青藏高原东部鲜水河断裂带地震滑坡危险性评价

李彩虹, 李雪, 郭长宝, 张绪教, 杨志华. 青藏高原东部鲜水河断裂带地震滑坡危险性评价[J]. 地质通报, 2022, 41(8): 1473-1486. doi: 10.12097/j.issn.1671-2552.2022.08.013
引用本文: 李彩虹, 李雪, 郭长宝, 张绪教, 杨志华. 青藏高原东部鲜水河断裂带地震滑坡危险性评价[J]. 地质通报, 2022, 41(8): 1473-1486. doi: 10.12097/j.issn.1671-2552.2022.08.013
LI Caihong, LI Xue, GUO Changbao, ZHANG Xujiao, YANG Zhihua. Seismic landslide hazards assessment along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geological Bulletin of China, 2022, 41(8): 1473-1486. doi: 10.12097/j.issn.1671-2552.2022.08.013
Citation: LI Caihong, LI Xue, GUO Changbao, ZHANG Xujiao, YANG Zhihua. Seismic landslide hazards assessment along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geological Bulletin of China, 2022, 41(8): 1473-1486. doi: 10.12097/j.issn.1671-2552.2022.08.013

青藏高原东部鲜水河断裂带地震滑坡危险性评价

  • 基金项目:
    国家自然科学基金项目《岷江上游大型深层蠕滑型滑坡渐进变形破坏机制与动态稳定性研究》(批准号: 418772779)、《青藏高原东缘古滑坡复活机理与早期识别研究》(批准号: 41731287)和中国地质调查局项目《川西—藏东地区交通廊道活动构造与地质调查》(编号: DD2019031)
详细信息
    作者简介: 李彩虹(1997-), 女, 在读硕士生, 第四纪地质学专业, 从事地质灾害调查与风险评价研究。E-mail: 1657647609@qq.com
    通讯作者: 李雪(1986-), 女, 博士, 副研究员, 从事工程地质与地质灾害方面调查研究。E-mail: lixnicole@sina.com
  • 中图分类号: P642.22;P694

Seismic landslide hazards assessment along the Xianshuihe fault zone, Tibetan Plateau, China

More Information
  • 鲜水河断裂带是青藏高原东南缘一条大型左旋走滑断裂带, 断裂带沿线地形地貌和地质条件复杂, 历史地震频发, 并诱发大量地震滑坡灾害, 对重大工程建设和人民生命财产造成巨大的影响。基于鲜水河断裂带区域地震滑坡防控需要, 在研究分析区域地质灾害成灾背景和发育分布特征的基础上, 选取鲜水河断裂带两侧约20 km的区域, 采用Newmark模型完成了鲜水河断裂带地震滑坡危险性预测评价。结果显示, 地震滑坡极高危险性区、高危险区、中等危险区及低危险区分别占研究区总面积的6.28%、11.77%、33.33%和48.62%, 危险性较高的地区主要分布在康定-磨西段及大渡河附近, 有63.66%的地震滑坡分布在地震滑坡极高和高危险区。成功率(ROC)曲线检验结果表明, 此次滑坡危险性性评价的准确率为74.3%, 评价结果精确度较高。规划建设中的川藏铁路经泸定县、康定市地震滑坡危险性较高的地区, 因此工程规划建设时需加强铁路隧道口附近潜在地震滑坡危害评判及防控, 研究结果将为该区地质灾害防治工作和川藏铁路建设提供参考。

  • 加载中
  • 图 1  鲜水河断裂带区域位置图

    Figure 1. 

    图 2  1973年炉霍Ms 7.9级地震地质灾害分布图[38]

    Figure 2. 

    图 3  鲜水河断裂带滑坡灾害分布图

    Figure 3. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 4  摩岗岭滑坡全貌图和工程地质剖面图

    Figure 4. 

    图 5  55道班滑坡典型地貌图和工程地质平面图

    Figure 5. 

    图 6  基于Newmark模型的鲜水河断裂带地震滑坡危险性评价流程

    Figure 6. 

    图 7  鲜水河断裂带地形坡度和工程地质岩组(岩组编号见表 1中ID)

    Figure 7. 

    图 8  鲜水河断裂带静态安全系数和临界加速度

    Figure 8. 

    图 9  鲜水河断裂带地震动峰值加速度和斜坡位移

    Figure 9. 

    图 10  鲜水河断裂带地震滑坡危险性分区图

    Figure 10. 

    图 11  鲜水河断裂带地震滑坡危险性成功率曲线

    Figure 11. 

