青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录

唐渊, 王鹏, 邓红, 刘宇平, 唐文清. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 2022, 41(7): 1121-1143. doi: 10.12097/j.issn.1671-2552.2022.07.001
引用本文: 唐渊, 王鹏, 邓红, 刘宇平, 唐文清. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 2022, 41(7): 1121-1143. doi: 10.12097/j.issn.1671-2552.2022.07.001
TANG Yuan, WANG Peng, DENG Hong, LIU Yuping, TANG Wenqing. Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau[J]. Geological Bulletin of China, 2022, 41(7): 1121-1143. doi: 10.12097/j.issn.1671-2552.2022.07.001
Citation: TANG Yuan, WANG Peng, DENG Hong, LIU Yuping, TANG Wenqing. Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau[J]. Geological Bulletin of China, 2022, 41(7): 1121-1143. doi: 10.12097/j.issn.1671-2552.2022.07.001

青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录

  • 基金项目:
    第二次青藏高原综合科学考察研究项目《典型地区岩石圈组成、演化与深部过程》(编号: 2019QZKK0702)、中国地质调查局项目《雅鲁藏布江下游水电开发区地质安全性评价》(编号: DD20211541)、《三江造山带昌都—澜沧地区区域地质调查》(编号: DD20190053)和《川(滇)藏铁路沿线区域地质调查》(编号: DD20160021)
详细信息
    作者简介: 唐渊(1985-), 女, 博士, 高级工程师, 构造地质学专业。E-mail: tyvienna@163.com
  • 中图分类号: P534.61+4;P546

Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau

  • 作为青藏高原东缘巴颜喀拉地块和川滇地块的分界线, 鲜水河左行走滑断裂带被认为是调节藏东地壳物质大规模南东向挤出与地块旋转运动的东边界。研究鲜水河断裂带的构造变形特征和演化历史, 对深入认识青藏高原东缘大陆变形过程具有十分重要的科学意义。针对鲜水河断裂带南东段的变形特征开展了野外露头-显微尺度的构造分析, 并从该段发育的花岗质糜棱岩和淡色脉体中选取了5个样品开展锆石U-Pb测年, 分别得到34.4±0.9 Ma、31.0±1.2 Ma、15.92±0.3 Ma、14.9±0.1 Ma和5.93±0.14 Ma的年龄; 选取了2个花岗质糜棱岩样品开展白云母Ar-Ar测年, 得到的坪年龄分别为17.21±0.30 Ma和3.21±0.16 Ma。结合前人获得的年龄数据, 总结出鲜水河断裂带渐新世以来存在3个阶段的构造-岩浆作用过程。阶段Ⅰ: 32~25 Ma, 鲜水河断裂带的构造变形集中在地壳深部, 表现为一定规模的岩浆作用和深熔作用; 阶段Ⅱ: 20~13 Ma, 鲜水河断裂带的构造变形遍布整个地壳, 表现为强烈的左行韧性剪切变形和大规模的岩浆作用; 阶段Ⅲ: 10 Ma~现今, 变形集中在上地壳, 表现为块体旋转和强烈隆升, 地震活动性加强。综合分析认为, 鲜水河断裂带渐新世以来的构造演化和现今地震活动性主要受印度-欧亚板块碰撞导致的青藏高原东缘向东挤出相关的陆内变形过程控制。

  • 加载中
  • 图 1  研究区大地构造位置(a)、鲜水河断裂带南段地质简图和测年数据(b)、鲜水河断裂带南段剖面地质简图(c)及糜棱岩产状赤平投影图(d)

    Figure 1. 

    图 2  雅拉河断裂附近花岗质糜棱岩露头特征

    Figure 2. 

    图 3  雅拉河断裂附近花岗质糜棱岩显微构造特征(正交偏光)

    Figure 3. 

    图 4  折多塘断裂附近眼球状花岗质糜棱岩露头特征

    Figure 4. 

    图 5  折多塘断裂附近眼球状花岗质糜棱岩显微构造特征(正交偏光)

    Figure 5. 

    图 6  雅拉河断裂发育的糜棱岩及淡色脉体(深熔作用)

    Figure 6. 

    图 7  鲜水河断裂带花岗质糜棱岩和淡色花岗岩脉锆石阴极发光(CL)图像特征

    Figure 7. 

    图 8  测年样品锆石U-Pb年龄谐和图(a~e)及其年龄分布直方图(f)

    Figure 8. 

    图 9  花岗质糜棱岩白云母40Ar/39Ar坪年龄(a、c)和36Ar/40Ar-39Ar/40反等时线年龄(b、d)

    Figure 9. 

    图 10  鲜水河断裂带晚新生代以来T-t演化过程

    Figure 10. 

    图 11  鲜水河断裂带渐新世以来的构造演化过程

    Figure 11. 

    表 1  鲜水河断裂带花岗质糜棱岩和淡色脉体的LA-ICP-MS锆石U-Th-Pb测试结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb data of granitic mylonites and leucogranitic dykes along Xianshuihe fault zone

