 0.030 0.0012 1.1 HLG-05 72.9 54300 6.6 92.80 4.7 1.5 3.4 460.0 5.5 0.003 0.0017 0.4 Py1-2 HLG-06 360.0 5580 48.1 6.80 1240 0.1 1.9 1330.0 28.8 0.008 0.0012 0.1 HLG-07 65.5 3380 13.6 2.08 58 0.5 1.3 454.0 61.5 0.001 0.0006 0.4 HLG-08 490.0 5930 125 3.08 570 0.4 1.8 1790.0 40.6 0.003 0.0005 0.2 HLG-09 158.0 8500 36.2 10.10 234 0.1 - 1330.0 32.1 - 0.0012 - HLG-10 131.0 360 77 1.85 1880 0.6 1.7 1300.0 29.0 0.004 0.0051 0.4 py2-1 HLG-11 100.0 4360 4.3 2.25 6.5 699.0 365.0 200.0 8.8 0.302 0.0005 1.9 HLG-12 39.0 1000 5.8 0.43 9.7 1040.0 1190.0 780.0 1.6 0.480 0.0004 0.9 HLG-13 11.9 2840 0.6 2.99 3.1 44.4 43.6 64.0 1.6 0.271 0.0011 1.0 Py2-2 HLG-14 0.7 878 - 0.06 5.9 150.0 2.3 - - - 0.0001 65.2 HLG-15 0.9 1223 - 0.24 2.2 132.0 3.5 2.2 - 0.010 0.0002 37.7 HLG-16 2.7 1340 0.2 0.12 9.2 175.0 1.8 10.0 0.5 0.038 0.0001 97.2 HLG-17 25.0 9260 7.8 6.15 27 1010.0 361.0 112.0 7.9 0.199 0.0007 2.8 HLG-18 23.5 11900 1.2 14.10 5.4 524.0 311.0 73.0 3.8 0.034 0.0012 1.7 Py3-1 HLG-26 1200.0 978 32.1 1.38 2310 1.0 2.1 628.0 63.0 - 0.0014 0.5 HLG-27 1000.0 1670 27.1 2.38 2700 1.5 2.1 750.0 68.0 0.006 0.0014 0.7 HLG-28 62.0 22000 6.7 10.2 4.5 3.4 2.0 16.1 2.4 - 0.0005 1.7 HLG-29 49.0 15800 10 17.7 5.9 1.9 1.7 53.0 7.5 - 0.0011 1.1 HLG-30 940.0 800 33.4 0.96 1010 - 2.4 508.0 54.3 - 0.0012 - HLG-31 453.0 1890 24 2.22 1350 - 1.4 754.0 54.8 - 0.0012 - Py3-2 HLG-32 950.0 5700 490 7.10 1080 6.3 1.9 6500.0 152.3 - 0.0012 3.3 HLG-33 660.0 3250 123 5.50 1380 1.2 1.3 3880.0 89.2 - 0.0017 0.9 HLG-34 93.0 19200 158 21.20 340 2.6 1.0 6900.0 43.0 0.006 0.0011 2.6 注:“-”代表该元素低于仪器的检出限或无数据;Au/As和Co/Ni数值代表比值,无单位 -
[1] 宋明春, 宋英昕, 丁正江, 等. 胶东金矿床: 基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4): 406-422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804006.htm
[2] 侯明兰, 蒋少涌, 姜耀辉, 等. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究[J]. 岩石学报, 2006, 22: 2525-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610012.htm
[3] 侯明兰, 蒋少涌, 沈昆, 等. 胶东蓬莱金矿区流体包裹体和氢氧同位素地球化学研究[J]. 岩石学报, 2007, 23: 2241-2256. doi: 10.3969/j.issn.1000-0569.2007.09.022
[4] Yang K F, Jiang P, Fan H R. Tectonic transition from a compressional to extensional metallogenic environment at ~120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton[J]. Journal of Asian Earth Sciences, 2018, 160: 408-425. doi: 10.1016/j.jseaes.2017.08.014
[5] 杨敏之, 吕古贤. 胶东绿岩带金矿地质地球化学[M]. 北京: 地质出版社, 1996: 1-222.