    表 1  鲜水河断裂带工程地质岩组与物理力学参数

    Table 1.  Physical and mechanical properties of engineering geological rock groups in the Xianshuihe fault zone

    ID 工程地质岩组名称 c'/kPa ϕ' γ/(kN·m-3)
    1 坚硬的厚层状砂岩岩组 26 33 26
    2 较坚硬—坚硬的中—厚层状砂岩夹砾岩、泥岩、板岩岩组 25 32 25
    3 软硬相间的中—厚层状砂岩、泥岩夹灰岩、泥质灰岩及其互层岩组 25 32 24
    4 软弱—较坚硬薄—中厚层状砂、泥岩及砾、泥岩互层岩组 20 27 23
    5 软弱的薄层状泥、页岩岩组 24 31 21
    6 坚硬的中—厚层状灰岩及白云岩岩组 23 31 25
    7 较坚硬的薄—中厚层状灰岩、泥质灰岩岩组 23 30 24
    8 软硬相间的中—厚层状灰岩、白云岩夹砂、泥岩、千枚岩、板岩岩组 22 29 23
    9 较坚硬—坚硬薄—中厚层状板岩、千枚岩与变质砂岩互层岩组 21 28 22
    10 较弱—较坚硬的薄—中厚层状千枚岩、片岩夹灰岩、砂岩、火山岩岩组 28 35 21
    11 坚硬的块状玄武岩为主的岩组 27 34 29
    12 坚硬块状花岗岩、安山岩、闪长岩岩组 19 26 28
    13 软质散体结构岩组 15 25 18
    注:ID与图 7-b中的工程地质岩组号码一致,c'为粘聚力,φ'为有效内摩擦角,γ为岩体重度
    下载: 导出CSV

    表 2  地震滑坡危险性分级统计

    Table 2.  Seismic landslide hazards classification statistics

    地震滑坡危险区 分级面积/km2 分级面积比例/% 已发现的地震滑坡
    滑坡数量/个 滑坡数量比例/% 滑坡面积/km2 滑坡面积比例/%
    极高危险区 1931 6.28 140 35.09 57.76 70.62
    高危险区 3619 11.77 114 28.57 15.34 18.75
    中等危险区 10249 33.33 108 27.07 8.36 10.21
    低危险区 14951 48.62 37 9.27 0.34 0.42
    下载: 导出CSV
  • [1]

    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报, 2019, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm

    [2]

    郭长宝, 倪嘉伟, 杨志华, 等. 川西大渡河泸定段大型古滑坡发育特征与稳定性评价[J]. 地质通报, 2021, 40(12): 1981-1991. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20211201&flag=1

    [3]

    黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004, 19(3): 443-450. doi: 10.3321/j.issn:1001-8166.2004.03.016

    [4]

    徐正宣, 张利国, 蒋良文, 等. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术, 2021, 53(3): 29-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103005.htm

    [5]

    张怡颖, 郭长宝, 杨志华, 等. 四川巴塘扎马古滑坡发育特征与复活趋势[J]. 地质通报, 2021, 40(12): 2002-2014. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20211203&flag=1

    [6]

    李忠生. 国内外地震滑坡灾害研究综述[J]. 灾害学, 2003, (4): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200304013.htm

    [7]

    殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, (4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    [8]

    王东辉, 田凯. 鲜水河断裂带炉霍段地震滑坡空间分布规律分析[J]. 工程地质学报, 2014, 22(2): 292-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201402018.htm

    [9]

    杨志华, 兰恒星, 张永双, 等. 强震区震后地质灾害长期活动性研究综述[J]. 地质力学学报, 2017, 23(5): 743-753. doi: 10.3969/j.issn.1006-6616.2017.05.011

    [10]

    Keefer D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2

    [11]

    孙崇绍, 蔡红卫. 我国历史地震时滑坡崩塌的发育及分布特征[J]. 自然灾害学报, 1997, (1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH701.004.htm

    [12]

    丁彦慧, 王余庆, 孙进忠, 等. 地震崩滑预测方法及其工程应用研究[J]. 工程地质学报, 2000, (4): 475-480. doi: 10.3969/j.issn.1004-9665.2000.04.016

    [13]

    Xu C, Xu X, Yao X, et al. Three (nearly) complete inventories of landslides triggered by the May 12, 2008Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 2014, 11(3): 441-461. doi: 10.1007/s10346-013-0404-6

    [14]