    分析点 含量/10-6 Th/U 同位素比值 年龄/Ma
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    17YLH01-2
    01 173 889 0.19 0.0502 0.0024 0.0401 0.0020 0.0058 0.0001 203 89 40 2 37.1 0.5
    02 149 453 0.33 0.0591 0.0033 0.0434 0.0023 0.0054 0.0001 570 90 43 2 34.6 0.5
    03 166 4150 0.04 0.0481 0.0015 0.0327 0.0010 0.0049 0.0001 103 74 32.7 1 31.8 0.3
    04 251 1437 0.17 0.0474 0.0018 0.0371 0.0014 0.0057 0.0001 67 65 37 1 36.4 0.4
    05 124 1220 0.10 0.0448 0.0022 0.0341 0.0016 0.0055 0.0001 -30 78 34 2 35.6 0.4
    07 964 5475 0.18 0.0485 0.0013 0.0332 0.0009 0.0049 0.0001 122 47 33.1 0.9 31.8 0.3
    08 668 1470 0.45 0.0495 0.0029 0.0383 0.0022 0.0056 0.0001 171 134 38 2 36.1 0.4
    09 245 726 0.34 0.0512 0.0037 0.0405 0.0029 0.0057 0.0001 247 168 40 3 36.9 0.6
    10 133 1601 0.08 0.0468 0.0024 0.0376 0.0018 0.0058 0.0001 40 113 37 2 37.4 0.7
    11 466 1580 0.29 0.0477 0.0031 0.0356 0.0022 0.0054 0.0001 82 143 35 2 34.8 0.5
    12 452 1515 0.30 0.0486 0.0021 0.0361 0.0015 0.0054 0.0001 130 73 36 1 34.9 0.4
    14 472 1621 0.29 0.0444 0.0020 0.0355 0.0018 0.0058 0.0001 -53 75 35 2 37.1 0.6
    16 46 1897 0.02 0.0506 0.0024 0.0335 0.0015 0.0048 0.0001 222 111 33 1 30.9 0.5
    17 2805 5085 0.55 0.0461 0.0020 0.0337 0.0014 0.0053 0.0001 1 95 34 1 34.1 0.5
    18 543 4337 0.13 0.0463 0.0014 0.0336 0.0010 0.0053 0.0000 11 48 34 1 33.8 0.3
    19 470 2293 0.21 0.0478 0.0020 0.0359 0.0016 0.0054 0.0001 90 77 36 2 34.7 0.5
    20 784 2002 0.39 0.0447 0.0018 0.0337 0.0014 0.0055 0.0001 -35 61 34 1 35.2 0.4
    21 1194 2159 0.55 0.0467 0.0017 0.0356 0.0013 0.0056 0.0001 32 59 35 1 35.7 0.4
    22 164 3967 0.04 0.0466 0.0015 0.0313 0.0010 0.0049 0.0001 31 45 31.3 1 31.5 0.4
    23 88 1448 0.06 0.0470 0.0019 0.0391 0.0016 0.0061 0.0001 51 68 39 2 38.9 0.4
    24 2653 5876 0.45 0.0466 0.0013 0.0334 0.0010 0.0052 0.0001 27 44 33.4 1 33.6 0.3
    17YLH01-3
    02 353 6230 0.06 0.0480 0.0015 0.0330 0.0012 0.0050 0.0001 101 51 33 1 32.1 0.6
    05 662 8185 0.08 0.0496 0.0013 0.0357 0.0010 0.0052 0.0001 177 42 35.6 1 33.6 0.4
    06 690 6857 0.10 0.0469 0.0014 0.0319 0.0009 0.0050 0.0001 43 44 31.9 0.9 31.9 0.4
    07 107 3308 0.03 0.0460 0.0019 0.0325 0.0013 0.0052 0.0001 -5 61 32 1 33.3 0.4
    08 722 6777 0.11 0.0462 0.0013 0.0310 0.0009 0.0049 0.0000 7 41 31 0.9 31.2 0.3
    09 723 6591 0.11 0.0489 0.0016 0.0335 0.0011 0.0050 0.0001 144 78 33 1 31.9 0.3
    11 618 7158 0.09 0.0483 0.0016 0.0330 0.0010 0.0050 0.0001 113 55 33 1 31.8 0.3
    12 1027 7393 0.14 0.0491 0.0015 0.0372 0.0012 0.0055 0.0001 153 47 37 1 35.1 0.5
    14 1747 8464 0.21 0.0467 0.0014 0.0320 0.0009 0.0049 0.0001 33 45 31.9 0.9 31.7 0.3
    16 450 6535 0.07 0.0478 0.0014 0.0333 0.0010 0.0050 0.0001 89 53 33 1 32.2 0.3
    17 1075 8713 0.12 0.0482 0.0015 0.0329 0.0010 0.0049 0.0000 106 54 32.8 1 31.6 0.3
    20 536 7178 0.07 0.0461 0.0014 0.0310 0.0010 0.0048 0.0001 4 45 31 1 31.1 0.3
    21 181 3952 0.05 0.0439 0.0018 0.0313 0.0013 0.0052 0.0001 -77 48 31 1 33.4 0.9
    24 413 6117 0.07 0.0480 0.0015 0.0341 0.0011 0.0051 0.0001 101 52 34 1 33 0.4
    PM002-61
    01 242 258 0.94 0.4994 0.0915 0.0432 0.0048 0.0010 0.00006 4240 274 42.9 4.7 6.3 0.4
    02 206 231 0.89 0.6812 0.1453 0.0506 0.0072 0.0009 0.00006 4692 348 50.1 6.9 6.0 0.4
    03 264 285 0.92 0.2896 0.0414 0.0404 0.0059 0.0009 0.00005 3415 224 40.2 5.8 5.9 0.3
    04 1245 10726 0.12 0.0619 0.0026 0.0077 0.0003 0.0009 0.00001 672 88.9 7.8 0.3 5.8 0.1
    05 591 1073 0.55 0.1905 0.0392 0.0199 0.0029 0.0010 0.00005 2747 345 20.0 2.9 6.5 0.3
    07 176 315 0.56 0.2672 0.0612 0.0287 0.0049 0.0010 0.00006 3290 367 28.8 4.8 6.2 0.4
    08 511 767 0.67 0.1512 0.0179 0.0163 0.0016 0.0009 0.00004 2361 204 16.4 1.6 5.8 0.2
    09 733 666 1.10 0.1452 0.0153 0.0154 0.0014 0.0009 0.00004 2300 181 15.5 1.4 5.8 0.3
    10 101 292 0.34 0.4061 0.0912 0.0353 0.0036 0.0010 0.00005 3932 344 35.2 3.6 6.2 0.4
    11 151 209 0.72 0.4246 0.1134 0.0386 0.0053 0.0010 0.00010 3998 411 38.4 5.2 6.2 0.7
    12 595 694 0.86 0.1637 0.0219 0.0168 0.0018 0.0009 0.00003 2494 227 17.0 1.8 5.8 0.2
    15 391 772 0.51 0.1732 0.0212 0.0211 0.0028 0.0009 0.00003 2591 206 21.2 2.8 5.8 0.2
    17 3145 2059 1.53 0.1505 0.0129 0.0200 0.0018 0.0010 0.00003 2352 147 20.1 1.8 6.3 0.2
    19 262 277 0.94 0.4594 0.0663 0.0455 0.0075 0.0010 0.00006 4116 217 45.1 7.3 6.2 0.4
    20 419 397 1.06 0.3933 0.0505 0.0352 0.0037 0.0010 0.00004 3884 195 35.2 3.6 6.2 0.3
    21 308 441 0.70 0.2899 0.0478 0.0249 0.0024 0.0009 0.00004 3417 254 25.0 2.3 5.9 0.3
