海陆过渡相页岩储层研究现状与展望

李琪琪, 徐尚. 海陆过渡相页岩储层研究现状与展望[J]. 地质通报, 2022, 41(8): 1417-1429. doi: 10.12097/j.issn.1671-2552.2022.08.009
引用本文: 李琪琪, 徐尚. 海陆过渡相页岩储层研究现状与展望[J]. 地质通报, 2022, 41(8): 1417-1429. doi: 10.12097/j.issn.1671-2552.2022.08.009
LI Qiqi, XU Shang. Research status and prospects of marine-continental transitional shale reservoirs[J]. Geological Bulletin of China, 2022, 41(8): 1417-1429. doi: 10.12097/j.issn.1671-2552.2022.08.009
Citation: LI Qiqi, XU Shang. Research status and prospects of marine-continental transitional shale reservoirs[J]. Geological Bulletin of China, 2022, 41(8): 1417-1429. doi: 10.12097/j.issn.1671-2552.2022.08.009

海陆过渡相页岩储层研究现状与展望

  • 基金项目:
    国家自然科学基金优秀青年科学基金《油气成藏机理》(批准号:42122017)、国家自然科学基金创新群体《油气成藏机理》(批准号:41821002)、山东省重点研发计划《济阳坳陷陆相页岩油富集机理与预测技术》(编号:2020ZLYS08)
详细信息
    作者简介: 李琪琪(1992-),男,在读博士生,从事非常规油气地质研究。E-mail:lqiqi6@163.com
    通讯作者: 徐尚(1985-),男,博士,教授,从事油气成藏机理和非常规油气地质方面的研究。E-mail: xushang0222@163.com
  • 中图分类号: P618.13

Research status and prospects of marine-continental transitional shale reservoirs

More Information
  • 中国广泛分布石炭系—二叠系海陆过渡相富有机质页岩,开发利用其中赋存的页岩气对于缓解巨大的能源和环境压力具有重要意义。从沉积环境、地球化学、矿物学、岩石物理学等方面概述了不同区域、不同层位代表性海陆过渡相页岩的关键属性,并与典型海相和陆相页岩进行了对比和总结。结果表明,对于过渡相富有机质页岩,三角洲体系中的沼泽相及障壁-潟湖体系中的潟湖和沼泽相具备更优越的页岩气成藏条件。过渡相页岩与煤层、砂岩层频繁互层,岩相垂向上变化极其复杂,意味着其具有高度的非均质性。同时,TOC含量垂向变化较大,高低值交互出现,平均TOC含量总体高于海相和陆相页岩,表明其巨大的页岩气勘探开发潜力。海陆过渡相页岩有机质类型以Ⅲ型为主,Ⅱ型为辅,腐殖质显微组分约占70%,热演化程度普遍处于成熟—高成熟阶段,少数达到过成熟,总体介于陆相和海相页岩之间。过渡相页岩粘土含量较高,给压裂开发带来了较大的挑战。储集空间以粒间孔和粒内孔为主,有机质中可能普遍存在大量的不可见有机孔,但受有机质类型及成熟度的影响,它们理论上不是过渡相页岩的主要孔隙类型。高的粘土含量可能导致海陆过渡相页岩最低的孔隙度及较低的渗透率。海陆过渡相页岩的甲烷吸附能力分布范围较大,存在甲烷吸附能力较强的页岩,可能是受煤层的影响。目前,海陆过渡相页岩气储层的研究已经取得了很多重要的研究成果,但资源评价方法的不完善、“甜点”识别与预测技术不成熟、优势成藏环境研究不深入及“多气共采”可行性不确定,仍然是当前过渡相页岩气勘探开发面临的主要问题。

  • 加载中
  • 图 1  海陆过渡相页岩气富集特征(据参考文献[12, 21]修改)

    Figure 1. 

    图 2  海陆过渡相页岩TOC含量垂向变化特征

    Figure 2. 

    图 3  海陆过渡相与陆相及海相页岩TOC含量对比图

    Figure 3. 