    张铎, 吴中海, 李家存, 等. 国内外地震滑坡研究综述[J]. 地质力学学报, 2013, 19(3): 225-241. doi: 10.3969/j.issn.1006-6616.2013.03.001

    [15]

    王涛, 刘甲美, 栗泽桐, 等. 中国地震滑坡危险性评估及其对国土空间规划的影响研究[J]. 中国地质, 2021, 48(1): 21-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101003.htm

    [16]

    杨志华, 郭长宝, 吴瑞安, 等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质, 2021, 48(5): 91-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105010.htm

    [17]

    许志琴, 李化启, 侯立炜, 等. 青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制[J]. 地质通报, 2007, (10): 1262-1276. doi: 10.3969/j.issn.1671-2552.2007.10.005 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2007010207&flag=1

    [18]

    Roger F, Calassou S, Lancelot J, et al. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China): Geodynamic implications[J]. Earth and Planetary Science Letters, 1995, 130(1/4): 201-216. https://www.sciencedirect.com/science/article/pii/0012821X9400252T

    [19]

    钱洪. 鲜水河断裂带上潜在震源区的地质学判定[J]. 四川地震, 1988, (2): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ198802004.htm

    [20]

    李海兵, 许志琴, 杨经绥. 青藏高原北缘和东缘造山带的崛起及造山机制[C]//许志琴, 杨经绥, 李海滨, 等. 造山的高原. 北京: 地质出版社, 2007: 276-294.

    [21]

    张岳桥, 陈文, 杨农. 川西鲜水河断裂带晚新生代剪切变形40Ar/39Ar测年及其构造意义[J]. 中国科学, 2004, (7): 613-621. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407002.htm

    [22]

    熊探宇, 姚鑫, 张永双. 鲜水河断裂带全新世活动性研究进展综述[J]. 地质力学学报, 2010, 16(2): 176-188. doi: 10.3969/j.issn.1006-6616.2010.02.007

    [23]

    李天袑, 杜其方. 鲜水河活动断裂带及强震危险性评估[M]. 成都: 成都地图出版社, 1997.

    [24]

    潘家伟, 李海兵, Chevalier M L, 等. 鲜水河断裂带色拉哈-康定段新发现的活动断层: 木格措南断裂[J]. 地质学报, 2020, 94(11): 3178-3188. doi: 10.3969/j.issn.0001-5717.2020.11.002

    [25]

    张御阳. 强震触发摩岗岭滑坡成因机制及运动特性研究[D]. 成都理工大学硕士学位论文, 2013.

    [26]

    林高聪, 潘书华, 叶振南. 基于Newmark法的设定地震滑坡危险性评估[J]. 桂林理工大学学报, 2021, 41(3): 525-532. doi: 10.3969/j.issn.1674-9057.2021.03.006

    [27]

    李雪婧, 高孟潭, 徐伟进. 基于Newmark模型的概率地震滑坡危险性分析方法研究——以甘肃天水地区为例[J]. 地震学报, 2019, 41(6): 795-808. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201906010.htm

    [28]

    杨志华, 张永双, 郭长宝, 等. 基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估[J]. 地质力学学报, 2017, 23(1): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201701007.htm

    [29]

    王涛, 吴树仁, 石菊松, 等. 基于简化Newmark位移模型的区域地震滑坡危险性快速评估——以汶川Ms 8.0级地震为例[J]. 工程地质学报, 2013, 21(1): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201301004.htm

    [30]

    Bai M K, Chevalier M L, Leloup P H, et al. Spatial Slip Rate Distribution Along the SE Xianshuihe Fault, Eastern Tibet, and Earthquake Hazard Assessment[J]. Tectonics, 2021: 1-14.

    [31]

    刘本培, 朱智勤, 廖华, 等. 鲜水河断裂带的构造大地测量[J]. 地壳形变与地震, 2001, (4): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200104002.htm

    [32]

    Xu J, Shao Z G, Liu J, et al. Coulomb stress evolution and future earthquake probability along the eastern boundary of the Sichuan-Yunnan block[J]. Chinese Journal of Geophysics, 2019, 62(11): 4189-4213.

    [33]

    吴俊峰. 大渡河流域重大地震滑坡发育特征与成因机理研究[D]. 成都理工大学博士学位论文, 2013.

    [34]

    蒋宏毅, 杨凡, 左天惠, 等. 京津冀地区地震滑坡危险性评估[J]. 高原地震, 2021, 33(2): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDZ202102007.htm

    [35]

    周洪福, 方甜, 韦玉婷. 国内外地震滑坡研究: 现状、问题与展望[J/OL]. 沉积与特提斯地质: 1-12[2022-02-15]. DOI: 10.19826/j.cnki.1009-3850.2021.11011.