[6] 王铁军, 阎方. 胶东地区岩浆热液型金矿成矿流体演化与成矿预测[J]. 地质找矿论丛, 2002, 17: 169-174. doi: 10.3969/j.issn.1001-1412.2002.03.005
[7] 朱奉三. 混合岩化热液金矿床成矿作用初步研究——以招掖地区的金矿床为例[J]. 地质与勘探, 1980, 7: 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198007000.htm
[8] 王勇军, 刘颜, 黄鑫, 等. 胶东牟乳成矿带范家庄金矿床成矿流体特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1012-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202004008.htm
[9] 智云宝, 孙海瑞, 李风华. 山东栖霞笏山金矿床成因: 元素地球化学与流体包裹体证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1552-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005019.htm
[10] 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45: 1153-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm
[11] Groves D I, Santosh M. The giant Jiaodong gold province: the key to a unified model for orogenic gold deposits?[J]. Geoscience Frontiers, 2016, 7: 409-417. doi: 10.1016/j.gsf.2015.08.002
[12] Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111: 105-126. doi: 10.2113/econgeo.111.1.105
[13] Goldfarb R J, Groves D I. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. doi: 10.1016/j.lithos.2015.07.011
[14] Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 2014, 5: 139-153. doi: 10.1016/j.gsf.2013.11.001
[15] Goldfarb R J, Hart C, Davis G, et al. East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons[J]. Economic Geology, 2007, 102: 341-345. doi: 10.2113/gsecongeo.102.3.341
[16] 陈衍景, Franco P, 赖勇, 等. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 2004, 20: 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm
[17] 蒋少涌, 戴宝章, 姜耀辉, 等. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25: 35-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911004.htm
[18] Wang L G, Qiu Y M, Mcnaughton N J, et al. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J]. Ore Geology Reviews, 1998, 13: 275-291. doi: 10.1016/S0169-1368(97)00022-X
[19] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
[20] Li L, Santosh M, Li S R. The'Jiaodong type'gold deposits: Characteristics, origin and prospecting[J]. Ore Geology Reviews, 2015, 65: 589-611. doi: 10.1016/j.oregeorev.2014.06.021
[21] Gregory Daniel, Large Ross, Halpin Jacqueline. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110: 1389-1410. doi: 10.2113/econgeo.110.6.1389
[22] Lang J, Baker T. Intrusion-related gold systems: The present level of understanding[J]. Mineralium Deposita, 2001, 36(6): 477-489. doi: 10.1007/s001260100184
[23] Shabani K, Nezafati N, Momenzadeh M, et al. Geology, geochemistry and mineralogy of the Tareek Darreh Gold Deposit, Northeast Irán[J]. Geología Colombiana, 2010, 35: 131-142.
[24] Jones C, Jenkin G, Boyce A, et al. Tellurium, magmatic fluids and orogenic gold: An early magmatic fluid pulse at Cononish gold deposit, Scotland[J]. Ore Geology Reviews, 2018, 102: 894-905. doi: 10.1016/j.oregeorev.2018.05.014
[25] Large R A. carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits[J]. Economic Geology, 2011, 106: 331-358. doi: 10.2113/econgeo.106.3.331
[26] Cook N, Ciobanu C, Meria D, et al. Arsenopyrite-Pyrite association in an Orogenic Gold Ore: Tracing mineralization history from textures and trace[J]. Economic Geology, 2013, 108: 1273-1283. doi: 10.2113/econgeo.108.6.1273
[27] Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present[J]. Isl. Arc, 1997, 6: 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
[28] Xu J, Zhu G, Tong W, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northwest of the Pacific Ocean[J]. Tectonophysics, 1987, 134: 273-310. doi: 10.1016/0040-1951(87)90342-8
[29] Zhu G, Niu M, Xie C, et al. Sinistral to normal faulting along the Tan-Lu Fault Zone: Evidence for geodynamic switching of the East China continental margin[J]. Anglais, 2010, 118: 277-293.
