Petrogenesis and tectonic significance of the early Late Triassic magmatism of the northern Altaid orogenic belt
-
摘要:
对阿尔泰造山带北段南缘出露的塔尔萨依岩体二云母正长花岗岩进行了LA-ICP-MS锆石U-Pb定年, 获得其 206Pb/238U年龄加权平均值为235±2 Ma(MSWD=0.46), 表明该花岗岩为晚三叠世早期岩浆活动的产物。全岩地球化学分析结果显示, 塔尔萨依岩体的二云母正长花岗岩和二云母二长花岗岩均具有高硅、高钾、低镁、低钛特征, 里特曼指数(σ)和铝饱和指数(A/CNK)分别大于2和1.1, 为高钾钙碱性强过铝质花岗岩。此外, 两类花岗岩均富集轻稀土元素和Rb、Th等微量元素, 亏损高场强元素Nb、Ta、Yb和Y。其低的Mg#值、Cr和Ni含量, 以及中等的CaO/Na2O和低的Al2O3/TiO2值, 表明研究区花岗岩形成于同碰撞构造环境。结合前人已有研究成果, 认为阿尔泰造山带三叠纪的构造体制转变在时空上存在差异, 整体表现出东—中段由挤压环境进入伸展构造背景的时间较北部早的趋势。
Abstract:LA-ICP-MS zircon U-Pb dating for the two-mica syenogranite of Talsayi pluton in the southern margin of the northern Altaid orogenic belt yielded a 206Pb/238U age of 235±2 Ma(MSWD=0.46), which interpreted as product of the early Late-Triassic magmatic event.Whole-rock geochemical data show that two-mica syenogranite and two-mica monzogranite of the Talsayi pluton are characterized by high silicon and alkali, low titanium and magnesium, as well as large Rittmann Index and Aluminum Saturation Index(A/CNK)values.The lines of evidence indicate that the granitic rocks are classified into high potassium calc-alkaline peraluminous granitic series.In addition, the syenogranite and monzogranite are relatively enriched in light rare earth elements(LREE), as well as trace elements of Rb and Th, but depleted in high field-strength elements of Nb, Ta, Yb and Y, in addition, the granitic rocks show low values of magnesium and contents of Cr and Ni, and moderate values of CaO/Na2O and low values of Al2O3/TiO2.These suggest that the Talsayi pluton in the southern margin of the northern Altaid orogenic belt were formed in the syn-collision tectonic environment.Combination with the previous studies, it is proposed that the transition of tectonic regime of the Altaid orogenic belt show spatiotemporal difference with characteristic of trending from east and central to north direction during Triassic era.
-
图 1 中亚造山带(a)、阿尔泰造山带构造简图(b, 据参考文献[6]修改)和研究区地质略图(c)
Figure 1.
图 4 造山带北段塔尔萨依地区二云母正长花岗岩和二云母二长花岗岩稀土元素球粒陨石标准化分布模式图(a) 和微量元素原始地幔标准化蛛网图(b)(标准值据参考文献[35])
Figure 4.
图 6 阿尔泰造山带北段塔尔萨依地区二云母正长花岗岩和二云母二长花岗岩(Yb+Nb)-Rb(a)和(Yb+Ta)-Rb(b)构造环境判别图解(据参考文献[39]修改)
Figure 6.