    [36]

    郭长宝, 杜宇本, 张永双, 等. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理[J]. 地质通报, 2015, 34(1): 121-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501010.htm

    [37]

    李明辉, 王东辉, 高延超, 等. 鲜水河断裂带炉霍7.9级地震地质灾害研究[J]. 灾害学, 2014, 29(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201401007.htm

    [38]

    郭长宝, 张永双, 杨志华, 等. 川藏铁路沿线活动断裂与地质灾害效应调查研究[M]. 北京: 地质出版社, 2018: 211-215.

    [39]

    殷跃平. 汶川八级地震滑坡高速远程特征分析[J]. 工程地质学报, 2009, 17(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902002.htm

    [40]

    黄润秋, 李为乐. 5.12汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm

    [41]

    许强. 汶川大地震诱发地质灾害主要类型与特征研究[J]. 地质灾害与环境保护, 2009, 20(2): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB200902020.htm

    [42]

    周洪福, 韦玉婷, 王运生, 等. 1786年磨西地震触发的摩岗岭滑坡演化过程与成因机理[J]. 成都理工大学学报(自然科学版), 2017, 44(6): 649-658. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201706002.htm

    [43]

    Yang Z H, Lan H X, Gao X, et al. Urgent Landslide Susceptibility Assessment in the 2013 Lushan Earthquake-impacted Area, Sichuan Province, China[J]. Natural Hazards, 2015, 75(3): 2467-2487.

    [44]

    王涛, 吴树仁, 石菊松, 等. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报, 2015, 23(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501019.htm

    [45]

    巩留杰. 基于有限元计算的边坡稳定极限平衡法研究[D]. 湖南大学硕士学位论文, 2012.

    [46]

    王学鹏. 滑坡体稳定分析的极限平衡法与有限元法对比研究[D]. 昆明理工大学硕士学位论文, 2015.

    [47]

    赵博雅. 基于有限元极限平衡法的边坡可靠度分析[D]. 大连理工大学硕士学位论文, 2017.

    [48]

    Newmark N M. Effects of earthquakes on dams and embankments[J]. Geotechnique, 1965, 15(2): 139-160.

    [49]

    Jibson R W, Harp E L, Michael J A. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 2000, 58(3/4): 271-289. https://www.sciencedirect.com/science/article/pii/S0013795200000399

    [50]

    Zhang Y S, Yang Z H, Guo C B, et al. Predicting landslide scenes under potential earthquake scenarios in the Xianshuihe fault zone, Southwest China[J]. Journal of Mountain Science, 2017, 14(7): 1262-1278. https://link.springer.com/article/10.1007/s11629-017-4363-6

    [51]

    Jibson R W. Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis[J]. Transportation Research Record, 1993, 1411: 9-17.

    [52]

    Roberto R. Seismically induced landslide displacements: a predictivemodel[J]. Engineering Geology, 2000, 58(3/4): 337-351.

    [53]

    Miles S B., Ho C l. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation[J]. Soil Dynamics and Earthquake Engineering, 1999, 18: 305-323.

    [54]

    Wilson R C, Keefer D K. Dynamic analysis of a slope failure from the 6 August 1979 Coyote lake, California, earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(3): 863-877.

    [55]

    Jibson R W. Regression models for estimating coseismic landslide displacement[J]. Engineering Geology, 2007, 91(2/3): 209-218. https://www.sciencedirect.com/science/article/pii/S0013795207000300

    [56]

    工程地质手册(第五版)[M]. 北京, 中国建筑工业出版社, 2018.

    [57]

    闫怡秋, 杨志华, 张绪教, 等. 基于加权证据权模型的青藏高原东部巴塘断裂带滑坡易发性评价[J]. 现代地质, 2021, 35(1): 26-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101004.htm

    [58]

    王涛. 汶川地震重灾区地质灾害危险性评估研究[D]. 中国地质科学院博士学位论文, 2010.

    [59]

    刘静伟. 基于历史地震烈度资料的地震危险性评估方法研究[D]. 中国地震局地质研究所博士学位论文, 2011.

    [60]

    马思远. 基于Newmark模型的地震滑坡危险性评价研究[D]. 中国地震局地质研究所硕士学位论文, 2018.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  1642
  • PDF下载数:  61
  • 施引文献:  0
出版历程
收稿日期:  2022-05-04
修回日期:  2022-06-27
刊出日期:  2022-08-15

目录