河北廊坊南部地区地热水化学特征及成因机制

汪洋, 张旭虎, 蒲丛林, 郭辉, 王锦彪, 刘超. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报, 2022, 41(9): 1698-1706. doi: 10.12097/j.issn.1671-2552.2022.09.017
引用本文: 汪洋, 张旭虎, 蒲丛林, 郭辉, 王锦彪, 刘超. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报, 2022, 41(9): 1698-1706. doi: 10.12097/j.issn.1671-2552.2022.09.017
WANG Yang, ZHANG Xuhu, PU Conglin, GUO Hui, WANG Jinbiao, LIU Chao. The hydrochemical characteristics of geothermal water and its formation in the south Langfang,Hebei Province[J]. Geological Bulletin of China, 2022, 41(9): 1698-1706. doi: 10.12097/j.issn.1671-2552.2022.09.017
Citation: WANG Yang, ZHANG Xuhu, PU Conglin, GUO Hui, WANG Jinbiao, LIU Chao. The hydrochemical characteristics of geothermal water and its formation in the south Langfang,Hebei Province[J]. Geological Bulletin of China, 2022, 41(9): 1698-1706. doi: 10.12097/j.issn.1671-2552.2022.09.017

河北廊坊南部地区地热水化学特征及成因机制

  • 基金项目:
    河北省地质资源环境监测与保护重点实验室项目《廊坊市地热水文地球化学特征及成因机制研究》(编号:JCYKT201915)
详细信息
    作者简介: 汪洋(1990- ),男,工程师,从事水文地质与环境地质研究。E-mail:wangyang0ts@sina.com
  • 中图分类号: P641.11

The hydrochemical characteristics of geothermal water and its formation in the south Langfang,Hebei Province

  • 地热资源的开发利用带来了良好的经济效益和社会价值, 但不合理地开发利用地热资源, 会对地表水及浅层地下水造成重大污染。通过水化学分析和水文地球化学模拟手段, 分析了廊坊南部地区地下热水水化学特征及水质的成因机制。研究表明:新近系孔隙热储中, 明化镇组热储地下热水主要水化学类型为HCO3-Na型、HCO3·Cl-Na型;馆陶组热储地下热水水化学类型以Cl-Na型、Cl·HCO3-Na型为主, 该层水力联系较好, 地热水径流区内主要水岩作用为硫酸盐、硅酸盐矿物的溶解作用, 以及阳离子交替吸附作用。基岩裂隙热储地下热水水化学类型为Cl-Na型, 该层水力联系较弱, 阳离子交替吸附作用是水化学演化的主要水岩相互作用。基于PHREEQC的水文地球化学定量模拟, 揭示了地质背景、水文地质条件及人类活动因素共同控制的地下热水的流场和水岩相互作用的程度, 在研究廊坊地区地热水水化学演化机理及地热水动态特征方面具有一定的意义。

  • 加载中
  • 图 1  研究区地热异常分布(a)及地热地质示意模型图(b)[4]

    Figure 1. 

    图 2  Piper图

    Figure 2. 

    图 3  研究区地下热水中离子关系图

    Figure 3. 

    图 4  研究区地热水氢氧同位素组成

    Figure 4. 