[30] Wang Y. The onset of the Tan-Lu fault movement in eastern China: Constraints from zircon(SHRIMP)and 40Ar/39Ar dating[J]. Terra Nova, 2006, 18: 423-431. doi: 10.1111/j.1365-3121.2006.00708.x
[31] Zhu G, Wang Y, Liu G, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. J. Struct. Geol., 2005, 27: 1379-1398. doi: 10.1016/j.jsg.2005.04.007
[32] Zheng J P, O'Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution[J]. Lithos, 2001, 57: 43-66. doi: 10.1016/S0024-4937(00)00073-6
[33] Zhang H F, Goldstein S, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contrib. Mineral. Petrol., 2008, 155: 271-293. doi: 10.1007/s00410-007-0241-5
[34] 田杰鹏. 胶东栖蓬福矿集区中生代金多金属矿区域成矿作用[D]. 中国地质大学(北京)博士学位论文, 2020.
[35] 朱照先, 赵新福, 林祖苇, 等. 胶东金翅岭金矿床黄铁矿原位微量元素和硫同位素特征及对矿床成因的指示[J]. 地球科学, 2020, 45(3): 945-959. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003019.htm
[36] 林祖苇, 赵新福, 熊乐, 等. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201904009.htm
[37] Reich M, Kesler S, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781-2796. doi: 10.1016/j.gca.2005.01.011
[38] Li X C, Fan H R, Santosh M, et al. Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China[J]. Ore Geology Reviews, 2013, 53: 403-421. doi: 10.1016/j.oregeorev.2013.01.020
[39] 靳晓野. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D]. 中国地质大学(武汉)博士学位论文, 2017.
[40] 范宏瑞, 冯凯, 李兴辉, 等. 胶东-朝鲜半岛中生代金成矿作用[J]. 岩石学报, 2016, 32(10): 3225-3238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201610021.htm
[41] Cha P, Hou Z Q, Zhang Z Y. Geology, Fluid Inclusion and Stable Isotope Constraints on the Fluid Evolution and Resource Potential of the Xiadian Gold Deposit, Jiaodong Peninsula[J]. Resource Geology, 2017, 67(3): 341-359. doi: 10.1111/rge.12134
[42] 范宏瑞, 胡芳芳, 杨进辉, 等. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 2005, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
[43] Li S R, Santosh M. Metallogeny and craton destruction: records from the North China Craton[J]. Ore Geology Reviews, 2014, 56: 376-414. doi: 10.1016/j.oregeorev.2013.03.002
[44] Wen B J, Fan H R, Santosh M, et al. Genesis of Two Different Types of Gold Mineralization in the Linglong Gold Field, China: Constrains From Geology, Fluid Inclusions and Stable Isotope[J]. Ore Geology Reviews, 2015, 65(3): 643-658.
[45] Guo L N, Deng J, Yang L Q, et al. Gold Deposition and Resource Potential of the Linglong Gold Deposit, Jiaodong Peninsula: Geochemical Comparison of Ore Fluids[J]. Ore Geology Reviews, 2020, 120: 103434. doi: 10.1016/j.oregeorev.2020.103434
[46] Hu H L, Fan H R, Santosh M, et al. Ore-Forming Processes in the Wang'Ershan Gold Deposit(Jiaodong, China): InsightFrom Microtexture, Mineral Chemistry and Sulfur Isotope Compositions[J]. Ore Geology Reviews, 2020, 123: 103600. doi: 10.1016/j.oregeorev.2020.103600
[47] Cepedal A, Martínez-Abad I, Fuertes-Fuente M, et al. The presence of plumboan ingodite and a rare Bi-Pb tellurosulfide, Pb3Bi4Te4S5, in the limarinho gold deposit, northern Portugal[J]. The Canadian Mineralogist, 2013, 51(4): 643-651. doi: 10.3749/canmin.51.4.643
[48] Feng K, Fan H R, Hu F F, et al. Involvement of anomalously As-Au-rich fluids in the mineralization of the Heilan gou gold deposit, Jiaodong, China: Evidence from trace element mapping and in-situ sulfur isotope composition[J]. Journal of Asian Earthences, 2018, 160: 304-321.