    23 450 1861 0.24 0.0873 0.0070 0.0113 0.0009 0.0010 0.00002 1369 156 11.4 0.9 6.3 0.2
    24 269 376 0.72 0.3710 0.0819 0.0288 0.0020 0.0009 0.00006 3796 341 28.9 2.0 6.0 0.4
    PM002-62
    01 804 6657 0.12 0.0440 0.0018 0.0138 0.0006 0.0023 0.00003 error error 13.9 0.6 14.6 0.2
    02 492 4488 0.11 0.0448 0.0023 0.0143 0.0007 0.0023 0.00003 error 14.4 0.7 15.0 0.2
    03 1292 9708 0.13 0.0475 0.0016 0.0150 0.0005 0.0023 0.00002 76.0 77.8 15.1 0.5 14.7 0.1
    04 321 3683 0.09 0.0526 0.0026 0.0157 0.0008 0.0022 0.00003 322 119 15.8 0.8 14.1 0.2
    05 811 3044 0.27 0.0435 0.0037 0.0144 0.0012 0.0024 0.00005 error 14.6 1.2 15.7 0.3
    06 1594 9701 0.16 0.0495 0.0018 0.0164 0.0007 0.0024 0.00003 172 87.0 16.6 0.7 15.5 0.2
    07 423 2846 0.15 0.0564 0.0035 0.0189 0.0012 0.0025 0.00005 478 144 19.0 1.2 15.9 0.3
    08 545 3820 0.14 0.0480 0.0024 0.0154 0.0007 0.0024 0.00003 98.2 119 15.6 0.7 15.2 0.2
    09 1132 9242 0.12 0.0480 0.0016 0.0152 0.0005 0.0023 0.00003 98.2 77.8 15.3 0.5 14.8 0.2
    10 692 4884 0.14 0.0453 0.0019 0.0142 0.0006 0.0023 0.00003 error 14.3 0.6 14.7 0.2
    11 1118 6000 0.19 0.0474 0.0019 0.0156 0.0006 0.0024 0.00003 77.9 83.3 15.7 0.6 15.4 0.2
    12 2674 15818 0.17 0.0472 0.0014 0.0151 0.0004 0.0023 0.00003 57.5 66.7 15.2 0.4 14.8 0.2
    13 845 6198 0.14 0.0461 0.0019 0.0149 0.0006 0.0023 0.00003 400 -305.515 15.0 0.6 15.0 0.2
    14 638 4569 0.14 0.0522 0.0046 0.0169 0.0015 0.0024 0.00003 295 204 17.0 1.5 15.2 0.2
    15 678 5545 0.12 0.0458 0.0018 0.0148 0.0006 0.0023 0.00003 error 14.9 0.6 15.1 0.2
    16 1466 9415 0.16 0.0476 0.0017 0.0155 0.0006 0.0023 0.00003 79.7 85.2 15.7 0.6 15.1 0.2
    17 918 6741 0.14 0.0455 0.0019 0.0143 0.0006 0.0023 0.00003 error 14.4 0.6 14.7 0.2
    18 1454 11517 0.13 0.0447 0.0014 0.0143 0.0004 0.0023 0.00002 error 14.4 0.4 15.0 0.2
    19 2027 12756 0.16 0.0428 0.0016 0.0135 0.0005 0.0023 0.00002 error error 13.7 0.5 14.8 0.2
    20 1353 8677 0.16 0.0481 0.0017 0.0153 0.0006 0.0023 0.00003 102 85.2 15.5 0.6 14.9 0.2
    21 1221 9904 0.12 0.0459 0.0013 0.0148 0.0004 0.0023 0.00003 error 14.9 0.4 15.0 0.2
    22 606 4008 0.15 0.0443 0.0022 0.0142 0.0007 0.0023 0.00003 error 14.3 0.7 15.0 0.2
    23 677 6144 0.11 0.0454 0.0018 0.0143 0.0006 0.0023 0.00003 error 14.4 0.6 14.9 0.2
    24 555 6278 0.09 0.0439 0.0019 0.0137 0.0006 0.0023 0.00003 error error 13.8 0.6 14.7 0.2
    17BM02-5
    01 1695 3593 0.47 0.0524 0.0038 0.0191 0.0014 0.0026 0.00005 304 169 19 1 17 0.3
    02 1354 2813 0.48 0.0495 0.0025 0.0175 0.0009 0.0026 0.00005 170 83 17.6 0.9 16.9 0.3
    03 2523 5078 0.50 0.0457 0.0017 0.0156 0.0006 0.0025 0.00002 -20 60 15.7 0.6 16.1 0.2
    05 1481 3866 0.38 0.0492 0.0022 0.0160 0.0007 0.0024 0.00002 156 81 16.2 0.7 15.3 0.1
    06 1412 5248 0.27 0.0461 0.0018 0.0150 0.0006 0.0024 0.00002 1 80 15.2 0.6 15.2 0.2
    07 1256 3331 0.38 0.0492 0.0023 0.0166 0.0008 0.0025 0.00005 157 83 16.7 0.8 15.8 0.3
    08 1186 3362 0.35 0.0487 0.0022 0.0173 0.0008 0.0026 0.00004 133 73 17.4 0.7 16.9 0.3
    09 2020 7388 0.27 0.0471 0.0017 0.0154 0.0006 0.0024 0.00002 52 62 15.5 0.6 15.3 0.2
    10 3590 6477 0.55 0.0479 0.0020 0.0157 0.0006 0.0024 0.00002 93 67 15.8 0.6 15.4 0.1
    11 924 2978 0.31 0.0500 0.0029 0.0187 0.0010 0.0027 0.00004 193 133 19 1 17.4 0.2
    12 525 2276 0.23 0.0496 0.0029 0.0184 0.0010 0.0027 0.00004 175 134 19 1 17.4 0.3
    13 3063 5539 0.55 0.0469 0.0019 0.0150 0.0006 0.0023 0.00002 45 67 15.1 0.6 14.9 0.2
    14 1579 5090 0.31 0.0461 0.0015 0.0150 0.0004 0.0024 0.00004 1 65 15.2 0.4 15.2 0.3
    15 460 2119 0.22 0.0485 0.0024 0.0168 0.0009 0.0025 0.00004 124 86 16.9 0.9 16.4 0.3
    16 2510 5407 0.46 0.0471 0.0017 0.0150 0.0005 0.0023 0.00002 55 57 15.1 0.5 15 0.2
    17 722 2007 0.36 0.0481 0.0027 0.0166 0.0010 0.0025 0.00005 106 103 17 1 16.3 0.3
    18 2120 5498 0.39 0.0465 0.0017 0.0152 0.0006 0.0024 0.00002 21 60 15.4 0.6 15.4 0.2
    19 3732 6267 0.60 0.0470 0.0017 0.0152 0.0006 0.0024 0.00002 51 60 15.3 0.5 15.1 0.2
    20 3135 6006 0.52 0.0479 0.0018 0.0151 0.0006 0.0023 0.00002 94 70 15.2 0.6 14.7 0.1
    21 1681 5401 0.31 0.0514 0.0019 0.0165 0.0006 0.0023 0.00003 260 62 16.6 0.6 15 0.2
    22 2112 6653 0.32 0.0474 0.0015 0.0155 0.0005 0.0024 0.00003 70 54 15.6 0.5 15.2 0.2
    23 1512 3932 0.38 0.0472 0.0021 0.0152 0.0007 0.0024 0.00003 61 76 15.3 0.7 15.1 0.2
    24 1772 5324 0.33 0.0473 0.0018 0.0151 0.0006 0.0023 0.00003 65 62 15.2 0.6 14.9 0.2
    下载: 导出CSV

