内蒙古西乌旗沙尔哈达晚侏罗世A型花岗岩:地球化学特征、岩石成因与动力学背景

胡鹏, 段明, 熊金莲, 曾威, 刘行, 闫国强, 魏佳林. 内蒙古西乌旗沙尔哈达晚侏罗世A型花岗岩:地球化学特征、岩石成因与动力学背景[J]. 地质通报, 2022, 41(8): 1394-1408. doi: 10.12097/j.issn.1671-2552.2022.08.007
引用本文: 胡鹏, 段明, 熊金莲, 曾威, 刘行, 闫国强, 魏佳林. 内蒙古西乌旗沙尔哈达晚侏罗世A型花岗岩:地球化学特征、岩石成因与动力学背景[J]. 地质通报, 2022, 41(8): 1394-1408. doi: 10.12097/j.issn.1671-2552.2022.08.007
HU Peng, DUAN Ming, XIONG Jinlian, ZENG Wei, LIU Xing, YAN Guoqiang, WEI Jialin. Late Jurassic A-type granite in Sharhada, West Ujimqin, Inner Mongolia: geochemical characteristics, petrogenesis and geodynamic setting[J]. Geological Bulletin of China, 2022, 41(8): 1394-1408. doi: 10.12097/j.issn.1671-2552.2022.08.007
Citation: HU Peng, DUAN Ming, XIONG Jinlian, ZENG Wei, LIU Xing, YAN Guoqiang, WEI Jialin. Late Jurassic A-type granite in Sharhada, West Ujimqin, Inner Mongolia: geochemical characteristics, petrogenesis and geodynamic setting[J]. Geological Bulletin of China, 2022, 41(8): 1394-1408. doi: 10.12097/j.issn.1671-2552.2022.08.007

内蒙古西乌旗沙尔哈达晚侏罗世A型花岗岩:地球化学特征、岩石成因与动力学背景

  • 基金项目:
    中国地质调查局项目《华北地区铜铁稀有金属矿产地质调查》(编号:DD20221686)、《渤海湾盆地氦气资源调查评价》(编号:DD20221668)、《天山-华北陆块铀钍等矿产资源调查》(编号:DD20190813)、《内蒙古阿拉善—河套地区区域地质调查》(编号:DD20211191)
详细信息
    作者简介: 胡鹏(1989-),男,硕士,工程师,从事矿产地质调查与研究工作。E-mail: 824901364@qq.com
    通讯作者: 段明(1983-),男,硕士,高级工程师,从事矿产地质调查与研究工作。E-mail: 279549801@qq.com
  • 中图分类号: P534.52;P588.12+1

Late Jurassic A-type granite in Sharhada, West Ujimqin, Inner Mongolia: geochemical characteristics, petrogenesis and geodynamic setting

More Information
  • 内蒙古西乌旗沙尔哈达花岗岩侵入于贺根山缝合带蛇绿岩中。LA-ICP-MS锆石测年指示,沙尔哈达花岗岩岩株于晚侏罗世(154.6±1.2 Ma)侵位,矿物组合以石英、碱性长石和斜长石为主,富SiO2(74.86%~75.97%)、K2O(4.4%~4.95%),贫MgO(0.044%~0.22%)、CaO(0.38%~0.77%)、TiO2(0.046%~0.18%)和P2O5(0.007%~0.042%),A/CNK=1.03~1.09, 小于1.1,强烈亏损Ba、Sr、Eu、P、Ti,具有典型的右倾“海鸥型”稀土元素分配模式,表现出典型的铝质A型花岗岩的矿物组合及地球化学特征。沙尔哈达A型花岗岩具有低的(87Sr/86Sr)i值(0.7014~0.70374)、低正εNd(t)值(+3.96~+4.31)、高的εHf(t)值(+10.54~+14.72)。同位素地球化学特征指示,沙尔哈达花岗岩可能源于新生的中基性地壳物质部分熔融及其后的结晶分异作用。沙尔哈达A型花岗岩为晚侏罗世蒙古-鄂霍茨克洋闭合后造山伸展作用的产物,和蒙古-华北北部地块散布的其他A型花岗岩共同指示中晚侏罗世广泛的中下地壳伸展。

  • 加载中
  • 图 1  内蒙古西乌旗沙尔哈达花岗岩区域构造(a)和地质简图(b)(据参考文献[36]修改)

    Figure 1. 