    图 4  干酪根显微组分组成[6, 25, 30, 33, 34, 40, 44, 51-54]

    Figure 4. 

    图 5  典型海陆过渡相与海相及陆相页岩有机质成熟度对比图(数据据参考文献[3, 5, 30, 32])

    Figure 5. 

    图 6  矿物组成三角图

    Figure 6. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 7  不同类型页岩孔隙结构示意图(据参考文献[1, 63]修改)

    Figure 7. 

    图 8  海陆过渡相与陆相及海相页岩孔渗对比图

    Figure 8. 

    图 9  过渡相页岩与陆相及海相页岩甲烷吸附能力对比(数据据参考文献[2, 8, 24, 44, 83, 87-96])

    Figure 9. 

    表 1  海陆过渡相页岩基本属性参数

    Table 1.  Basic property parameters of marine-continental transitional shales

    地区 层位 TOC/% Ro/% 干酪根类型 石英+长石/% 粘土矿物/% 碳酸盐岩/% 孔隙度/% 渗透率/10-3mD 数据来源
    四川盆地 龙潭组 0.80~35.70
    6.22
    2.01~2.40 2.22 Ⅱ、Ⅲ 8.3~47.7
    22.9
    32.5~89.2 60.1 1.0~42.1
    17.0
    0.6~16.5 5.4 / [1, 33]
    贵州 龙潭组 0.35~26.99
    5.35
    0.86~2.90
    2.05
    1.08~68.6
    29.5
    31.4~97.0
    63.4
    0~34.4
    7.1
    0.2~11.1
    2.5
    / [2, 5, 8, 12]
    鄂西 大隆组 4.15~13.58
    9.44
    3.00~3.68
    3.27
    Ⅱ、Ⅲ 32.0~76.0
    52.2
    4.0~33.0
    12.3
    14.0~64.0
    35.6
    0.7~2.8
    1.3
    0.8~462.1
    48.0
    [34]
    龙潭组 0.68~12.28
    2.95
    1.54~2.66
    2.05
    Ⅱ、Ⅲ 56.4 7.8 36.3 2.18~3.18
    2.54
    2.3~5.8
    3.5
    [26]
    大隆组 0.60~6.30
    3.94
    1.20~1.80
    1.52
    Ⅱ、Ⅲ 39.1~89.1
    61.6
    10.1~42.1
    21.5
    0~35.2
    16.9
    0.2~4.2
    1.8
    3~7 4.5 [9]
    湘中、湘东南 龙潭组 3.10~8.80
    5.62
    1.40~1.80
    1.53
    Ⅱ、Ⅲ 50.8~70.3
    58.9
    25.1~46.6
    35.8
    0~13.1
    5.4
    1.4~9.2
    6.1
    3.4~25
    10.5
    [9]
    测水组 0.40~10.70
    2.97
    1.60~2.40
    1.93
    Ⅱ、Ⅲ 19.3~63.7
    50.6
    27.7~69.1
    43.6
    0~53.0
    5.7
    2.3~8.6
    5.9
    3.4~64
    20.8
    [9]
    下扬子 大隆组 0.03~15.30
    4.63
    0.85~2.73
    1.42
    Ⅱ、Ⅲ 48.9~83.4
    64.9
    11.3~42.7
    26.4
    50.8~70.3
    58.9
    0.5~5.1
    3.1
    330~1900
    618
    [11, 35-36]
    龙潭组 0.79~14.53
    3.51
    0.46~2.51
    1.87
    Ⅱ、Ⅲ 35.8~56.0
    44.1
    36.5~62.2
    54.0
    0~7.5
    1.9
    0.1~4.2
    1.8
    1.6~2800
    757
    下石盒子组 0.67~16.48
    4.38
    1.69~2.28
    2.01
    Ⅱ2 40.0~43.0
    41.5
    / 57.0~60.0
    58.5
    3.5~3.6
    3.51
    6.1~7.9
    7.0
    [37]
    沁水盆地 山西组 0.91~5.91
    2.26
    1.51~2.45
    2.02
    Ⅱ2 33.0~66.8
    44.4
    17.6~65.9
    48.6
    1.1~15.6
    7.0
    0.7~3.6
    1.6
    3.1~129
    28.7
    [37-38]
    太原组 0.80~7.21
    2.63
    1.72~2.92
    2.09
    Ⅱ2 27.2~62.9
    41.1
    17.6~62.2
    47.1
    0.6~43.4
    11.9
    0.7~3.8
    1.4
    2.8~19.4
    8.6
    [37-39]
    南华北盆地 下石盒子组 0.01~5.70
    1.25
    1.09~1.60
    1.43
    Ⅱ、Ⅲ / 57~60
    58.5
    0 / [40]
    山西组 0.40~5.10
    1.71
    3.09~3.59
    3.41
    Ⅱ、Ⅲ 24.0~63.0
    43.8
    37.0~76.0
    55.2
    0~9.5
    1.0
    0.8~9.9
    4.2
    / [25, 41-44]
    太原组 0.34~9.84
    2.51
    3.12~4.2
    3.54
    Ⅱ、Ⅲ 20.0~68.0
    43.5
    19.2~66.6
    47.7
    0~59.0
    8.8
    山西组 0.49~6.39
    2.39
    0.87~3.20 2.15 Ⅱ、Ⅲ 10.0~60.0
    43.9
    40.0~90.0
    53.9
    0~7.0
    2.2
    0.3~5.0
    3.5
    / [12, 45-47]
    鄂尔多斯盆地 太原组 1.04~4.66
    2.59
    1.26~3.32
    2.02
    Ⅱ、Ⅲ 26.0~47.0
    36.0
    52.0~71.0
    60.1
    0~10.0
    3.9
    1.1~5.8
    3.1
    3.1~12.6
    6.1
    本溪组 0.50~9.60
    1.44
    0.71~3.34
    2.00
    Ⅱ、Ⅲ 2.0~82.0
    31.7
    18.0~98.0
    61.2
    0.1~51.5
    10.6
    1.5~3.4
    2.7
    / [48]
    下载: 导出CSV