    表 2  鲜水河断裂带花岗质糜棱岩白云母40Ar/39Ar同位素阶段升温测年数据

    Table 2.  40Ar/39Ar isotopic analytical data for step-heating experiments on muscovites from granitic mylonites along Xianshuihe fault zone

    T/℃ (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar/% F 39Ar/10-12mol 年龄/Ma ±2σ/Ma
    P0223-1, 质量为13.03 mg, J=0.003923, TGA=3.25 Ma, WMA=3.21±0.16 Ma
    800 13.0884 0.0410 0 0.02041 7.30 11.1 1.06 6.75 3.44
    850 7.7239 0.0246 0 0.01720 5.76 1.02 5.41 3.15 0.77
    890 2.3453 0.0062 0.0017 0.01375 21.91 2.78 2.29 3.63 0.23
    930 1.6689 0.0040 0 0.01331 28.04 1.71 3.38 3.31 0.14
    970 1.4204 0.0032 0.00041 0.01301 32.10 1.26 4.47 3.22 0.14
    1000 1.1578 0.0025 0 0.01296 34.66 3.67 1.35 2.84 0.26
    1040 1.3692 0.0033 0 0.01333 29.18 5.70 0.87 2.83 0.44
    1080 2.0304 0.0051 0 0.01321 25.22 6.85 0.92 3.62 0.76
    1140 2.3408 0.0065 0.015 0.01388 17.31 3.25 1.54 2.87 0.82
    1200 1.2782 0.0029 0.0045 0.01314 32.23 1.87 2.73 2.91 0.19
    1240 1.0945 0.0018 0 0.01256 49.97 16.5 0.41 3.87 0.77
    1400 12.6537 0.0279 0.32 0.01563 34.92 185 0.30 31 13
    P0223-1, 质量为13.03 mg, J=0.003937, TGA=17.28 Ma, WMA=17.21±0.31 Ma
    700 36.5415 0.1136 0 0.03324 8.12 27.7 1.11 20.95 16.31
    800 15.2221 0.0431 0 0.02045 16.33 5.16 4.99 17.57 1.77
    850 4.8011 0.0079 0 0.01383 51.19 19.3 1.32 17.37 1.36
    890 3.6114 0.0035 0 0.01312 70.94 8.40 3.16 18.10 0.40
    930 2.9630 0.0016 0 0.01276 83.93 7.80 3.30 17.58 0.38
    960 2.8423 0.0019 0 0.01253 80.49 19.4 1.22 16.18 0.79
    1000 2.8720 0.0016 0.0042 0.01271 82.89 4.03 6.12 16.83 0.21
    1040 2.9692 0.0018 0 0.01263 81.80 4.83 5.21 17.17 0.21
    1080 3.2324 0.0027 0.00061 0.01285 75.01 3.95 6.35 17.14 0.22
    1120 3.4145 0.0032 0 0.01293 72.58 7.65 3.36 17.51 0.38
    1180 3.8850 0.0041 0 0.01303 68.57 21.1 1.31 18.82 0.90
    1280 5.0940 0.0086 0.16 0.01491 50.37 48.6 0.55 18.13 3.76
    1400 10.8105 0.0317 0.98 0.01828 14.00 46.6 0.34 10.73 10.85
    注: m表示质谱测量同位素比值;F指放射成因40Ar与K生成的39Ar的比值
    下载: 导出CSV