    图 2  沙尔哈达花岗岩野外(a)和镜下照片(b)(正交偏光)

    Figure 2. 

    图 3  沙尔哈达花岗岩样品典型锆石阴极发光(CL)图像(a)和U-Pb谐和图(b)

    Figure 3. 

    图 4  沙尔哈达花岗岩Si2O-(K2O+Na2O)(a)、Si2O-K2O(b)和A/CNK-A/NK图解(c)

    Figure 4. 

    图 5  沙尔哈达花岗岩稀土元素球粒陨石标准化配分图(a)微量元素原始地幔标准化蛛网图(b)

    Figure 5. 

    图 6  沙尔哈达花岗岩SiO2-TFeO/MgO(a)、SiO2-Zr(b)、SiO2-Nb(c)、SiO2-TFeO/(TFeO+MgO)(d)、SiO2-(Na2O+K2O-CaO)(e)、Al2O3-TFeO/(TFeO+MgO)(f)和Al2O3/(K2O/Na2O)-TFeO/(TFeO+MgO)(g)图解

    Figure 6. 

    图 7  Isr-εNd(t) 图解(a)和t-εHf(t)图解(b)(兴蒙造山带东段Hf同位素组成据参考文献[13])

    Figure 7. 

    图 8  沙尔哈达花岗岩构造判别图解(图a、b据参考文献[69], c据参考文献[68], d据参考文献[70])

    Figure 8. 

    表 1  沙尔哈达岩体LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  Zircon LA-ICP-MS U-Th-Pb dating results of the Sharhada granite

    测点号 含量/10-6 同位素比值 年龄/Ma
    Pb U 207Pb
    /206Pb
    207Pb
    /235U
    206Pb
    /238U
    207Pb
    /206Pb
    207Pb
    /235U
    206Pb
    /238U
    1 28 1138 0.0493 0.0010 0.1636 0.0037 0.0241 0.0003 160 49 154 4 153 2
    2 17 682 0.0508 0.0014 0.1724 0.0048 0.0246 0.0003 230 62 161 4 157 2
    3 68 2695 0.0561 0.0014 0.1909 0.0050 0.0247 0.0003 457 55 177 5 157 2
    4 24 885 0.0802 0.0018 0.2677 0.0063 0.0242 0.0003 1202 45 241 6 154 2
    5 24 917 0.0499 0.0010 0.1784 0.0038 0.0259 0.0003 191 49 167 4 165 2
    6 30 1215 0.0499 0.0009 0.1698 0.0033 0.0247 0.0003 189 41 159 3 157 2
    7 22 932 0.0496 0.0013 0.1617 0.0043 0.0237 0.0003 174 59 152 4 151 2
    8 17 704 0.0525 0.0014 0.1709 0.0046 0.0236 0.0003 308 60 160 4 150 2
    9 16 689 0.0529 0.0014 0.1713 0.0047 0.0235 0.0003 325 60 161 4 150 2
    10 19 777 0.0484 0.0013 0.1576 0.0044 0.0236 0.0003 118 63 149 4 151 2
    11 26 1101 0.0493 0.0010 0.1635 0.0036 0.0241 0.0003 162 47 154 3 153 2
    12 25 1045 0.0615 0.0012 0.2019 0.0042 0.0238 0.0003 657 43 187 4 152 2
    13 33 1393 0.0502 0.0009 0.1667 0.0032 0.0241 0.0003 204 42 157 3 153 2
    14 20 759 0.0548 0.0043 0.1987 0.0159 0.0263 0.0003 405 177 184 15 167 2
    15 13 556 0.0520 0.0026 0.1704 0.0089 0.0238 0.0003 287 115 160 8 151 2
    16 30 1271 0.0492 0.0012 0.1619 0.0040 0.0239 0.0003 156 57 152 4 152 2
    17 17 671 0.0501 0.0015 0.1731 0.0052 0.0251 0.0003 200 68 162 5 160 2
    18 53 2206 0.0520 0.0008 0.1758 0.0029 0.0245 0.0003 285 34 164 3 156 2
    19 14 554 0.0515 0.0021 0.1765 0.0075 0.0248 0.0003 265 95 165 7 158 2
    20 14 576 0.0505 0.0016 0.1736 0.0056 0.0249 0.0003 220 71 163 5 159 2
    21 18 761 0.0544 0.0020 0.1790 0.0068 0.0239 0.0003 386 83 167 6 152 2
    22 22 928 0.0501 0.0011 0.1658 0.0039 0.0240 0.0003 199 51 156 4 153 2
    23 35 1404 0.0495 0.0010 0.1725 0.0038 0.0253 0.0003 171 45 162 4 161 2
    24 29 1233 0.0506 0.0009 0.1680 0.0034 0.0241 0.0003 223 42 158 3 153 2
    25 17 733 0.0517 0.0015 0.1738 0.0055 0.0244 0.0003 272 66 163 5 155 2
    26 80 2969 0.0533 0.0007 0.1926 0.0030 0.0262 0.0003 341 32 179 3 167 2
    27 15 600 0.0501 0.0016 0.1687 0.0054 0.0244 0.0003 198 72 158 5 156 2
    28 17 690 0.0515 0.0014 0.1749 0.0052 0.0246 0.0003 262 64 164 5 157 2
    29 16 669 0.0514 0.0014 0.1721 0.0048 0.0243 0.0003 257 61 161 5 155 2
    30 33 1367 0.0510 0.0009 0.1717 0.0036 0.0244 0.0003 239 43 161 3 156 2
    31 21 851 0.0496 0.0014 0.1676 0.0052 0.0245 0.0003 177 68 157 5 156 2
    32 29 1200 0.0493 0.0010 0.1658 0.0037 0.0244 0.0003 163 48 156 3 155 2
    下载: 导出CSV