    表 2  海陆过渡相页岩可见孔隙分类

    Table 2.  Classification of visible pores in marine-continental transitional shale

    类型 孔径 形状特征 成因机制
    粒间孔 4 nm~3 μm 三角形、多边形、狭缝状和不规则形 矿物颗粒间不完全胶结
    粒内孔 3 nm~2 μm 椭圆形、曲线形和不规则形 矿物成岩转化
    晶间孔 3~900 nm 矩形、三角形和多边形 晶体生长过程中松散堆积及收缩作用
    溶蚀孔 7 nm~3.5 μm 椭圆形、不规则形 溶蚀作用
    有机孔 3~1000 nm 圆形、椭圆形、扇形和半月形 有机质成熟生烃
    微裂缝 30 nm~10 μm 曲折形、拉长形 沉积、成岩及微观应力作用
    下载: 导出CSV
  • [1]

    Zhang J, Li X, Zhang G, et al. Microstructural investigation of different nanopore types in marine-continental transitional shales: Examples from the Longtan formation in Southern Sichuan Basin, south China[J]. Marine and Petroleum Geology, 2019, 110: 912-927. doi: 10.1016/j.marpetgeo.2019.09.001

    [2]

    Yang C, Xiong Y, Zhang J, et al. Comprehensive Understanding of OM-Hosted Pores in Transitional Shale: A Case Study of Permian Longtan Shale in South China Based on Organic Petrographic Analysis, Gas Adsorption, and X-ray Diffraction Measurements[J]. Energy & Fuels, 2019, 33(9): 8055-8064.