    表 3  鲜水河断裂带构造热年代学测试结果

    Table 3.  Statistical table of structural thermochronology test results of Xianshuihe fault zone

    样品 岩性 测试矿物 年龄/Ma 参考文献
    U-Pb Ar-Ar ZFT AFT
    雅拉河断裂
    LMS045-1 花岗质糜棱岩 锆石 17.35±0.43 [32]
    LMS043-1 花岗质糜棱岩 锆石 14.4±0.3 [32]
    XSPG4-3-1 面理化花岗岩 锆石 18.2±1.3 [33]
    XSPG5-2-2 面理化花岗岩 锆石 14.25±0.34 [33]
    XSPG5-3-1 面理化花岗岩 锆石 14.39±0.23 [33]
    XSPG5-4-2 面理化花岗岩 锆石 14.51±0.82 [33]
    XSPG5-6-5 花岗岩脉 锆石 16.73±0.97 [33]
    XSPG5-7-11 花岗质糜棱岩 锆石 14.57±0.34 [33]
    S051 淡色花岗岩脉 锆石 31.75±0.88 [32]
    BO-55 混合岩化花岗岩/伟晶岩 锆石 41.1±0.6 [36]
    BO-55 混合岩化花岗岩/伟晶岩 锆石 15.7±7 [36]
    BO-52 混合岩化花岗岩/伟晶岩 锆石 15.6±0.2 [36]
    CD10-1 面理化黑云角闪岩 锆石 4±0.06 [84]
    D031-1 糜棱岩化混合岩 锆石 18.07±0.46 [34]
    D031-1 糜棱岩化混合岩 锆石 14.66±0.35 [34]
    D031-1 糜棱岩化混合岩 锆石 12.92±0.56 [34]
    D031-2 糜棱岩化混合岩 锆石 15.87±0.61 [34]
    D031-2 糜棱岩化混合岩 锆石 12.73±0.79 [34]
    LCL-1 花岗质糜棱岩 锆石 42.7±0.9 [34]
    LCL-1 花岗质糜棱岩 锆石 27.9±0.6 [34]
    LCL-2 花岗质糜棱岩 锆石 47.31±0.73 [34]
    LCL-2 花岗质糜棱岩 锆石 44.61±0.53 [34]
    LCL-2 花岗质糜棱岩 锆石 27.15±0.28 [34]
    17YLH01-2 淡色花岗岩脉 锆石 34.4±0.9 本文
    17YLH01-3 淡色花岗岩脉 锆石 31.0±1.2 本文
    CX02012 碎裂岩 黑云母 10.13±0.02 [31]
    CX02014 伟晶岩 白云母 10.39±0.01 [31]
    CX02019 伟晶岩 钾长石 12.02±0.8 [31]
    CX02021 眼球状糜棱岩 黑云母 5.47±0.01 [31]
    CX02024 花岗岩 黑云母 4.46±0.03 [31]
    CX02026 花岗岩 黑云母 5.50±0.01 [31]
    DLCLM-1 眼球状糜棱岩 白云母 3.28±0.08 [34]
    3个样品 花岗岩 锆石、磷灰石 8.7~7.8 3.2~2.4 [35]
    色拉哈断裂
    SZ038-1 花岗岩 锆石 20.03±0.2 [19]
    SZ038-2 花岗岩 锆石 20.47±0.14 [19]
    KKD20 花岗岩 锆石 4±0.06 [39]
    CX02040B 花岗岩 黑云母 5.7±0.19 [40]
    CX02041B 强变形混合岩 黑云母 4.42±0.20 [40]
    折多塘断裂
    CX3039-3 花岗岩 锆石 18±0.3 [37]
    CDU59 花岗岩 锆石 12.8±1.4 [38]
    LMS053-1 混合岩 锆石 27.6±0.9 [32]
    SZ019 花岗岩 锆石 19.22±0.22 [19]
    BO-62 花岗岩 锆石 13.3 [36]
    BO-62 花岗岩 锆石 5.4 [36]
    BO-62 花岗岩 锆石 5.0±1.0 [36]
    PM002-62 花岗岩 锆石 14.9±0.1 本文
    PM002-61 花岗岩 锆石 5.93±0.14 本文
    P0223-2 花岗岩 白云母 17.21±0.3 本文
    P0223-1 花岗岩 白云母 3.21±0.16 本文
    CX02039 黑云斜长片麻岩 黑云母 3.60±0.02 [31]
    CX02044 花岗岩 黑云母 3.46±0.01 [31]
    11个样品 花岗岩 锆石、磷灰石 7.3~2.8 2.9~1.6 [35]
    磨西断裂
    SZ147-2 花岗岩 锆石 19.7±0.24 [19]
    SZ147-3 混合岩 锆石 20.9±0.23 [19]
    SZ148-1 混合岩 锆石 25.06±0.17 [19]
    4个样品 花岗岩 锆石、磷灰石 4.2~1.9 3.4~1.2 [35]
    12个样品 花岗岩 锆石、磷灰石 2.7~0.2 [41]
    下载: 导出CSV
  • [1]

    Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905

    [2]

    Wang E, Burchfiel B C. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2000, 112(3): 413-423. doi: 10.1130/0016-7606(2000)112<413:LCTHDI>2.0.CO;2

    [3]

    Molnar P, Deng Q. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 6203-6227. doi: 10.1029/JB089iB07p06203

    [4]

    Tapponnier P, Xu Z, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. doi: 10.1126/science.105978

    [5]

    Wang E, Burchfiel B C, Royden L H, et al. The Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[J]. Geological Society of America Special Paper, 1998, 327: 1-108.