    表 2  沙尔哈达花岗岩锆石Hf同位素分析结果

    Table 2.  Zircon Hf dating results of the Sharhada granite

    样品号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) TDM/Ma TDMc/Ma fLu/Hf
    1 154.6 0.0331 0.0011 0.283071 0.000025 13.87 256 316 -0.97
    3 154.6 0.0376 0.0012 0.283088 0.000031 14.44 233 279 -0.96
    7 154.6 0.0147 0.0005 0.283044 0.000024 12.99 289 372 -0.99
    8 154.6 0.0314 0.0011 0.283042 0.000024 12.84 298 383 -0.97
    9 154.6 0.0382 0.0012 0.283078 0.000024 14.12 247 302 -0.97
    0 154.6 0.0383 0.0012 0.283074 0.000034 13.94 253 311 -0.96
    10 154.6 0.0259 0.0008 0.283058 0.000029 13.45 273 345 -0.97
    11 154.6 0.0405 0.0013 0.283060 0.000024 13.45 274 344 -0.96
    13 154.6 0.0323 0.0010 0.283009 0.000034 11.68 344 457 -0.97
    15 154.6 0.0336 0.0011 0.283091 0.000032 14.54 228 272 -0.97
    16 154.6 0.0463 0.0014 0.283041 0.000027 12.77 302 387 -0.96
    17 154.6 0.0358 0.0011 0.283031 0.000028 12.45 313 407 -0.97
    18 154.6 0.0275 0.0009 0.283095 0.000027 14.72 221 261 -0.97
    19 154.6 0.0669 0.0020 0.283064 0.000028 13.55 272 337 -0.94
    20 154.6 0.0515 0.0019 0.283029 0.000025 12.28 324 419 -0.94
    21 154.6 0.0204 0.0007 0.282992 0.000022 11.11 365 494 -0.98
    22 154.6 0.0278 0.0010 0.283047 0.000027 13.02 290 371 -0.97
    23 154.6 0.0483 0.0016 0.282978 0.000023 10.54 394 532 -0.95
    24 154.6 0.0340 0.0011 0.283071 0.000022 13.87 256 316 -0.97
    25 154.6 0.0308 0.0010 0.283043 0.000021 12.88 296 381 -0.97
    27 154.6 0.0398 0.0013 0.283001 0.000026 11.36 358 477 -0.96
    28 154.6 0.0368 0.0012 0.283071 0.000026 13.87 257 317 -0.96
    29 154.6 0.0208 0.0007 0.283015 0.000024 11.92 333 442 -0.98
    30 154.6 0.0215 0.0008 0.282981 0.000024 10.72 381 519 -0.98
    31 154.6 0.0318 0.0011 0.282989 0.000021 10.97 373 503 -0.97
    32 154.6 0.0338 0.0011 0.283022 0.000022 12.14 326 428 -0.97
    下载: 导出CSV

