海南岛北部晚新生代沉积物Sr-Nd同位素组成及其物源示踪

张磊, 麦发海, 王超群, 贾丽云, 张耀玲, 孙东霞, 胡道功. 海南岛北部晚新生代沉积物Sr-Nd同位素组成及其物源示踪[J]. 地质通报, 2022, 41(11): 1996-2006. doi: 10.12097/j.issn.1671-2552.2022.11.008
引用本文: 张磊, 麦发海, 王超群, 贾丽云, 张耀玲, 孙东霞, 胡道功. 海南岛北部晚新生代沉积物Sr-Nd同位素组成及其物源示踪[J]. 地质通报, 2022, 41(11): 1996-2006. doi: 10.12097/j.issn.1671-2552.2022.11.008
ZHANG Lei, MAI Fahai, WANG Chaoqun, JIA Liyun, ZHANG Yaoling, SUN Dongxia, HU Daogong. Sr-Nd isotopic composition and provenance tracing of Late Cenozoic sediments in the northern Hainan Island[J]. Geological Bulletin of China, 2022, 41(11): 1996-2006. doi: 10.12097/j.issn.1671-2552.2022.11.008
Citation: ZHANG Lei, MAI Fahai, WANG Chaoqun, JIA Liyun, ZHANG Yaoling, SUN Dongxia, HU Daogong. Sr-Nd isotopic composition and provenance tracing of Late Cenozoic sediments in the northern Hainan Island[J]. Geological Bulletin of China, 2022, 41(11): 1996-2006. doi: 10.12097/j.issn.1671-2552.2022.11.008

海南岛北部晚新生代沉积物Sr-Nd同位素组成及其物源示踪

  • 基金项目:
    国家自然科学基金项目《淮北平原更新世沉积物中记录的黄河入淮事件研究》(批准号: 41807421)、中国地质调查局项目《海南岛及近海活动断裂与地壳稳定性调查评价》(编号: DD20190306)、《地表过程与系统演变地质调查》(编号: DD20221644)和中国地质科学院地质力学研究所中央财政科研项目结余经费新开项目(编号: 所科研62)
详细信息
    作者简介: 张磊(1986-), 男, 博士, 助理研究员, 从事晚新生代地质与环境研究。E-mail: zhanglei1921@163.com
  • 中图分类号: P534.6;P597

Sr-Nd isotopic composition and provenance tracing of Late Cenozoic sediments in the northern Hainan Island

  • 海南岛北部(琼北)巨厚的晚新生代沉积物记录了海南岛晚新生代气候与环境演化信息。但关于该沉积物Sr-Nd同位素方法的物源示踪研究还比较缺乏。以琼北钻遇基岩的钻孔(ZK1-5)为研究对象, 以Sr-Nd同位素组成为示踪手段, 开展了其物源示踪研究。结果表明: 海南岛北部于晚新生代中新世—更新世经历了从滨浅海相沉积—海陆交互相沉积—陆相沉积—火山喷发环境的转变, 中新世海相沉积Sr同位素比值(平均值0.727002)整体高于上新世海陆过渡相和更新世陆相沉积的Sr同位素比值(平均值0.714917), 表明海相沉积比海陆过渡相和陆相沉积风化程度更高。海相、海陆过渡相及陆相沉积的Nd同位素组成没有发生明显变化, 较一致, 表明海陆环境变迁并没有引起该地区物源发生重大变化。而琼北晚新生代沉积物εNd(0)值分布范围(-14.0~-5.1)与岛内花岗质岩石的εNd(0)值分布范围(-14.1~-5.2)基本一致, 与岛内变质岩(1.2~8.5)和玄武岩类岩石(1.9~7.8)的εNd(0)值差别较大, 表明其源岩主要来自海南岛花岗质岩石, 变质岩和玄武岩贡献较小, 这可能与岛内花岗质岩石分布范围广有关。对琼北地区晚新生代沉积物Sr-Nd同位素组成特征的认识, 有助于深入理解晚新生代海南岛风化过程及环境变化, 并对南海物源及古海陆环境重建具有重要意义。

  • 加载中
  • 图 1  海南岛地质简图及钻孔位置(据参考文献[42-43]修改)

    Figure 1. 