    表 1  研究区地热水化学指标统计结果

    Table 1.  Chemical indexes of geothermal water in the study area

    水化学指标 明化镇组 馆陶组 雾迷山组
    均值 标准差 变异系数 均值 标准差 变异系数 均值 标准差 变异系数
    T/℃ 40 7.29 0.18 62 8.05 0.13 90 7.93 0.09
    pH 8.25 0.14 0.02 8.17 0.20 0.02 7.53 0.36 0.05
    TDS/(mg·L-1) 718.50 47.67 0.07 2248.15 776.52 0.35 3028.10 78.89 0.03
    Na+/(mg·L-1) 197.92 13.35 0.07 776.70 296.61 0.38 967.77 27.73 0.03
    K+/(mg·L-1) 2.91 2.33 0.80 6.78 2.43 0.36 53.04 12.20 0.23
    Ca2+/(mg·L-1) 7.61 1.97 0.26 23.70 20.94 0.88 48.64 10.03 0.21
    Mg2+/(mg·L-1) 1.84 1.51 0.82 1.77 1.01 0.57 23.40 7.81 0.33
    HCO3-/(mg·L-1) 393.60 54.12 0.14 356.43 85.93 0.24 454.14 22.85 0.05
    SO42-/(mg·L-1) 17.82 8.31 0.47 14.77 15.60 1.06 2.90 4.35 1.50
    Cl-/(mg·L-1) 66.35 15.33 0.23 1020.13 538.98 0.53 1398.85 41.14 0.03
    F-/(mg·L-1) 0.80 0.21 0.26 3.00 0.59 0.20 10.05 0.93 0.09
    SiO2/(mg·L-1) 24.29 6.45 0.27 40.81 8.15 0.20 69.70 16.41 0.24
    下载: 导出CSV

    表 2  区域地下热水同位素统计结果

    Table 2.  Statistical results of regional geothermal water isotopes  

    指标 雾迷山组 明化镇组 馆陶组
    WR1 WN6 WD23 WD24 WB25 MGR1 MB2-2 MB2-1 MB1-1 GD08 GPR1 GSR2
    δD -77.60 -77.40 -75.10 -78.00 -76.20 -79.20 -78.09 -80.10 -81.40 -66.40 -71.20 -78.30
    δ18O -9.00 -9.29 -8.91 -9.13 -9.16 -10.00 -11.01 -11.26 -11.44 -9.14 -9.00 -9.42
    下载: 导出CSV

    表 3  地下热水化学反应模拟结果

    Table 3.  Results of chemical reaction simulation of subsurface hot water

    明化镇组热储模拟路径 水样 SI钠长石 SI方解石 SI白云石 SI萤石 SI石膏 SI岩盐 SI钾长石 SI高龄石 SI石英 /
    ML11 -1.49 0.42 1.01 -2.48 -3.21 -6.49 -1.34 0.10 0.43 /
    ML8 -1.64 0.51 0.37 -2.64 -3.49 -6.62 -1.58 -0.03 0.35 /
    矿物溶解(沉淀)/(mmol·L-1)
    钠长石 方解石 白云石 萤石 石膏 岩盐 钾长石 高龄石 石英 CaX2 NaX
    0.9470 -0.8021 -0.3325 0.0016 0.3617 0.4506 0.0077 -0.4774 -1.8680 -0.8221 1.9160
    馆陶组热储模拟路径 水样 SI钠长石 SI方解石 SI白云石 SI萤石 SI石膏 SI岩盐 SI钾长石 SI高龄石 SI石英 /
    GB3 -1.45 0.81 1.29 -1.52 -2.91 -5.03 -1.5 -1.49 0.30 /
    GB35 -1.65 1.09 1.43 -0.82 -1.09 -4.40 -0.83 -0.49 0.41 /
    矿物溶解(沉淀)/(mmol·L-1)
    钠长石 方解石 白云石 萤石 石膏 岩盐 钾长石 高龄石 石英 CaX2 NaX
    0.8170 -0.7093 -0.2850 0.0013 0.3549 0.4316 0.0559 0.0809 -0.0394 0.1546 -1.3974
    雾迷山组热储模拟路径 水样 SI钠长石 SI方解石 SI白云石 SI萤石 SI石膏 SI岩盐 SI钾长石 SI高龄石 SI石英 /
    JB5 -0.46 1.33 2.81 0.02 -3.56 -4.63 -0.2 0.62 0.52 /
    JB31 -1.85 0.92 1.83 -0.07 -3.81 -4.69 -1.46 1.44 0.23 /
    矿物溶解(沉淀)/(mmol·L-1)
    钠长石 方解石 白云石 萤石 石膏 岩盐 钾长石 高龄石 石英 CaX2 NaX
    0.7160 -1.6620 -0.2345 0.0161 0.0222 0.2583 0.0230 -1.3690 -5.4430 -1.6400 2.8110
    注:矿物溶解(沉淀)数据中,正值代表溶解量,负值代表沉淀量
    下载: 导出CSV
  • [1]

    桂和荣.皖北矿区地下水水文地球化学特征及判别模式研究[D].中国科技大学博士学位论文, 2005.