    [6]

    闻学泽. 四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J]. 地震地质, 2000, 22(3): 239-249. doi: 10.3969/j.issn.0253-4967.2000.03.005

    [7]

    潘懋, 闻学泽. 中国川西地区鲜水河断裂和则木河断裂几何学. 运动学特征及地震活动性对比研究[J]. 中国地震, 1994, 10(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD401.004.htm

    [8]

    Bai M K, Chevalier M L, Pan J W, et al. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications[J]. Earth and Planetary Science Letters, 2018, 485: 19-31. doi: 10.1016/j.epsl.2017.12.045

    [9]

    Wang M, Shen Z K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): 1-22.

    [10]

    Zhang P Z. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 2013, 584(2013): 7-22.

    [11]

    Wang Y, Wang M, Shen Z K, et al. Inter-seismic deformation field of the Ganzi-Yushu fault before the 2010 Mw 6.9 Yushu earthquake[J]. Tectonophysics, 2013, 584: 138-143.

    [12]

    Wen X Z, Ma S L, Xu X W, et al. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth & Planetary Interiors, 2008, 168(1-2): 16-36.

    [13]

    Zhang P Z, Deng Q D, Zhang G, et al. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China (Series D, Earth sciences), 2003, 33: 13-24.

    [14]

    张世民, 谢富仁. 鲜水河-小江断裂带7级以上强震构造区的划分及其构造地貌特征[J]. 地震学报, 2001, 23(1): 36-44. doi: 10.3321/j.issn:0253-3782.2001.01.005

    [15]

    周荣军, 闻学泽, 蔡长星, 等. 甘孜-玉树断裂带的近代地震与未来地震趋势估计[J]. 地震地质, 1997, 19(2): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ702.002.htm

    [16]

    Xie Z J, Zheng Y, Liu C L, et al. An integrated analysis of source parameters, seismogenic structure, and seismic hazards related to the 2014 MS 6.3 Kangding earthquake, China[J]. Tectonophysics, 2017, 712/713: 1-9. doi: 10.1016/j.tecto.2017.04.030

    [17]

    Yan B, Lin A M. Holocene activity and paleoseismicity of the Selaha Fault, southeastern segment of the strike-slip Xianshuihe Fault Zone, Tibetan Plateau[J]. Tectonophysics, 2017, 694: 302-318. doi: 10.1016/j.tecto.2016.11.014

    [18]

    许志琴, 侯立玮, 王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992: 1-202.

    [19]

    李海龙, 张岳桥, 张长厚, 等. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义[J]. 地学前缘, 2016, 23(2): 222-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602026.htm

    [20]

    Chen H H, Dobson J, Heller F, et al. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: A consequence of India-Asia collision[J]. Earth and Planetary Science Letters, 1995, 134(1/2): 203-217.

    [21]

    Sato K, Liu Y Y, Zhu Z C, et al. Paleomagnetic study of middle Cretaceous rocks from Yunlong, western Yunnan, China: evidence of southward displacement of Indochina[J]. Earth and Planetary Science Letters, 1999, 165(1): 1-15. doi: 10.1016/S0012-821X(98)00257-X

    [22]

    Sato K, Liu Y Y, Zhu Z C, et al. Tertiary paleomagnetic data from northwestern Yunnan, China: further evidence for large clockwise rotation of the Indochina block and its tectonic implications[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 185-198.

    [23]

    Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343(6257): 431-437. doi: 10.1038/343431a0

    [24]

    Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society of London Special Publications, 1986, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    [25]

    Zhang J, Wen X Z, Cao J L, et al. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys[J]. Tectonophysics, 2017, 722: 356-372.

    [26]

    李天袑. 鲜水河活动断裂带及强震危险性评估[M]. 成都: 成都地图出版社, 1998: 1-19.

    [27]

    罗灼礼, 钱洪, 闻学泽. 鲜水河断裂与圣安德列斯断层的地震地质对比研究[J]. 四川地震, 1987, (4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ198704000.htm

    [28]

    唐文清, 刘宇平, 陈智梁, 等. 基于GPS技术的活动断裂监测——以鲜水河、龙门山断裂为例[J]. 山地学报, 2007, 25(1): 103-107. doi: 10.3969/j.issn.1008-2786.2007.01.011

    [29]

    徐锡伟, 闻学泽, 郑荣章, 等. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 2003, 33(S1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm

    [30]

    周荣军, 何玉林, 黄祖智, 等. 鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔[J]. 地震学报, 2001, 23(3): 250-250. doi: 10.3321/j.issn:0253-3782.2001.03.004

    [31]

    张岳桥, 陈文, 杨农. 川西鲜水河断裂带晚新生代剪切变形40Ar/39Ar测年及其构造意义[J]. 中国科学: 地球科学, 2004, 34(7): 613-621. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407002.htm

    [32]

    Li H L, Zhang Y Q. Zircon U-Pb geochronology of the Konggar granitoid and migmatite: Constraints on the Oligo-Miocene tectono-thermal evolution of the Xianshuihe fault zone, East Tibet[J]. Tectonophysics, 2013, 606: 127-139. doi: 10.1016/j.tecto.2013.07.007

    [33]

    吴禅, 许志琴, Webb A A G, 等. 松潘-甘孜造山带鲜水河断裂与雅拉雪山片麻岩穹窿的关系[J]. 地质学报, 2016, (90): 2998-2998. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201611002.htm

    [34]

    Chen Y T, Zhang G W, Lu R K, et al. Formation and evolution of Xianshuihe Fault Belt in the eastern margin of the Tibetan Plateau: Constraints from structural deformation and geochronology[J]. Geological Journal, 2020, 55(12): 7953-7976. doi: 10.1002/gj.3908

    [35]

    Xu G, Kamp P J J. Tectonics and denudation adjacent to the Xianshuihe Fault, eastern Tibetan Plateau: Constraints from fission track thermochronology[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(88): 19231-19235.