表 1 阿尔泰造山带北段三叠纪二云母正长花岗岩(D1212)LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb analytical results of the Triassic two-mica syenogranite from the northern Altaid orogenic belt
测点号 含量/10-6 Th/U 同位素比值 年龄/Ma Pb* Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 1 99 339 2430 0.14 0.05012 0.00068 0.25644 0.00566 0.03707 0.00066 0.01188 0.00059 211 31 232 5 235 4 239 12 2 72 301 1756 0.17 0.05095 0.00071 0.25589 0.00563 0.03639 0.00066 0.01220 0.00061 239 64 231 5 230 4 245 12 3 59 252 1397 0.18 0.05036 0.00078 0.25466 0.00417 0.03668 0.00040 0.01118 0.00059 213 40 230 3 232 3 225 12 4 354 23859 3168 7.53 0.05071 0.00086 0.25818 0.00768 0.03705 0.00112 0.01559 0.00175 228 39 233 6 235 7 313 35 5 73 357 1697 0.21 0.05041 0.00080 0.26108 0.00488 0.03756 0.00047 0.01154 0.00071 213 37 236 4 238 3 232 14 6 89 314 2176 0.14 0.04997 0.00058 0.25551 0.00464 0.03704 0.00052 0.01095 0.00060 195 28 231 4 234 3 220 12 7 92 474 2193 0.22 0.04896 0.00062 0.25089 0.00362 0.03720 0.00044 0.01084 0.00055 146 27 227 3 235 3 218 11 8 70 208 1678 0.12 0.05200 0.00073 0.26708 0.00444 0.03725 0.00043 0.01141 0.00057 287 31 240 4 236 3 229 11 9 62 209 1483 0.14 0.05019 0.00066 0.26224 0.00523 0.03781 0.00051 0.01109 0.00055 211 31 236 4 239 3 223 11 10 83 334 1996 0.17 0.05119 0.00071 0.26039 0.00369 0.03694 0.00047 0.01029 0.00058 250 31 235 3 234 3 207 12 11 150 413 3698 0.11 0.05111 0.00069 0.25918 0.00435 0.03683 0.00053 0.01079 0.00062 256 31 234 4 233 3 217 12 12 68 298 1636 0.18 0.05104 0.00072 0.26253 0.00465 0.03728 0.00043 0.01077 0.00057 243 33 237 4 236 3 217 11 13 55 204 1346 0.15 0.05157 0.00069 0.26131 0.00419 0.03678 0.00046 0.01058 0.00054 265 31 236 3 233 3 213 11 14 76 264 1938 0.14 0.05352 0.00121 0.27413 0.01053 0.03687 0.00074 0.01341 0.00098 350 84 246 8 233 5 269 20 15 79 363 1916 0.19 0.05054 0.00064 0.25930 0.00466 0.03718 0.00049 0.01067 0.00056 220 32 234 4 235 3 214 11 表 2 阿尔泰造山带北段三叠纪二云母正长花岗岩和二云母二长花岗岩主量、微量和稀土元素地球化学分析结果
Table 2. Major, trace and rare earth elements geochemical data of the Triassic two-mica syenogranite and two-mica monzogranite, northern Altaid orogenic belt
岩性 二云母正长花岗岩 二云母二长花岗岩 样品号 D1212-1 D1212-2 D1212-3 D1212-4 D1212-5 D1212-6 GPS坐标 93°45′32″E 93°45′35″E 93°45′51″E 93°45′25″E 93°45′18″E 93°45′39″E 63°56′47″N 63°56′29″N 63°56′35″N 63°56′51″N 63°56′40″N 63°56′59″N SiO2 71.98 74.16 71.64 73.33 72.89 72.69 TiO2 0.11 0.08 0.21 0.13 0.14 0.16 Al2O3 15.46 14.94 15.77 14.27 14.65 14.19 Fe2O3 0.24 0.19 0.33 0.50 0.54 1.09 FeO 1.17 0.94 1.47 0.96 0.97 0.92 MnO 0.02 0.02 0.03 0.03 0.03 0.05 MgO 0.10 0.00 0.27 0.20 0.22 0.22 CaO 1.07 0.90 1.27 1.22 1.21 1.19 Na2O 4.01 3.39 3.82 2.88 2.82 2.72 K2O 4.70 4.64 4.09 5.11 5.09 5.10 P2O5 0.06 0.04 0.12 0.12 0.13 0.15 烧失量 0.20 0.16 0.22 0.50 0.59 0.61 总量 99.12 99.46 99.24 99.25 99.28 99.09 La 16.90 15.80 46.70 30.90 33.50 36.80 Ce 30.30 28.40 81.60 54.10 57.40 64.50 Pr 3.48 3.28 9.41 6.13 6.79 7.28 Nd 11.80 11.20 32.60 21.80 23.10 25.90 Sm 2.29 2.15 4.95 4.47 4.43 4.71 Eu 0.60 0.55 0.86 0.89 0.98 0.90 Gd 1.78 1.50 3.54 3.31 3.61 3.87 Tb 0.22 0.22 0.42 0.49 0.49 0.54 Dy 0.94 0.84 1.56 1.97 2.09 2.27 Ho 0.19 0.18 0.31 0.42 0.40 0.45 Er 0.52 0.44 0.74 1.17 0.95 1.17 Tm 0.06 0.07 0.11 0.16 0.12 0.15 Yb 0.39 0.34 0.60 0.92 0.85 0.86 Lu 0.04 0.06 0.09 0.12 0.10 0.13 Y 5.51 4.97 9.08 13.6 12.9 13.7 Sr 97.8 113.5 165.1 141.1 127.3 123 Ba 229 279 506 529 538 491 Rb 175 170 185 175 175 181 Th 9.58 8.3 24.9 17 18.9 22 Pb 44.5 43.6 41.3 71.5 47.3 47.8 Zr 46.1 49.3 107.9 78.6 75.6 88.3 Nb 11.8 13.9 11 14.1 15.4 15 Ta 1.14 1.18 0.98 0.9 1.29 1.19 Cr 4.2 4.2 5.7 7.6 6.4 6.2 Ni 10.7 3.57 6.8 10.8 5.44 5.16 δEu 0.30 0.31 0.21 0.23 0.25 0.21 δCe 3.95 3.95 3.89 3.93 3.81 3.94 ∑REE 69.51 65.03 183.49 126.85 134.81 149.53 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] Jahn B M, Wu F Y, Hong D.Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia[J]. Proc.Indian Acad.Sci.(Earth Planet Sci.), 2000, 109(1):5-20. doi: 10.1007/BF02719146
[2] Sengör A M C, Natalin B A, Burtman V S. Evolution of the Altaid tectonic and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(22): 299-307.