    图 2  海南岛北部ZK1-5钻孔综合柱状图

    Figure 2. 

    图 3  海南岛北部ZK1-5钻孔与邻区钻孔晚新生代地层对比(JDSJ7、JDSJ12、JDSJ77、JDSK4和JDSK14据参考文献[56-57])

    Figure 3. 

    图 4  海南岛北部晚新生代沉积物与岛内源岩的87Sr/86Sr和143Nd/144Nd组成对比

    Figure 4. 

    表 1  琼北ZK1-5钻孔岩性描述及划分

    Table 1.  Lithofacies classification of the ZK1-5 core in the northern Hainan Island

    岩性划分 深度范围/m 岩性描述
    0~9.80 浅灰色气孔状橄榄玄武岩、玄武岩风化壳,玄武岩为斑状结构,气孔状构造,斑晶成分为橄榄石,粒径大小0.5~1 mm,含量约为5%。基质为隐晶质,气孔较发育,大小一般0.5~1 mm。5.3~5.6 m处气孔较大,大小1.5~5 mm
    9.80~14.00 灰白色-灰黄色砂砾层,松散状,主要成分为砾石,含量50%~60%,粒径一般2~6 mm,最大可达3 cm,次棱角状—次圆状;粗砂含量20%~40%;中砂含量10%~20%,该层总体上分选性中等、磨圆度中等
    14.00~46.60 含砾生物碎屑砂岩-贝壳砂砾岩互层。含砾生物碎屑砂岩为浅灰白色、灰黄色,大多呈弱固结,生物碎屑含量约30%,主要为有孔虫、贝壳,砂、砾成分主要为石英,粒径0.3~2 mm,少部分2~4 mm,多呈次棱角—次圆状。贝壳砂砾岩为肉红色、黄褐色,生物碎屑结构,钙质胶结,半成岩,块状构造。含完整贝壳,直径1~5 cm,含量约30%。含少量海绿石(图 2)
    46.60~71.00 灰绿色-浅灰含砾粘土质黑色中粗砂,半松散状,粘土含量约占20%;中砂含量约占40%,成分主要为石英,多呈次棱角—次圆状,粒径大小一般0.2~0.5 mm;粗砂矿物成分主要为石英,次为长石,多呈次棱角—次圆状,粒径大小0.5~2 mm,含量约占20%
    71.00~101.25 深灰绿色粘土质粉细砂,半松散状,富含海绿石。矿物成分主要为粘土25%,粉砂35%和细砂40%。砂的成分主要为石英,次为长石,多呈次棱角-次圆状。粒径大小一般为0.06~0.2 mm。其中81.1~81.6 m处和90.4~91.1 m处夹灰红色泥岩
    101.25~130.50 青灰色、灰绿色粉砂质粘土-粘土质粉细砂,可塑状,矿物成分主要为粘土,手搓有砂感,可搓成条状,含少量粉砂,约15%。粘土质粉细砂,矿物成分主要为粘土25%,粉砂35%和细砂40%。砂的成分主要为石英,次为长石,多呈次棱角—次圆状,粒径大小0.06~0.25 mm,含海绿石(图 2)
    130.50~141.20 糜棱岩(基岩),灰白色,糜棱结构,碎斑结构,眼球状构造,碎斑成分主要为钾长石,基质主要有石英、云母等,致密坚硬
    下载: 导出CSV