    表 3  沙尔哈达花岗岩主量、微量和稀土元素分析结果

    Table 3.  Major, trace elements and REE compositions of the Sharhada granite

    样品号 SZGS01-1 SZGS01-2 SZGS02-1 SZGS02-2 SZGS03 样品号 SZGS01-1 SZGS01-2 SZGS02-1 SZGS02-2 SZGS03
    SiO2 75.97 75.78 75.7 74.86 75.12 Nb 19.3 47.4 22 22.2 27.9
    Al2O3 13 13.25 12.71 13.1 12.84 Ta 3.23 5.62 2.62 2.16 2.92
    FeO 0.65 0.81 1.41 1.46 1.5 Zr 165 94.3 258 262 277
    Fe2O3 0.53 0.1 0.33 0.29 0.32 Hf 7.11 7.59 10.2 10.2 10.9
    TFeO 1.13 0.90 1.71 1.72 1.79 Be 10.3 8.99 11.7 6.1 10.5
    TFe2O3 1.25 1.00 1.90 1.91 1.99 U 2.06 1.39 1.98 2.09 1.68
    CaO 0.47 0.38 0.46 0.56 0.77 Th 14.1 6.21 9.94 15 7.1
    MgO 0.093 0.044 0.17 0.22 0.2 La 10.3 1.89 28 24 14.3
    K2O 4.48 4.94 4.5 4.71 4.4 Ce 23.3 4.8 54.8 48.3 25.7
    Na2O 3.96 4.16 3.62 3.75 3.81 Pr 3.1 0.83 6.4 6.93 3.69
    TiO2 0.1 0.046 0.16 0.17 0.18 Nd 11.7 3.49 22.8 25.9 14.3
    P2O5 0.025 0.007 0.033 0.036 0.042 Sm 2.74 1.13 5.02 5.57 2.93
    MnO 0.026 0.03 0.041 0.043 0.047 Eu 0.08 0.01 0.13 0.21 0.12
    烧失量 0.62 0.36 0.72 0.65 0.61 Gd 2.87 1.32 4.53 5.39 3.00
    CO2 0.079 0.047 0.014 0.032 0.014 Tb 0.54 0.31 0.82 0.97 0.54
    总量 100 99.95 99.87 99.88 99.85 Dy 3.42 2.33 4.68 5.86 3.39
    A/NK 1.14 1.09 1.17 1.16 1.16 Ho 0.72 0.53 0.92 1.17 0.68
    A/CNK 1.06 1.03 1.09 1.07 1.03 Er 2.25 1.74 2.69 3.57 2.07
    TFeO/MgO 12.1 20.5 10.0 7.82 8.94 Tm 0.37 0.31 0.40 0.52 0.32
    Cr 3.30 2.34 2.44 5.98 2.89 Yb 2.60 2.05 2.52 3.42 2.19
    Ni 2.56 1.40 1.27 1.08 2.23 Lu 0.40 0.30 0.38 0.51 0.30
    Co 0.69 0.24 0.72 0.83 0.88 Y 18.5 17.6 24.6 33.9 20.6
    Li 20.8 103 37.6 38.2 63.4 ΣREE 64.4 21.0 134 132 73.5
    Rb 249 344 259 241 235 LREE 51.2 12.2 117 111 61.0
    Cs 5.11 14.6 5.73 5.26 6.93 HREE 13.2 8.89 16.9 21.4 12.5
    W 1.43 0.69 4.43 1.59 0.63 (La/Yb)N 2.84 0.66 7.97 5.03 4.68
    Mo 0.54 0.45 0.34 0.67 0.6 δEu 0.09 0.03 0.08 0.12 0.12
    Sr 32.2 10.6 45 54.1 61.2 R1 2608 2422 2715 2562 2629
    Ba 48.6 3.25 93.4 137 119 R2 312 304 310 330 347
    V 6.09 1.95 6.06 7.46 7.05 Mg# 12.82 8.02 15.08 18.56 16.62
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 4  沙尔哈达花岗岩Sr-Nd同位素分析结果