    [3]

    Cao Q, Zhou W, Deng H, et al. Classification and controlling factors of organic pores in continental shale gas reservoirs based on laboratory experimental results[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1381-1388. doi: 10.1016/j.jngse.2015.10.001

    [4]

    Liu S, Wu C, Li T, et al. Multiple geochemical proxies controlling the organic matter accumulation of the marine-continental transitional shale: A case study of the Upper Permian Longtan Formation, western Guizhou, China[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 152-165. doi: 10.1016/j.jngse.2018.06.007

    [5]

    Luo W, Hou M, Liu X, et al. Geological and geochemical characteristics of marine-continental transitional shale from the Upper Permian Longtan formation, Northwestern Guizhou, China[J]. Marine and Petroleum Geology, 2018, 89: 58-67. doi: 10.1016/j.marpetgeo.2017.06.029

    [6]

    Liang J, Huang W, Wang H, et al. Organic geochemical and petrophysical characteristics of transitional coal-measure shale gas reservoirs and their relationships with sedimentary environments: A case study from the Carboniferous-Permian Qinshui Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106510. doi: 10.1016/j.petrol.2019.106510

    [7]

    Yu K, Shao C, Ju Y, et al. The genesis and controlling factors of micropore volume in transitional coal-bearing shale reservoirs under different sedimentary environments[J]. Marine and Petroleum Geology, 2019, 102: 426-438. doi: 10.1016/j.marpetgeo.2019.01.003

    [8]

    He Q, Dong T, He S, et al. Methane adsorption capacity of marine-continental transitional facies shales: The case study of the Upper Permian Longtan Formation, northern Guizhou Province, Southwest China[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106406. doi: 10.1016/j.petrol.2019.106406

    [9]

    Xiao Z, Tan J, Ju Y, et al. Natural gas potential of Carboniferous and Permian transitional shales in central Hunan, South China[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 520-533. doi: 10.1016/j.jngse.2018.05.024

    [10]

    李琪琪, 徐尚, 陈科, 等. 下扬子地区上二叠统页岩气成藏条件分析[J]. 中国地质, 2022, 49(2): 383-397. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202202003.htm

    [11]

    Pan L, Xiao X, Tian H, et al. A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region, Eastern China[J]. International Journal of Coal Geology, 2015, 146: 68-78. doi: 10.1016/j.coal.2015.05.005

    [12]

    Wang F, Guo S. Upper Paleozoic Transitional Shale Gas Enrichment Factors: A Case Study of Typical Areas in China[J]. Minerals, 2020, 10(2): 194. doi: 10.3390/min10020194

    [13]

    Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855-862. doi: 10.1016/0016-7037(83)90151-5

    [14]

    Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209.

    [15]

    Yan D, Wang H, Fu Q, et al. Geochemical characteristics in the Longmaxi Formation(Early Silurian)of South China: Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2015, 65: 290-301. doi: 10.1016/j.marpetgeo.2015.04.016

    [16]

    Bustin R M, Bustin A, Ross D, et al. Shale gas opportunities and challenges[J]. Search and Discovery Articles, 2009, 40382: 20-23.

    [17]

    Slatt R M, O'brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. doi: 10.1306/03301110145

    [18]

    Harrison A L, Jew A D, Dustin M K, et al. Element release and reaction-induced porosity alteration during shale-hydraulic fracturing fluid interactions[J]. Applied Geochemistry, 2017, 82: 47-62. doi: 10.1016/j.apgeochem.2017.05.001

    [19]

    Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. doi: 10.1306/11020606059

    [20]

    翟正, 王学军, 李政, 等. 页岩沉积环境对其油气潜力的影响: 以中国和北美对比研究为例[J]. 高校地质学报, 2016, 22(4): 690-697. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201604011.htm

    [21]

    Nichols G. Sedimentology and stratigraphy[M]. John Wiley & Sons, 2009.