    [2]

    左文喆, 任永强, 杨豹, 等. 采动条件下沉积变质型铁矿床水化学特征及控制因素——以司家营铁矿南区为例[J]. 地球科学, 2020, 45(4) : 1427-1438. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004024.htm

    [3]

    许鹏, 谭红兵, 张燕飞, 等. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 2018, 45(6) : 1142-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806006.htm

    [4]

    张德忠, 刘志刚, 卢红柳, 等. 河北地热[M]. 北京: 地质出版社, 2013.

    [5]

    陈墨香, 汪集旸, 汪缉安, 等. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 1990, (1) : 80-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199001007.htm

    [6]

    阎敦实, 于英太. 京津冀油区地热资源评价与利用[M], 武汉: 中国地质大学出版社, 2000.

    [7]

    王永波, 丁文萍, 田月, 等. 河北牛驼镇地热田高温地热水成因分析[J]. 城市地质, 2016, 11(3) : 59-64. doi: 10.3969/j.issn.1007-1903.2016.03.011

    [8]

    杨吉龙, 柳富田, 贾志, 等. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J]. 地球学报, 2018, 39(1) : 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201801008.htm

    [9]

    徐敏, 王立兵, 谢德尚. 灰色系统GM(1, 1) 模型在地下热水水位预测中的应用——以河北省廊坊市为例[J]. 中国地质灾害与防治学报, 2018, 29(4) : 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201804020.htm

    [10]

    张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6) : 1838-1852.

    [11]

    徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009.

    [12]

    陈陆望, 许冬清, 殷晓曦, 等. 华北隐伏型煤矿区地下水化学及其控制因素分析——以宿县矿区主要突水含水层为例[J]. 煤炭学报, 2017, 42(4) : 996-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704024.htm

    [13]

    赵佳怡, 张薇, 张汉雄, 等. 四川巴塘地热田水文地球化学特征及成因[J]. 水文地质工程地质, 2019, 46(4) : 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904012.htm

    [14]

    Spycher N, Peiffer L, Sonnenthal E. Integrated multicomponent solute geothermometry[J]. Gothermics, 2014, (51) : 113-123.

    [15]

    Yurtsever Y, Gate J R. Atmospheric waters[C]//Gate J R, Gonfiantini R. Stable Isotope Hydrology. Vienna, IAEA, 1981: 103-142.

    [16]

    宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究, 2007, (1) : 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200701001.htm

    [17]

    沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993.

    [18]

    郭钰颖, 吕智超, 王广才, 等. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探. 2016, 44(6) : 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201606019.htm

    [19]

    牛树银, 孙爱群, 李红阳. 华北地区地热特征及其成因机制[J]. 地学前缘, 2001, (1) : 112. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200101022.htm

    [20]

    文冬光, 沈照理, 钟佐. 地球化学模拟及其在水文地质中的应用[J]. 地质科技情报, 1995, 14(1) : 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.018.htm

    [21]

    Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1997, 5: 41-50.

    [22]

    Frengstad B, Skrede A K M, Banks D, et al. The chemistry of Norwegian groundwaters Ⅲ. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analyzed by ICP-MS techniques[J]. The Science of the Total Environment, 2000, (246) : 21-40.

  • 加载中

(4)

(3)

计量
  • 文章访问数:  595
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2020-04-15
修回日期:  2020-06-23
刊出日期:  2022-09-15

目录