    Table 4.  Sr-Nd isotopic data of the Sharhada granite

    样品编号 年龄/Ma 87Rb/86Sr 87Sr/86Sr ISr 147Sm/144Nd 143Nd/144Nd INd εNd(t) TDM2/Ma fSm/Nd
    B1/BGD1 154.6 25.4394 0.759392 0.70348 0.1554 0.512799 0.512642 3.96 622 -0.21
    B3/BGD3 154.6 18.7883 0.742696 0.70140 0.1411 0.512802 0.512659 4.29 594 -0.28
    B4/BGD4 154.6 13.8245 0.734120 0.70374 0.1339 0.512795 0.512660 4.31 594 -0.32
    B5/BGD5 154.6 12.2480 0.729856 0.70294 0.1344 0.512784 0.512648 4.08 612 -0.32
    下载: 导出CSV
  • [1]

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, (6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [2]

    Whalen J B, Currie K L, Chappel B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    [3]

    Creaser R A, Price R C, Wormald R J. A-type granites revisited: Assessment of a residual-source model[J]. Geology, 1991, 19(2): 163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    [4]

    Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology(Boulder), 1997, 25(8): 743-746.

    [5]

    Landenberger B, Collins W J. Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia[J]. Journal of Petrology, 1996, 37(1): 145-170. doi: 10.1093/petrology/37.1.145

    [6]

    Frost C D, Frost B R. Reduced rapakivi-type granites; the tholeiite connection[J]. Geology(Boulder), 1997, 25(7): 647-650.

    [7]

    King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    [8]

    Dall'Agnol R, de Oliveira D C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites[J]. Lithos, 2007, 93(3): 215-233.

    [9]

    Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X

    [10]

    Mushkin A, Navon O, Halicz L, et al. The Petrogenesis of A-type Magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832. doi: 10.1093/petrology/44.5.815

    [11]

    Dall'Agnol R, Frost C D, Rämö O T. IGCP Project 510"A-type Granites and Related Rocks through Time": Project vita, results, and contribution to granite research[J]. Lithos, 2012, 151: 1-16. doi: 10.1016/j.lithos.2012.08.003

    [12]

    Kemp A I S, Wormald R J, Whitehouse M J, et al. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia[J]. Geology(Boulder), 2005, 33(10): 797-800.

    [13]

    Yang J, Wu F, Chung S, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106.

    [14]

    Zhang X, Yuan L, Xue F, et al. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and a craton-orogen boundary[J]. Lithos, 2012, 144/145: 12-23.

    [15]

    Sylvester. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97(3): 261-280. doi: 10.1086/629302

    [16]

    Rogers J J W, Greenberg J K. Late-orogenic, Post-orogenic, and anorogenic granites: Distinction by major-element and trace-element chemistry and possible origins[J]. The Journal of Geology, 1990, 98(3): 291-309. doi: 10.1086/629406

    [17]

    Eby G N. Chemical subdivision of the A-type granitoids: petrologic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    [18]

    Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134.

    [19]

    王强, 赵振华, 熊小林. 桐柏-大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, (4): 297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002

    [20]

    吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评[J]. 岩石矿物学杂志, 2007, (1): 57-66. doi: 10.3969/j.issn.1000-6524.2007.01.009

    [21]

    贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    [22]

    许强伟, 王玭, 王志强, 等. 内蒙古克什克腾旗长岭子斜长花岗斑岩锆石U-Pb年龄、成因与碰撞造山作用[J]. 中国地质, 2021, 48(1): 229-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101017.htm

    [23]

    王金芳, 李英杰, 李红阳, 等. 古亚洲洋俯冲板片断离与后造山伸展: 贺根山缝合带火山岩年代学和地球化学证据[J]. 地质学报, 2020, 94(12): 3561-3580. doi: 10.3969/j.issn.0001-5717.2020.12.004