    [22]

    Jasper K, Hartkopf-Fröder C, Flajs G, et al. Evolution of Pennsylvanian(Late Carboniferous)peat swamps of the Ruhr Basin, Germany: comparison of palynological, coal petrographical and organic geochemical data[J]. International Journal of Coal Geology, 2010, 83(4): 346-365. doi: 10.1016/j.coal.2010.05.008

    [23]

    Mclaughlin M R, Brooks J P, Adeli A. Characterization of selected nutrients and bacteria from anaerobic swine manure lagoons on sow, nursery, and finisher farms in the Mid-South USA[J]. Journal of Environmental Quality, 2009, 38(6): 2422-2430. doi: 10.2134/jeq2008.0468

    [24]

    Ross D J, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004

    [25]

    Dang W, Zhang J, Tang X, et al. Shale gas potential of Lower Permian marine-continental transitional black shales in the Southern North China Basin, central China: Characterization of organic geochemistry[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 639-650. doi: 10.1016/j.jngse.2015.12.035

    [26]

    孟凡洋, 陈科, 包书景, 等. 鄂西巴东地区(巴页1井)发现海陆过渡相页岩气[J]. 中国地质, 2017, 44(2): 403-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702017.htm

    [27]

    Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.

    [28]

    Bowker K A. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533. doi: 10.1306/06190606018

    [29]

    叶军, 曾华盛. 川西须家河组泥页岩气成藏条件与勘探潜力[J]. 天然气工业, 2008, 28(12): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200812008.htm

    [30]

    Tang X, Zhang J, Wang X, et al. Shale characteristics in the southeastern Ordos Basin, China: Implications for hydrocarbon accumulation conditions and the potential of continental shales[J]. International Journal of Coal Geology, 2014, 128: 32-46.

    [31]

    郭旭升, 胡东风, 李宇平, 等. 海相和湖相页岩气富集机理分析与思考: 以四川盆地龙马溪组和自流井组大安寨段为例[J]. 地学前缘, 2016, 23(2): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htm

    [32]

    董大忠, 王玉满, 黄旭楠, 等. 中国页岩气地质特征, 资源评价方法及关键参数[J]. 天然气地球科学, 2016, 27(9): 1583-1601. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609005.htm

    [33]

    Zhang J, Li X, Zhang X, et al. Geochemical and geological characterization of marine-continental transitional shales from Longtan Formation in Yangtze area, South China[J]. Marine and Petroleum Geology, 2018, 96: 1-15. doi: 10.1016/j.marpetgeo.2018.05.020

    [34]

    仇秀梅, 刘亚东, 董学林. 鄂西建始地区大隆组页岩有机地球化学特征[J], 2019.

    [35]

    韩京, 陈波, 赵幸滨, 等. 下扬子地区二叠系页岩有机质孔隙发育特征及其影响因素[J]. 天然气工业, 2017, 37(10): 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201710005.htm

    [36]

    曹涛涛, 宋之光, 罗厚勇, 等. 下扬子地区二叠系海陆过渡相页岩孔隙体系特征[J]. 天然气地球科学, 2016, 27(7): 1332-1345. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201607017.htm

    [37]

    Fu J, Guo S, Gao Q, et al. Reservoir characteristics and enrichment conditions of shale gas in the Carboniferous-Permian coal-bearing formations of Qinshui Basin[J]. Earth Science Frontiers, 2016, 23(2): 167-175.

    [38]

    Yan G, Wei C, Song Y, et al. Pore characteristics of organic-rich shale in the Carboniferous-Permian coal-bearing strata in Qinshui Basin[J]. Energy Exploration & Exploitation, 2017, 35(5): 645-662.

    [39]

    Liu Y, Zhu Y. Comparison of pore characteristics in the coal and shale reservoirs of Taiyuan Formation, Qinshui Basin, China[J]. International Journal of Coal Science & Technology, 2016, 3(3): 330-338.

    [40]

    邢舟, 曹高社, 毕景豪, 等. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(04): 518-528. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804009.htm

    [41]

    Tang S, Zhang J, Elsworth D, et al. Lithofacies and pore characterization of the Lower Permian Shanxi and Taiyuan shales in the southern North China Basin[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 644-661. doi: 10.1016/j.jngse.2016.11.013

    [42]

    Chen Q, Zhang J, Tang X, et al. Pore structure characterization of the Lower Permian marine-continental transitional black shale in the Southern North China Basin, Central China[J]. Energy & Fuels, 2016, 30(12): 10092-10105.