    [36]

    Searle M P, Roberts N, Chung S L, et al. Age and Anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault[J]. Geosphere, 2016, 12(3): 948-970. doi: 10.1130/GES01244.1

    [37]

    刘树文, 王宗起, 闫全人, 等. 折多山花岗岩时代, 成因及其动力学意义[J]. 岩石学报, 2006, 22(2): 343-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602008.htm

    [38]

    Roger F, Calassou S, Lancelot J, et al. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China): Geodynamic implications[J]. Earth and Planetary Science Letters, 1995, 130: 201-216. doi: 10.1016/0012-821X(94)00252-T

    [39]

    Lai S C, Zhao S W. Petrogenesis of the Zheduoshan Cenozoic granites in the eastern margin of Tibet: Constraints on the initial activity of the Xianshuihe Fault[J]. Journal of Geodynamics, 2018, 117: 49-57. doi: 10.1016/j.jog.2018.03.009

    [40]

    陈文, 张彦, 张岳桥, 等. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J]. 岩石学报, 2006, 22(4): 867-872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604010.htm

    [41]

    谭锡斌, 徐锡伟, 李元希, 等. 贡嘎山快速隆升的磷灰石裂变径迹证据及其隆升机制讨论[J]. 地球物理学报, 2010, 53(8): 1859-1867. doi: 10.3969/j.issn.0001-5733.2010.08.011

    [42]

    钱洪. 鲜水河断裂带上潜在震源区的地质学判定[J]. 四川地震, 1988, 2: 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ198802004.htm

    [43]

    Li H L, Zhang Y Q, Zhang C H et al. Middle Jurassic syn-kinematic magmatism, anatexis and metamorphism in the Zheduo-Gonggar massif, implication for the deformation of the Xianshuihe fault zone, East Tibet[J]. Journal of Asian Earth Sciences, 2015, 107: 35-52. doi: 10.1016/j.jseaes.2015.03.038

    [44]

    Lai Q Z, Ding L, Wang H W, et al. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology[J]. Science in China (Series D: Earth Sciences), 2007, 2: 14-25.

    [45]

    徐天德. 康定折多山花岗岩岩石学特征及其构造意义[J]. 四川地质学报, 2009, 29(S2): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB2009S2011.htm

    [46]

    Allen C R, Luo Z, Qian H, et al. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China[J]. Geological Society of America Bulletin, 1991, 103(9): 1178-1199. doi: 10.1130/0016-7606(1991)103<1178:FSOAHA>2.3.CO;2

    [47]

    Gaudemer Y, Tapponnier P, Turcotte D L. River offsets across active strike-slip faults[J]. Annales Tectonicae, 1989, 3: 55-76.

    [48]

    Xu X W, Wen X Z, Zheng R Z, et al. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China[J]. Science in China Series D, 2003, 46(S2): 210-226.

    [49]

    Yan B, Lin A M. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe Fault Zone, Tibetan Plateau[J]. Journal of Geodynamics, 2015, 87(Jul. ): 13-25.

    [50]

    熊探宇, 姚鑫, 张永双. 鲜水河断裂带全新世活动性研究进展综述[J]. 地质力学学报, 2010, 16(2): 176-188. doi: 10.3969/j.issn.1006-6616.2010.02.007

    [51]

    王宗秀, 许志琴, 杨天南. 松潘-甘孜滑脱型山链变形构造演化模式[J]. 地质科学, 1997, 32(3): 327-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX703.010.htm

    [52]

    Passchier C W, Trouw R. Microtectonics[M]. Springer Berlin Heidelberg, 2005.

    [53]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of an hydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43.

    [54]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    [55]

    Ludwig K R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, California, Berkeley, 2003.

    [56]

    Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010

    [57]

    Hu Z C, Zhang W, Liu Y S, et al. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157. doi: 10.1021/ac503749k

    [58]

    Steiger R H, Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36: 359-362. doi: 10.1016/0012-821X(77)90060-7

    [59]

    张彦, 陈文, 陈克龙, 等. 成岩混层(I/S) Ar-Ar年龄谱型及39Ar核反冲丢失机理研究——以浙江长兴地区P-T界线粘土岩为例[J]. 2006, 52(4): 556-61.

    [60]

    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122

    [61]

    Cherniak D J, Watson E B. Pb Diffusion in zircon[J]. Chemical Geology, 2001, 172(1): 5-24.

    [62]

    Lee J K, Williams I S, Ellis D J, et al. Pb, U and Th diffusion in natural zircon. [J]. Nature, 1997, 390(6656): 159-162. doi: 10.1038/36554

    [63]

    Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1/2): 123-138.

    [64]

    Villaseca C, Romera C M, Barbero L. Melts and residua geochemistry in a low-to-mid crustal section (Central Spain)[J]. Physics and Chemistry of Earth, Part A: Solid Earth and Geodesy, 2001, 26(4/5): 273-280.