    [24]

    杜兵盈, 浦全生, 刘宇崴, 等. 古亚洲洋的发生-发展-消亡的历史——来自黑龙江省西北部古生代(O1-C1)地层的连续沉积记录[J]. 地质与资源, 2018, 27(1): 16-21. doi: 10.3969/j.issn.1671-1947.2018.01.002

    [25]

    Zhang X, Yuan L, Wilde S A. Crust/mantle interaction during the construction of an extensional magmatic dome: Middle to Late Jurassic plutonic complex from western Liaoning, North China Craton[J]. Lithos, 2014, 205: 185-207. doi: 10.1016/j.lithos.2014.07.006

    [26]

    Zhu R, Yang J, Wu F. Timing of destruction of the North China Craton[J]. Lithos, 2012, 149: 51-60. doi: 10.1016/j.lithos.2012.05.013

    [27]

    Wang T, Zheng Y, Zhang J, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30(6): TC6007.

    [28]

    Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221(1): 127-156.

    [29]

    Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region(Russia)and Mongolia[J]. Tectonophysics, 1999, 306(1): 33-56. doi: 10.1016/S0040-1951(99)00042-6

    [30]

    俞礽安, 胡鹏, 曾威, 等. 内蒙古苏尼特左旗东苏A型花岗岩的锆石U-Pb年龄、地球化学特征及地质意义[J]. 岩石矿物学杂志, 2016, 35(2): 229-241. doi: 10.3969/j.issn.1000-6524.2016.02.004

    [31]

    石玉若, 刘敦一, 张旗, 等. 内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学[J]. 地质学报, 2004, (6): 789-799. doi: 10.3321/j.issn:0001-5717.2004.06.009

    [32]

    汤文豪, 张志诚, 李建锋, 等. 内蒙古苏尼特右旗查干诺尔石炭系本巴图组火山岩地球化学特征及其地质意义[J]. 北京大学学报(自然科学版), 2011, 47(2): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201102021.htm

    [33]

    熊光强, 刘敏, 张达, 等. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005022.htm

    [34]

    王树庆, 胡晓佳, 杨泽黎. 内蒙古二连浩特北部查干楚鲁地区变质岩系碎屑锆石年代学及地质意义[J]. 地质调查与研究, 2020, 43(4): 287-292. doi: 10.3969/j.issn.1672-4135.2020.04.001

    [35]

    王帅, 李英杰, 王金芳, 等. 内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束[J]. 地质通报, 2021, 40(1): 82-94. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210108&flag=1

    [36]

    张宗超. 内蒙沙尔哈达花岗岩地质地球化学研究[D]. 石家庄经济学院硕士学位论文, 2015

    [37]

    石玉若, 刘翠, 邓晋福, 等. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J]. 岩石学报, 2014, 30(11): 3155-3171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411005.htm

    [38]

    李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J]. 岩石学报, 2015, 31(5): 1461-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505020.htm

    [39]

    王金芳, 李英杰, 李红阳, 等. 内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J]. 地质学报, 2017, 91(8): 1776-1795. doi: 10.3969/j.issn.0001-5717.2017.08.009

    [40]

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    [41]

    Ludwig K R. User's Manual for Isoplot/EX Version 3.00: A geochoronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003: 1-70.

    [42]

    耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20111004&flag=1

    [43]

    肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4. doi: 10.3969/j.issn.1672-4135.2020.01.001

    [44]

    李国占, 郝爽, 王家松, 等. 浅谈多接收器电感耦合等离子体质谱仪的日常维护[J]. 地质调查与研究, 2019, 42(4): 271-277. doi: 10.3969/j.issn.1672-4135.2019.04.007

    [45]

    Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    [46]

    Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1): 123-138.

    [47]

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, (2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

    [48]

    张旗, 王元龙, 金惟俊, 等. 造山前、造山和造山后花岗岩的识别[J]. 地质通报, 2008, 27(1): 1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080101&flag=1

    [49]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [50]

    张旗, 李承东. 花岗岩[M]. 北京: 海洋出版社, 2012.