    [43]

    Liu Y, Tang X, Zhang J, et al. Geochemical characteristics of the extremely high thermal maturity transitional shale gas in the Southern North China Basin(SNCB)and its differences with marine shale gas[J]. International Journal of Coal Geology, 2018, 194: 33-44. doi: 10.1016/j.coal.2018.05.005

    [44]

    Li Q, Pang X, Tang L, et al. Occurrence features and gas content analysis of marine and continental shales: A comparative study of Longmaxi Formation and Yanchang Formation[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 504-522. doi: 10.1016/j.jngse.2018.06.019

    [45]

    Li G, Qin Y, Wu M, et al. The pore structure of the transitional shale in the Taiyuan formation, Linxing area, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106183. doi: 10.1016/j.petrol.2019.106183

    [46]

    Xiong F, Wang X, Amooie M A, et al. The shale gas sorption capacity of transitional shales in the Ordos Basin, NW China[J]. Fuel, 2017, 208: 236-246. doi: 10.1016/j.fuel.2017.07.030

    [47]

    Yang C, Zhang J, Wang X, et al. Nanoscale pore structure and fractal characteristics of a marine-continental transitional shale: A case study from the lower Permian Shanxi Shale in the southeastern Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 88: 54-68. doi: 10.1016/j.marpetgeo.2017.07.021

    [48]

    郭少斌, 付娟娟, 高丹, 等. 中国海陆交互相页岩气研究现状与展望[J]. 石油实验地质, 2015, 37(5): 535-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201505003.htm

    [49]

    Miceli Romero A, Philp R P. Organic geochemistry of the Woodford Shale, southeastern Oklahoma: How variable can shales be?[J]. AAPG Bulletin, 2012, 96(3): 493-517. doi: 10.1306/08101110194

    [50]

    Sun M, Yu B, Hu Q, et al. Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: A case study from Well Yuke #1 in the Southeast of Chongqing, China[J]. International Journal of Coal Geology, 2016, 154/155: 16-29. doi: 10.1016/j.coal.2015.11.015

    [51]

    He J, Ding W, Zhang J, et al. Logging identification and characteristic analysis of marine-continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2016, 70: 273-293. doi: 10.1016/j.marpetgeo.2015.12.006

    [52]

    Liu G, Huang Z, Chen F, et al. Reservoir characterization of Chang 7 member shale: A case study of lacustrine shale in the Yanchang Formation, Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 458-471. doi: 10.1016/j.jngse.2016.06.071

    [53]

    Liu S, Ma W, Jansa L, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China[J]. Energy Exploration & exploitation, 2013, 31(2): 187-219.

    [54]

    Xi Z, Tang S, Wang J. The reservoir characterization and shale gas potential of the Niutitang formation: Case study of the SY well in northwest Hunan Province, South China[J]. Journal of Petroleum Science and Engineering, 2018, 171: 687-703. doi: 10.1016/j.petrol.2018.08.002

    [55]

    王社教, 王兰生, 黄金亮, 等. 上扬子区志留系页岩气成藏条件[J]. 天然气工业, 2009, 29(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905009.htm

    [56]

    Andrews I J. The Carboniferous Bowland Shale gas study: geology and resource estimation[M]. London, UK, British Geological Survey for Department of Energy and Climate Change, 2013.

    [57]

    Gai H, Tian H, Xiao X. Late gas generation potential for different types of shale source rocks: Implications from pyrolysis experiments[J]. International Journal of Coal Geology, 2018, 193: 16-29. doi: 10.1016/j.coal.2018.04.009

    [58]

    Chen Q, Zhang J, Tang X, et al. Relationship between pore type and pore size of marine shale: An example from the Sinian-Cambrian formation, upper Yangtze region, South China[J]. International Journal of Coal Geology, 2016, 158: 13-28. doi: 10.1016/j.coal.2016.03.001

    [59]