[3] 王中刚, 赵振华, 邹天人, 等. 阿尔泰花岗岩类地球化学[M]. 北京: 科学出版社, 1998: 1-152.
[4] 袁超, 孙敏, 肖文交, 等. 阿尔泰山南缘花岗岩的锆石U-Pb年代学及其地球化学特征[C]//全国岩石学与地球动力学研讨会论文摘要, 2005: 418.
[5] 王登红, 陈毓川, 徐志刚, 等. 阿尔泰成矿省的成矿系列及成矿规律[M]. 北京: 原子能出版社, 2002: 1-88.
[6] Windlely B F, Kröner A, Guo J, et al. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution[J]. The Journal of Geology, 2002, 110: 719-737. doi: 10.1086/342866
[7] 王涛, 洪大卫, 童英, 等. 中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义[J]. 岩石学报, 2005, 21(3): 640-650. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503007.htm
[8] 王涛, 童英, 李舢, 等. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例[J]. 岩石矿物学杂志, 2010, 29(6): 595-618. doi: 10.3969/j.issn.1000-6524.2010.06.002
[9] Wang T, Hong D W, Jahn B M, et al. Timing, Petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: Implications for the tectonic evolution of an accretionary orogen[J]. The Journal of Geology, 2006, 114: 735-751. doi: 10.1086/507617
[10] Zhang Z C, Yan S H, Chen B L, et al. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of east junggar, Xinjiang[J]. Chinese Science Bulletin, 2006, 51(8): 952-962. doi: 10.1007/s11434-008-0952-7
[11] 曾乔松, 陈广浩, 王核, 等. 阿尔泰冲乎尔盆地花岗质岩类的锆石SHRIMP U-Pb定年及其构造意义[J]. 岩石学报, 2007, 23(8): 1921-1932. doi: 10.3969/j.issn.1000-0569.2007.08.013
[12] 刘伟, 刘丽娟, 刘秀金, 等. 阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围[J]. 岩石学报, 2010, 26(2): 387-400. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002005.htm
[13] 付超, 李俊建, 唐文龙, 等. 蒙古戈壁阿尔泰巴音陶勒盖地区二长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(4): 565-571. doi: 10.3969/j.issn.1671-2552.2016.04.011 https://www.cgsjournals.com/article/id/dztb_20160411
[14] 赵玉梅, 彭戈, 赵得龙, 等. 中国阿尔泰克孜勒花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其地质意义[J]. 地质与勘探, 2016, 52(2): 271-282. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201602009.htm
[15] 张亚峰, 蔺新望, 王星, 等. 阿尔泰造山带南缘昆格依特岩体LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义[J]. 现代地质, 2014, 28(1): 16-28. doi: 10.3969/j.issn.1000-8527.2014.01.002
[16] 张亚峰, 蔺新望, 郭岐明, 等. 阿尔泰南缘可可托海地区二厂房岩体LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义[J]. 岩石矿物学杂志, 2014, 33(1): 13-28. doi: 10.3969/j.issn.1000-6524.2014.01.002
[17] 田红彪, 陈有炘, 杨永强, 等. 中国阿尔泰东北部哈拉尔次花岗岩的年龄、成因及构造意义[J]. 地球科学, 2017, 42(10)1658-1672. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710002.htm
[18] 黄博涛, 董增产, 潘峰, 等. 阿尔泰造山带青河地区早泥盆世和寒武纪末花岗岩的年代学、岩石成因及其地质意义[J]. 岩石矿物学杂志, 2017, 36(4): 458-472. doi: 10.3969/j.issn.1000-6524.2017.04.002
[19] 宋鹏, 童英, 王涛, 等. 阿尔泰东南缘泥盆纪花岗质岩石的锆石U-Pb年龄、成因演化及构造意义: 钙碱性-高钾钙碱性-碱性岩浆演化新证据[J]. 地质学报, 2017, 91(1): 55-79. doi: 10.3969/j.issn.0001-5717.2017.01.004
[20] 赵端昌, 蔺新望, 张亚峰, 等. 中阿尔泰造山带北缘早泥盆世构造环境探讨: 来自托普色克他乌地区过铝质花岗岩年代学和地球化学的制约[J]. 矿物岩石, 2019, 39(1): 63-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201901008.htm
[21] 秦克章, 申茂德, 唐冬梅, 等. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J]. 新疆地质, 2013.31(Z1): 1-7.