    [51]

    张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    [52]

    刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 2003, (4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011

    [53]

    许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, (3): 113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011

    [54]

    Hildreth W, Halliday A N, Christiansen R L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field[J]. Journal of Petrology, 1991, 32(1): 63-138. doi: 10.1093/petrology/32.1.63

    [55]

    Whitaker M L, Whitaker M L, Nekvasil H, et al. Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation[J]. Bulletin of Volcanology, 2008, 70(3): 417-434. doi: 10.1007/s00445-007-0146-1

    [56]

    Frost C D, Frost B R. On Ferroan(A-type)granitoids: their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1): 39-53. doi: 10.1093/petrology/egq070

    [57]

    Glazner A F. Thermal limitations on incorporation of wall rock into magma[J]. Geology(Boulder), 2007, 35(4): 319-322.

    [58]

    王兴安, 徐仲元, 刘正宏, 等. 大兴安岭中部柴河地区钾长花岗岩的成因及构造背景: 岩石地球化学、锆石U-Pb同位素年代学的制约[J]. 岩石学报, 2012, 28(8): 2647-2655. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208029.htm

    [59]

    Wu F Y, Jahn B M, Wilde S A, et al. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1): 89-113.

    [60]

    洪大卫, 王式洸, 谢锡林, 等. 从中亚正ε(Nd)值花岗岩看超大陆演化和大陆地壳生长的关系[J]. 地质学报, 2003, (2): 203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008

    [61]

    洪大卫, 王式, 谢锡林, 等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000, (2): 441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012

    [62]

    Skjerlie K P, Johnston A D. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites[J]. Journal of Petrology, 1993, 34(4): 785-815. doi: 10.1093/petrology/34.4.785

    [63]

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    [64]

    Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    [65]

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1-29.

    [66]

    罗红玲, 吴泰然, 赵磊. 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J]. 岩石学报, 2009, 25(3): 515-526. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903005.htm

    [67]

    王金芳, 李英杰, 李红阳, 等. 内蒙古西乌旗石匠山晚侏罗世——早白垩世A型花岗岩锆石U-Pb年龄及构造环境[J]. 地质通报, 2018, 37(2/3): 382-396. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020317&flag=1

    [68]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [69]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [70]

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1): 43-55.

    [71]

    Wang T, Guo L, Zheng Y D, et al. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes[J]. Lithos, 2012, 154: 315-345. doi: 10.1016/j.lithos.2012.07.020

    [72]

    Donskaya V, Windley B F, Mazukabzov A M, et al. Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia[J]. Journal of the Geological Society(London), 2008, 165(1): 405-421. doi: 10.1144/0016-76492006-162

    [73]

    Mazukabzov A M, Donskaya T V, Gladkochub D P, et al. Structure and age of the metamorphic core complex of the Burgutui ridge(southwestern Transbaikal region)[J]. Doklady Earth Sciences, 2006, 407(1): 179-183. doi: 10.1134/S1028334X06020048

    [74]

    Darby B J, Davis G A, Zhang X H. The newly discovered Waziyu metamorphic core complex, Yiwulushan, western Liaoning Province, Northwest China[J]. Earth Science Frontiers, 2004, 11: 145-155.

    [75]

    Meng Q. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 2003, 369(3): 155-174.

    [76]

    Ritts B D, Darby B J, Cope T. Early Jurassic extensional basin formation in the Daqing Shan segment of the Yinshan belt, North China Block, Inner Mongolia[J]. Tectonophysics, 2001, 339(3): 239-258.

    [77]

    Graham S A, Hendrix M S, Johnson C L, et al. Sedimentary record and tectonic implications of Mesozoic rifting in Southeast Mongolia[J]. Geological Society of America Bulletin, 2001, 113(12): 1560-1579. doi: 10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2

    [78]

    Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range(NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1/2): 179-198.

    [79]

    Fan W M, Guo F, Wang Y J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 2003, 121(1): 115-135.