    [65]

    Watt G R, Burns I M, Graham G A. Chemical characteristics of migmatites: accessory phase distribution and evidence for fast melt segregation rates[J]. Contributions to Mineralogy and Petrology, 1996, 125(1): 100-111. doi: 10.1007/s004100050209

    [66]

    Zeh A, Gerdes A, Barton J, et al. U-Th-Pb and Lu-Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust[J]. Precambrian Research, 2010, 179(1/4): 50-68.

    [67]

    董汉文, 许志琴, 李源, 等. 东喜马拉雅构造结墨脱地区晚三叠世深熔作用的锆石U-Pb年代限定[J]. 大地构造与成矿学, 2014, 38(2): 398-407. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402019.htm

    [68]

    简平, 程裕琪, 刘敦一. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据[J]. 地学前缘, 2001, 8(3): 183-191. doi: 10.3321/j.issn:1005-2321.2001.03.022

    [69]

    Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40(3): 259-274. doi: 10.1007/BF00373790

    [70]

    Harrison T M, Duncan I, Mcdougall I. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2461-2468. doi: 10.1016/0016-7037(85)90246-7

    [71]

    Hames W E, Bowring S A. An empirical evaluation of the argon diffusion geometry in muscovite[J]. Earth and Planetary Science Letters, 1994, 124: 161-167. doi: 10.1016/0012-821X(94)00079-4

    [72]

    Lacassin R, Maluski H, Leloup P H, et al. Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B5): 10013-10037. doi: 10.1029/96JB03831

    [73]

    Lee H Y, Chung S L, Wang J R, et al. Miocene Jiali faulting and its implications for Tibetan tectonic evolution[J]. Earth and Planetary Science Letters, 2003, 205(3/4): 185-194.

    [74]

    Lin T H, Lo C H, Chung S L, et al. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis[J]. Journal of Asian Earth Sciences, 2009, 34(5): 674-685. doi: 10.1016/j.jseaes.2008.10.009

    [75]

    Wang P L, Lo C H, Lee T Y, et al. Thermochronological evidence for the movement of the Ailao Shan-Red River shear zone: A perspective from Vietnam[J]. Journal of Geology, 1997, 26(10): 887-890.

    [76]

    Harrison T M. Diffusion of 40Ar in Hornblende[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 324-331. doi: 10.1007/BF00398927

    [77]

    Parrish R R. The response of mineral chronometers to metamorphism and deformation in orogenic belts[J]. Geological Society London Special Publications, 2001, 184(1): 289-301. doi: 10.1144/GSL.SP.2001.184.01.14

    [78]

    Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fission-track annealing kinetics I: Experimental results[J]. American Mineralogist, 1999, 84(9): 1213-1223. doi: 10.2138/am-1999-0901

    [79]

    Carlson W D. Mechanisms and kinetics of apatite fission-track annealing[J]. American Mineralogist, 1990, 75(9): 1120-1139.

    [80]

    Green P F, Duddy I R, Gleadow A J W, et al. Thermal annealing of fission tracks in apatite: 1. A qualitative description[J]. Chemical Geology, 1986, 59(4): 237-253. doi: 10.1016/0168-9622(86)90074-6

    [81]

    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433. doi: 10.1007/s00410-006-0068-5

    [82]

    Xu Z Q, Wang Q, Cai Z H, et al. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene: Insights from coeval mid-crustal detachments and strike-slip shear zones[J]. Tectonophysics, 2015, 665: 127-148. doi: 10.1016/j.tecto.2015.09.033

    [83]

    唐渊, 王冬兵, 廖世勇, 等. 滇西高黎贡变质岩带南段淡色花岗岩脉年代学特征及构造意义[J]. 岩石学报, 2016, 32(8): 2347-2366. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608008.htm

    [84]

    Zhang Y Z, Replumaz A, Leloup P H, et al. Cooling history of the Gongga batholith: Implications for the Xianshuihe Fault and Miocene kinematics of SE Tibet[J]. Earth and Planetary Science Letters, 2017, 465: 1-15. doi: 10.1016/j.epsl.2017.02.025

    [85]

    England P, Molnar P. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 130(3): 551-582.

    [86]

    England P, Molnar P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet[J]. Nature, 1990, 344(6262): 140-142. doi: 10.1038/344140a0

    [87]

    Royden L H, Burchfiel B C, Hilst R. The Geological Evolution of the Tibetan Plateau[J]. Science, 2008, 321: 1054-1058. doi: 10.1126/science.1155371

    [88]

    Royden L H, King R W, Chen Z L, et al. Surface Deformation and Lower Crustal Flow in Eastern Tibet[J]. Science, 1997, 276(5313): 788-790. doi: 10.1126/science.276.5313.788

    [89]

    Clark M K, House M A, Royden L H, et al. Late Cenozoic uplift Southeastern Tibet[J]. Geology, 2005, 33(6): 525-528. doi: 10.1130/G21265.1

    [90]

    Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

    [91]

    吴中海, 龙长兴, 范桃园, 等. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 2015, 34(1): 1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20150101&flag=1

    [92]

    Bai D H, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoence, 2011, 3: 358-362.

    [93]

    Wang C Y, Han W B, Wu J P, et al. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B07307): 1-21.

    [94]

    Wang C Y, Zhu L, Lou H, et al. Crustal thicknesses and Poisson's ratios in the eastern Tibetan Plateau and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11301): 1-16.

    [95]

    Yao H, van der Hilst R D, Montagner J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12307): 1-24.

    [96]

    Zhang Z, Yuan X, Yun C, et al. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin[J]. Earth and Planetary Science Letters, 2010, 292(3/4): 254-264.

  • 加载中

(11)

(3)

计量
  • 文章访问数:  1995
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2021-04-23
修回日期:  2022-06-10
刊出日期:  2022-07-15

目录