    Jiang S, Xu Z, Feng Y, et al. Geologic characteristics of hydrocarbon-bearing marine, transitional and lacustrine shales in China[J]. Journal of Asian Earth Sciences, 2016, 115: 404-418. doi: 10.1016/j.jseaes.2015.10.016

    [60]

    Wang G, Carr T R. Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian BasinOrganic-Rich Shale Lithofacies Modeling, Appalachian Basin[J]. AAPG Bulletin, 2013, 97(12): 2173-2205. doi: 10.1306/05141312135

    [61]

    Hammes U, Hamlin H S, Ewing T E. Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana[J]. AAPG Bulletin, 2011, 95(10): 1643-1666. doi: 10.1306/02141110128

    [62]

    Passey Q R, Bohacs K, Esch W L, et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs[C]//International OIL and Gas Conference and Exhibition in China, 2010.

    [63]

    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

    [64]

    Ma X, Guo S, Shi D, et al. Investigation of pore structure and fractal characteristics of marine-continental transitional shales from Longtan Formation using MICP, gas adsorption, and NMR(Guizhou, China)[J]. Marine and Petroleum Geology, 2019, 107: 555-571. doi: 10.1016/j.marpetgeo.2019.05.018

    [65]

    Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092

    [66]

    Liang C, Jiang Z, Zhang C, et al. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale, Sichuan Basin, South China[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 636-648. doi: 10.1016/j.jngse.2014.09.034

    [67]

    Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004

    [68]

    Ko L T, Loucks R G, Zhang T, et al. Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent)mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722. doi: 10.1306/04151615092

    [69]

    Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus formation(Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048

    [70]

    Loucks R G, Ruppel S C, Wang X, et al. Pore types, pore-network analysis, and pore quantification of the lacustrine shale-hydrocarbon system in the Late Triassic Yanchang Formation in the southeastern Ordos Basin, China[J]. Interpretation, 2017, 5(2): SF63-SF79. doi: 10.1190/INT-2016-0094.1

    [71]

    Liu B, Schieber J, Mastalerz M. Combined SEM and reflected light petrography of organic matter in the New Albany Shale(Devonian-Mississippian)in the Illinois Basin: A perspective on organic pore development with thermal maturation[J]. International Journal of Coal Geology, 2017, 184: 57-72. doi: 10.1016/j.coal.2017.11.002

    [72]

    Cardott B J, Curtis M E. Identification and nanoporosity of macerals in coal by scanning electron microscopy[J]. International Journal of Coal Geology, 2018, 190: 205-217. doi: 10.1016/j.coal.2017.07.003

    [73]

    Ungerer P. State of the art of research in kinetic modelling of oil formation and expulsion[J]. Organic Geochemistry, 1990, 16(1/3): 1-25.

    [74]

    Mastalerz M, Glikson M. In-situ analysis of solid bitumen in coal: examples from the Bowen Basin and the Illinois Basin[J]. International Journal of Coal Geology, 2000, 42(2/3): 207-220.

    [75]

    Inan S, Al Badairy H, nan T, et al. Formation and occurrence of organic matter-hosted porosity in shales[J]. International Journal of Coal Geology, 2018, 199: 39-51. doi: 10.1016/j.coal.2018.09.021

    [76]

    Xi Z, Tang S, Zhang S, et al. Pore structure characteristics of marine-continental transitional shale: A case study in the Qinshui Basin, China[J]. Energy & Fuels, 2017, 31(8): 7854-7866.

    [77]

    Jiang S, Tang X, Cai D, et al. Comparison of marine, transitional, and lacustrine shales: A case study from the Sichuan Basin in China[J]. Journal of Petroleum Science and Engineering, 2017, 150: 334-347. doi: 10.1016/j.petrol.2016.12.014

    [78]

    Li K, Chen G, Li W, et al. Characterization of marine-terrigenous transitional Taiyuan formation shale reservoirs in Hedong coal field, China[J]. Advances in Geo-Energy Research, 2018, 2(1): 72-85. doi: 10.26804/ager.2018.01.07

    [79]

    魏祥峰, 黄静, 李宇平, 等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质, 2014, 41(3): 970-981.