    [80]

    Guo L, Wang T, Castro A, et al. Petrogenesis and evolution of late Mesozoic granitic magmatism in the Hohhot metamorphic core complex, Daqing Shan, North China[J]. International Geology Review, 2012, 54(16): 1885-1905. doi: 10.1080/00206814.2012.682778

    [81]

    Charles N, Gumiaux C, Augier R, et al. Metamorphic Core Complexes vs. synkinematic plutons in continental extension setting: Insights from key structures(Shandong Province, eastern China)[J]. Journal of Asian Earth Sciences, 2011, 40(1): 261-278. doi: 10.1016/j.jseaes.2010.07.006

    [82]

    薛富红, 张晓晖, 邓江夏, 等. 内蒙古中部达来地区晚侏罗世A型花岗岩: 地球化学特征、岩石成因与地质意义[J]. 岩石学报, 2015, 31(6): 1774-1788. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201506020.htm

    [83]

    祝洪涛, 巫建华, 唐大伟, 等. 内蒙古东部红山子复式岩体晚侏罗世黑云母花岗岩地球化学特征及地质意义[J]. 地质论评, 2020, 66(3): 765-785. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202003020.htm

    [84]

    陈志广, 张连昌, 吴华英, 等. 内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景[J]. 岩石学报, 2008, 24(4): 879-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804027.htm

    [85]

    解洪晶, 武广, 朱明田, 等. 内蒙古道郎呼都格地区A型花岗岩年代学、地球化学及地质意义[J]. 岩石学报, 2012, 28(2): 483-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202012.htm

    [86]

    Davis G A, Darby B J. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geoscience Frontiers. 2010, 1(1): 1-20. doi: 10.1016/j.gsf.2010.08.001

    [87]

    郑亚东, Davis G A, 王琮. 燕山带中生代主要构造事件与板块构造背景问题[J]. 地质学报, 2000, 19(4): 289-302. doi: 10.3321/j.issn:0001-5717.2000.04.001

    [88]

    Traynor J J, Sladen C. Tectonic and stratigraphic evolution of the Mongolian People's Republic and its influence on hydrocarbon geology and potential[J]. Marine and Petroleum Geology, 1995, 12(1): 35-52. doi: 10.1016/0264-8172(95)90386-X

    [89]

    Zhang S H, Zhao Y, Davis G A, et al. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization[J]. Earth-Science Reviews, 2014, 131: 49-87. doi: 10.1016/j.earscirev.2013.12.004

    [90]

    Chen B, Jahn B M, Suzuki K. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications[J]. Geology, 2013, 41(1): 91-94. doi: 10.1130/G33472.1

    [91]

    孙金凤, 杨进辉. 华北中生代岩浆作用与去克拉通化[J]. 岩石矿物学杂志, 2013, 32(5): 577-592. doi: 10.3969/j.issn.1000-6524.2013.05.003

    [92]

    许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm

    [93]

    Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-science Reviews. 2013, 117: 40-79. doi: 10.1016/j.earscirev.2012.12.001

    [94]

    Metelkin D V, Vernikovsky V A, Kazansky A Y, et al. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 2010, 18(2): 400-419.

    [95]

    孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27(4): 1209-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm

    [96]

    王建国, 和钟铧, 许文良. 大兴安岭南部钠闪石流纹岩的岩石成因: 年代学和地球化学证据[J]. 岩石学报, 2013, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm

    [97]

    胡健民, 刘晓文, 杨之青. 辽西地区燕山板内造山带早中生代构造变形的年代学限定[J]. 岩石学报, 2007(3): 605-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703010.htm

    [98]

    赵越, 张拴宏, 徐刚, 等. 燕山板内变形带侏罗纪主要构造事件[J]. 地质通报, 2004, 23(2/3): 854-863. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409156&flag=1

    [99]

    张宏, 袁洪林, 胡兆初, 等. 冀北滦平地区中生代火山岩地层锆石U-Pb测年及启示[J]. 地球科学, 2005, (6): 707-720. doi: 10.3321/j.issn:1000-2383.2005.06.007

    [100]

    Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination[J]. Chemical Geology, 2010, 276(3/4): 144-165.

    [101]

    Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos, 2008, 102(1/2): 138-157.

  • 加载中

(8)

(4)

计量
  • 文章访问数:  1456
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2021-04-21
修回日期:  2021-05-07
刊出日期:  2022-08-15

目录