[22] 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm
[23] Che X D, Wu F Y, Wang R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989. doi: 10.1016/j.oregeorev.2014.07.008
[24] 王春龙, 秦克章, 冬梅, 等. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义[J]. 岩石学报, 2015, 31(8): 2337-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508015.htm
[25] 杨富全, 张忠利, 王蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42(6): 1010-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201806007.htm
[26] Wang T, Tong Y, Jahn B M, et al. SHRIMP U-Pb zircon geochronology of the Altai No. 3 Pegmatite, NW China, its implications for the origin and tectonic setting of the pegmatite[J]. Ore Geology Reviews, 2007, 32: 325-336. doi: 10.1016/j.oregeorev.2006.10.001
[27] Wang T, Li W P, Li J B, et al. Increase of juvenal mantle-derived composition from syn-orogenic to post-orogenic granites of the east part of the east Tian Shan(China)and implications for continental vertical growth: Sr and Nd isotopic evidence[J]. Acta Petrologica Sinica, 2008, 24: 763-772.
[28] 薛春纪, 赵战锋, 吴淦国, 等. 中亚构造域多期叠加斑岩铜矿化: 以阿尔泰东南缘哈腊苏铜矿床地质、地球化学和成岩成矿时代研究为例[J]. 地学前缘, 2010, 17: 53-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002012.htm
[29] Lin Z, Yuan C, Zhang Y, et al. Petrogenesis and geodynamic implications of two episodes of Permian and Triassic high-silica granitoids in the Chinese Altai, Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 184: 103978.
[30] Anderson T. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[31] Ludwig K R. Isoplot/Ex version 2.49: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-56.
[32] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370.
[33] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 16: 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
[34] Peccerillo R, Taylors S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contribution to Mineralogy and Petrology, 1976, 58: 63-81.
[35] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]. Geological Society, London, Special Publications, 1989, 42: 313-345.
[36] Taylor S R, McLennan S M. The Geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33: 241-265.
[37] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213.
[38] Jung S, Pfänder J A. Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy, 2007, 19: 859-870.
[39] Cox R, Lowe D R. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover[J]. Journal of Sedimentary Research, 1995, 65: 1-12.
[40] 林正帆. 中国阿尔泰造山带二叠纪、三叠纪岩浆活动及其构造意义[D]. 中国科学院广州地球化学研究所博士学位论文, 2019.
[41] 蒋幸福, 彭松柏, 韩庆森. 扬子克拉通黄陵背斜南部~860Ma岩墙的成因及地质意义[J]. 地球科学, 2021, 46(6): 2117-2132. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106012.htm
[42] 王世成, 杨仲杰, 杨菊, 等. 辽东石庙沟岩体岩石地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 429-441 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202102010.htm
[43] 王凯垒, 张学萌, 李会恺, 等. 内蒙古阿拉善地块北缘雅布赖地区埃达克岩锆石U-Pb年龄、岩石成因和构造背景[J]. 地质通报, 2021, 40(9): 1443-1458. https://www.cgsjournals.com/article/id/618264baed73f82cf6237d47
[44] Jiang X F, Peng S B, Kusky T M, et al. Petrogenesis and geotectonic significance of Early-Neoproterzoic olivine-gabbro within the Yangtze Craton: constrains from the mineral composition, U-Pb age and Hf isotopes of zircons[J]. Journal of Earth Science, 2018, 29(1): 93-102.
[45] 张山, 巫建华, 刘帅, 等. 赣南古家营盆地英安岩时代、成因及对早古生代构造演化的制约[J]. 地质通报, 2021, 40(9): 1459-1475. https://www.cgsjournals.com/article/id/618264b8ed73f82cf6237d3a
[46] Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983.