    表 2  海南岛北部ZK1-5钻孔岩心的Sr-Nd同位素组成

    Table 2.  Sr-Nd istopic data of borehole ZK1-5 in the northern Hainan Island

    样品编号 岩性 87Sr/86Sr ±2σ 143Nd/144Nd ±2σ εNd(0) 时代
    ZK1-5-6.4m 玄武岩 0.704199 0.000018 0.512918 0.000009 5.5 中更新世
    ZK1-5-14.1 m 陆相沉积物 0.722820 0.000014 0.512207 0.000006 -8.4 早更新世
    ZK1-5-20.4 m 海陆过渡相沉积物 0.710000 0.000020 0.512188 0.000007 -8.8 上新世
    ZK1-5-31.6 m 海陆过渡相沉积物 0.713605 0.000012 0.512124 0.000006 -10.0 上新世
    ZK1-5-42.7 m 海陆过渡相沉积物 0.713421 0.000017 0.512378 0.000007 -5.1 上新世
    ZK1-5-45.2 m 海陆过渡相沉积物 0.711756 0.000016 0.512289 0.000008 -6.8 上新世
    ZK1-5-53.3 m 海相沉积物 0.730797 0.000018 0.512205 0.000011 -8.4 晚中新世
    ZK1-5-63.4 m 海相沉积物 0.729617 0.000018 0.512105 0.000007 -10.4 晚中新世
    ZK1-5-77.8 m 海相沉积物 0.718396 0.000017 0.512337 0.000010 -5.9 中中新世
    ZK1-5-83.7 m 海相沉积物 0.728399 0.000019 0.511919 0.000006 -14.0 中中新世
    ZK1-5-93.7 m 海相沉积物 0.730398 0.000014 0.512058 0.000011 -11.3 中中新世
    ZK1-5-103.4 m 海相沉积物 0.727270 0.000020 0.512191 0.000010 -8.7 早中新世
    ZK1-5-113.7 m 海相沉积物 0.727790 0.000016 0.512065 0.000006 -11.2 早中新世
    ZK1-5-127.8 m 海相沉积物 0.728163 0.000017 0.512092 0.000006 -10.7 早中新世
    ZK1-5-141.7 m 变质岩 0.763657 0.000023 0.511871 0.000007 -15.0
    下载: 导出CSV
  • [1]

    Mounteney I, Casson M, Rushton J, et al. Cenozoic to modern-day source to sink systems of Senegal: A record of provenance, transport, recycling and climate controls[J]. Journal of African Earth Sciences, 2021, 178: 104150. doi: 10.1016/j.jafrearsci.2021.104150

    [2]

    Zhang L, Qin X, Liu J, et al. Geochemistry of sediments from the Huaibei Plain(east China) : Implications for provenance, weathering, and invasion of the Yellow River into the Huaihe River[J]. Journal of Asian Earth Sciences, 2016, 121: 72-83. doi: 10.1016/j.jseaes.2016.02.008

    [3]

    林旭, 刘静, 吴中海, 等. 渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报, 2021, 27(2) : 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202102014.htm

    [4]

    Bentley Sr S, Blum M, Maloney J, et al. The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene[J]. Earth-Science Reviews, 2016, 153: 139-174. doi: 10.1016/j.earscirev.2015.11.001

    [5]

    黄永金, 陶春辉, 梁锦, 等. 西南印度洋中脊轴部裂谷(49.58°E) 沉积物岩心地球化学特征及物源[J]. 地质通报, 2021, 40(2) : 320-329. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2021020313&flag=1

    [6]

    杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5) : 902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003

    [7]

    李铁刚, 曹奇原, 李安春, 等. 从源到汇: 大陆边缘的沉积作用[J]. 地球科学进展, 2003, 18(5) : 713-721. doi: 10.3321/j.issn:1001-8166.2003.05.011

    [8]

    Li X H, Wei G, Shao L, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 2003, 211(3) : 207-220.

    [9]

    Chi G, Liu B. Sedimentary source area and paleoenvironmental reconstruction since late Miocene in the southern South China Sea[J]. Geochemistry, 2020, 80(1) : 125567. doi: 10.1016/j.chemer.2019.125567

    [10]

    Liu Z, Zhao Y, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    [11]

    蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, (1) : 113-121. doi: 10.3969/j.issn.1671-6647.2011.01.014

    [12]

    田成静, 欧阳婷萍, 朱照宇, 等. 海南岛周边海域表层沉积物磁化率空间分布特征及其物源指示意义[J]. 热带地理, 2013, 33(6) : 666-673. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201306003.htm

    [13]

    吴敏. 海南岛周边海域环境变化的粘土矿物学研究[D]. 中国地质大学(北京) 博士学位论文, 2007.