    [80]

    Heydari E, Wade W J. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks: Implications for organic acids as factors in diagenesis[J]. AAPG Bulletin, 2002, 86(7): 1285-1303.

    [81]

    Wilson M, Wilson L, Patey I. The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights[J]. Clay Minerals, 2014, 49(2): 147-164. doi: 10.1180/claymin.2014.049.2.02

    [82]

    Wang Q, Wang T, Liu W, et al. Relationships among composition, porosity and permeability of Longmaxi Shale reservoir in the Weiyuan Block, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 33-47. doi: 10.1016/j.marpetgeo.2018.12.026

    [83]

    Yang R, He S, Hu Q, et al. Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2016, 77: 247-261. doi: 10.1016/j.marpetgeo.2016.06.001

    [84]

    Zhang T, Ellis G S, Ruppel S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47: 120-131. doi: 10.1016/j.orggeochem.2012.03.012

    [85]

    Chalmers G R, Bustin R M. Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅰ: geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1-21. doi: 10.2113/gscpgbull.56.1.1

    [86]

    Yang F, Ning Z, Zhang R, et al. Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China[J]. International Journal of Coal Geology, 2015, 146: 104-117. doi: 10.1016/j.coal.2015.05.009

    [87]

    Li A, Ding W, Zhou X, et al. Investigation of the methane adsorption characteristics of marine shale: a case study of Lower Cambrian Qiongzhusi Shale in eastern Yunnan Province, South China[J]. Energy & Fuels, 2017, 31(3): 2625-2635.

    [88]

    Hu H, Hao F, Guo X, et al. Investigation of methane sorption of overmature Wufeng-Longmaxi shale in the Jiaoshiba area, Eastern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 91: 251-261. doi: 10.1016/j.marpetgeo.2018.01.008

    [89]

    郭彤楼, 李宇平, 魏志红. 四川盆地元坝地区自流井组页岩气成藏条件[J]. 天然气地球科学, 2011, 22(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101003.htm

    [90]

    寇雨, 周文, 赵毅楠, 等. 鄂尔多斯盆地长7油层组页岩吸附特征与类型及吸附气量影响因素[J]. 岩性油气藏, 2016, 28(6): 52. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201606008.htm

    [91]

    顾志翔, 彭勇民, 何幼斌, 等. 湘中坳陷二叠系海陆过渡相页岩气地质条件[J]. 中国地质, 2015, 42(1): 288-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201501022.htm

    [92]

    陈康, 张金川, 唐玄, 等. 湘鄂西地区下志留统龙马溪组页岩吸附能力主控因素[J]. 石油与天然气地质, 2016, 37(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601005.htm

    [93]

    Wang Y, Zhu Y, Liu S, et al. Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales[J]. Fuel, 2016, 181: 227-237. doi: 10.1016/j.fuel.2016.04.082

    [94]

    Li P, Jiang Z, Zheng M, et al. Estimation of shale gas adsorption capacity of the Longmaxi Formation in the Upper Yangtze Platform, China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1034-1043. doi: 10.1016/j.jngse.2016.07.052

    [95]

    Ma Y, Zhong N, Li D, et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China: A possible microscopic mechanism for gas preservation[J]. International Journal of Coal Geology, 2015, 137: 38-54. doi: 10.1016/j.coal.2014.11.001

    [96]

    Guo S, Lü X, Song X, et al. Methane adsorption characteristics and influence factors of Mesozoic shales in the Kuqa Depression, Tarim Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 157: 187-195. doi: 10.1016/j.petrol.2017.07.020

    [97]

    苏育飞. 山西省海陆过渡相煤系"三气"共探共采展望[J]. 中国煤层气, 2016, 13(6): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMC201606002.htm

  • 加载中

(10)

(2)

计量
  • 文章访问数:  2274
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2020-07-08
修回日期:  2021-02-24
刊出日期:  2022-08-15

目录