    [14]

    叶翔, 徐勇航, 王爱军, 等. 海南岛东南部陆架晚全新世以来海洋沉积物来源与环境变化特征[J]. 第四纪研究, 2016, 36(1) : 18-30.

    [15]

    田旭, 徐方建, 吴淑壮, 等. 中全新世以来琼东南陆架粘土矿物特征及物质来源[J]. 地球科学, 2015, 40(9) : 1497-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201509005.htm

    [16]

    周渭. 海南岛近海表层沉积物中辉石与角闪石的成因及物源研究[D]. 中国地质大学(北京) 硕士学位论文, 2007.

    [17]

    Shao L, Cao L, Pang X, et al. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2) : 255-269. doi: 10.1002/2015GC006113

    [18]

    Wang C, Liang X, Zhou Y, et al. Construction of age frequencies of provenances on the eastern side of the Yinggehai Basin: Studies of LA-ICP-MS U-Pb ages of detrital zircons from six modern rivers, western Hainan, China[J]. Earth Science Frontiers, 2015, 22(4) : 277-289.

    [19]

    Wang C, Liang X, Foster D A, et al. Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai-Song Hong Basin, South China Sea[J]. AAPG Bulletin, 2019, 103(7) : 1525-1552. doi: 10.1306/11211817270

    [20]

    马荣林, 杨奕, 何玉生. 海南岛南渡江近岸河口沉积物稀土元素地球化学[J]. 中国稀土学报, 2010, 28(1) : 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201001022.htm

    [21]

    王军广. 海南岛北部红树林地区沉积物元素地球化学特征研究[D]. 海南师范大学硕士学位论文, 2011.

    [22]

    韩卓汝. 海南岛北部潮间带沉积物稀土元素富集规律及其生态效应研究[D]. 海南师范大学硕士学位论文, 2013.

    [23]

    Goldstein S J, Jacobsen S B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution[J]. Earth Planetary Science Letters, 1988, 87(3) : 249-265. doi: 10.1016/0012-821X(88)90013-1

    [24]

    Borg L E, Banner J L. Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies[J]. Geochimica et Cosmochimica Acta, 1996, 60(21) : 4193-4206. doi: 10.1016/S0016-7037(96)00252-9

    [25]

    綦琳, 乔彦松, 刘宗秀, 等. 陇东新近纪红粘土与第四纪黄土地球化学特征及其物源和风化指示意义[J]. 地质力学学报, 2021, 27(3) : 475-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202103013.htm

    [26]

    Zaarur S, Stein M, Adam O, et al. Late Quaternary climate in southern China deduced from Sr-Nd isotopes of Huguangyan Maar sediments[J]. Earth and Planetary Science Letters, 2018, 496: 10-19. doi: 10.1016/j.epsl.2018.05.025

    [27]

    Bretschneider L, Hathorne E C, Huang H, et al. Provenance and weathering of clays delivered to the Bay of Bengal during the middle Miocene: Linkages to tectonics and monsoonal climate[J]. Paleoceanography and Paleoclimatology, 2021, 36(2) : e2020PA003917.

    [28]

    Zou J, Shi X, Zhu A, et al. Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern Sea of Japan[J]. Marine Geology, 2021, 432: 106393. doi: 10.1016/j.margeo.2020.106393

    [29]

    Ali S, Hathorne E C, Frank M J P. Persistent provenance of South Asian monsoon-induced silicate weathering over the past 27 million years[J]. Paleoceanography and Paleoclimatology, 2021, 36(3) : e2020PA003909.

    [30]

    Goldstein S L, O'nions R K, Hamilton P J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems[J]. Earth and Planetary Science Letters, 1984, 70(2) : 221-236. doi: 10.1016/0012-821X(84)90007-4

    [31]

    Zhang L, Zhang Y, Cui X, et al. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks[J]. Precambrian Research, 2019, 325: 69-87. doi: 10.1016/j.precamres.2019.02.013

    [32]

    汪啸风, 马大铨, 蒋大海. 海南岛地质(三) : 构造地质[M]. 北京: 地质出版社, 1991.

    [33]

    张立敏, 王岳军, 张玉芝, 等. 海南岛北部古生界时代: 碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4) : 1187-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704019.htm

    [34]

    汪啸风, 马大铨, 蒋大海. 海南岛地质(一) : 地层古生物[M]. 北京: 地质出版社, 1991: 1-280.

    [35]

    王超, 魏昌欣, 云平, 等. 海南岛五指山地区顺作花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(8) : 1352-1361. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190811&flag=1

    [36]

    He H, Wang Y, Cawood P A, Et al. Permo-Triassic granitoids, Hainan Island, link to Paleotethyan not Paleopacific tectonics[J]. GSA Bulletin, 2020, 132(9/10) : 2067-2083.

    [37]

    汪啸风, 马大铨, 蒋大海. 海南岛地质(二) : 岩浆岩[M]. 北京: 地质出版社, 1991.

    [38]

    廖香俊, 王平安, 覃海灿, 等. 海南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时代[J]. 地质通报, 2008, 27(4) : 560-570. doi: 10.3969/j.issn.1671-2552.2008.04.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080413&flag=1

    [39]

    张家友, 傅杨荣, 陈沐龙, 等. 海南岛北部新生代火山岩风化成矿作用[J]. 地质论评, 2013, 59(z1) : 1237-1238. https://cdmd.cnki.com.cn/Article/CDMD-10491-1013110026.htm

    [40]

    张仲英, 刘瑞华, 韩中元. 海南岛沿海的第四纪地层[J]. 热带地理, 1987, 7(1) : 54-64. doi: 10.13284/j.cnki.rddl.001914

    [41]

    Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys[J]. Australian Journal of Earth Sciences, 1996, 43(6) : 605-623. doi: 10.1080/08120099608728282

    [42]

    Liu X, Chen Y, Wang W R, et al. Carboniferous eclogite and garnet-omphacite granulite from northeastern Hainan Island, South China: Implications for the evolution of the eastern Palaeo-Tethys[J]. Journal of Metamorphic Geology, 2021, 39(1) : 101-132. doi: 10.1111/jmg.12563

    [43]

    Shen L, Yu J H, O'reilly S Y, et al. Subduction-related middle Permian to early Triassic magmatism in central Hainan Island, South China[J]. Lithos, 2018, 318/319: 158-175. doi: 10.1016/j.lithos.2018.08.009

    [44]

    朱炳泉, 王慧芬. 雷琼地区MORB-OIB过渡型地幔源火山作用的Nd-Sr-Pb同位素证据[J]. 地球化学, 1989, 3: 193-201. doi: 10.3321/j.issn:0379-1726.1989.03.001

    [45]

    Xu D R, Wu C J, Hu G C, et al. Late Mesozoic molybdenum mineralization on Hainan Island, South China: Geochemistry, geochronology and geodynamic setting[J]. Ore Geology Reviews, 2016, 72: 402-433. doi: 10.1016/j.oregeorev.2015.07.023

    [46]

    Wang Q, Li X H, Jia, X H, et al. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province(South China) : Partial melting of lower crust and mantle, and magma hybridization[J]. Chemical Geology, 2012, 328: 222-243. doi: 10.1016/j.chemgeo.2012.04.029

    [47]

    贾小辉, 王强, 唐功建, 等. 海南屯昌早白垩世晚期埃达克质侵入岩的锆石U-Pb年代学、地球化学与岩石成因[J]. 地球化学, 2010, 39(6) : 3-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201006002.htm

    [48]

    周佐民, 谢才富, 徐倩, 等. 海南岛中三叠世正长岩-花岗岩套的地质地球化学特征与构造意义[J]. 地质论评, 2011, 57(4) : 61-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201104007.htm

    [49]

    Yan Q, Chen Z, Shi X. A middle Triassic extensional event in the Hainan Island: Geochronologic and geochemical evidence from igneous rocks from Dazhou Island[J]. Geochemistry International, 2017, 55(12) : 1066-1078. doi: 10.1134/S0016702917120035

    [50]

    葛小月, 李献华, 周汉文. 琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr-Nd同位素研究[J]. 地球化学, 2003, 32(1) : 11-20. doi: 10.3321/j.issn:0379-1726.2003.01.002

    [51]

    谢才富, 朱金初, 丁式江, 等. 海南尖峰岭花岗岩体的形成时代, 成因及其与抱伦金矿的关系[J]. 岩石学报, 2006, 22(10) : 2493-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610009.htm

    [52]

    许德如, 梁新权, 陈广浩, 等. 海南岛中元古代花岗岩地球化学及成因研究[J]. 大地构造与成矿学, 2001, 25(4) : 420-433. doi: 10.3969/j.issn.1001-1552.2001.04.009

    [53]

    Dodson J, Li J, Lu F, et al. A Late Pleistocene and Holocene vegetation and environmental record from Shuangchi Maar, Hainan Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 523: 89-96. doi: 10.1016/j.palaeo.2019.03.026

    [54]

    郭恩华, 王鼎祥, 陈琍. 海南岛降水与季风的关系[J]. 热带地理, 1982, (1) : 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD198201004.htm

    [55]

    高抒, 周亮, 李高聪, 等. 海南岛全新世海岸演化过程与沉积记录[J]. 第四纪研究, 2016, 35(1) : 1-17.

    [56]

    梁定勇, 许国强, 肖瑶, 等. 海口江东新区新近纪—第四纪标准地层与组合分区[J]. 科学技术与工程, 2021, 21(26) : 11052-11063. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202126007.htm

    [57]

    梁定勇, 许国强, 肖瑶, 等. 海南岛北部新近纪—第四纪地层结构与沉积演化模式[J]. 地层学杂志, 2021, 45(4) : 554-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202104007.htm

    [58]

    Újvári G, Varga A, Ramos F C, et al. Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance: An example from loess of the Carpathian Basin[J]. Chemical Geology, 2012, 304/305: 83-96.

    [59]

    Jacobsen S B, Wasserburg G. Sm-Nd isotopic evolution of chondrites[J]. Earth Planetary Science Letters, 1980, 50(1) : 139-155.

    [60]

    韦刚健, 桂训唐, 李献华, 等. 南沙NS90-103钻孔沉积物Sr-Nd同位素组成及其气候环境信息探讨[J]. 中国科学(D辑), 2000, 30(3) : 249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200003003.htm

    [61]

    Dasch E J. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1969, 33(12) : 1521-1552.

    [62]

    Derry L A, France-Lanord C. Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record[J]. Earth Planetary Science Letters, 1996, 142(1/2) : 59-74.

    [63]

    Larsen H C, Saunders A D, Clift P D, et al. Seven million years of glaciation in greenland[J]. Science, 1994, 264(5161) : 952.

    [64]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517) : 686-693.

    [65]

    高为利, 张富元, 章伟艳, 等. 海南岛周边海域表层沉积物粒度分布特征[J]. 海洋通报, 2009, 28(2) : 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB200902014.htm

    [66]

    Goldstein S, O'nions R. Nd and Sr isotopic relationships in pelagic clays and ferromanganese deposits[J]. Nature, 1981, 292(5821) : 324-327.

    [67]

    杨守业, 蒋少涌, 凌洪飞, 等. 长江河流沉积物Sr-Nd同位素组成与物源示踪[J]. 中国科学(D辑), 2007, 37(5) : 682-690. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200705012.htm

    [68]

    Yu Z, Colin C, Wan S, et al. Sea level-controlled sediment transport to the eastern Arabian Sea over the past 600 kyr: Clay minerals and SrNd isotopic evidence from IODP site U1457[J]. Quaternary Science Reviews, 2019, 205: 22-34.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1417
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2022-05-05
修回日期:  2022-08-31
刊出日期:  2022-11-15

目录