西昆仑玛尔坎苏锰矿带晚石炭世岩相古地理特征及其对成矿的控制

张帮禄, 薛建玲, 吕志成, 于晓飞, 李永胜, 甄世民. 西昆仑玛尔坎苏锰矿带晚石炭世岩相古地理特征及其对成矿的控制[J]. 地质通报, 2022, 41(11): 2047-2064. doi: 10.12097/j.issn.1671-2552.2022.11.013
引用本文: 张帮禄, 薛建玲, 吕志成, 于晓飞, 李永胜, 甄世民. 西昆仑玛尔坎苏锰矿带晚石炭世岩相古地理特征及其对成矿的控制[J]. 地质通报, 2022, 41(11): 2047-2064. doi: 10.12097/j.issn.1671-2552.2022.11.013
ZHANG Banglu, XUE Jianling, LYU Zhicheng, YU Xiaofei, LI Yongsheng, ZHEN Shimin. Lithofacies paleogeographical characteristics of the Late Carboniferous Malkansu metallogenic zone in West Kunlun and its control on manganese carbonates mineralization[J]. Geological Bulletin of China, 2022, 41(11): 2047-2064. doi: 10.12097/j.issn.1671-2552.2022.11.013
Citation: ZHANG Banglu, XUE Jianling, LYU Zhicheng, YU Xiaofei, LI Yongsheng, ZHEN Shimin. Lithofacies paleogeographical characteristics of the Late Carboniferous Malkansu metallogenic zone in West Kunlun and its control on manganese carbonates mineralization[J]. Geological Bulletin of China, 2022, 41(11): 2047-2064. doi: 10.12097/j.issn.1671-2552.2022.11.013

西昆仑玛尔坎苏锰矿带晚石炭世岩相古地理特征及其对成矿的控制

  • 基金项目:
    国家自然科学基金项目《西昆仑石炭纪沉积锰矿床所需特定水体环境的形成机制探究》(批准号: 42102114)和《西昆仑玛尔坎苏石炭纪大型碳酸锰成矿带: 主要控制因素及成矿规律》(批准号: U1703242)、中国博士后科学基金资助项目《西昆仑玛尔坎苏地区锰矿石中REE的赋存形式及碳酸锰沉积成岩转化过程量化研究》(编号: 2021M703018)和中国地质调查局项目《矿集区矿产调查及深部找矿预测》(编号: DD20190570、DD20190571)
详细信息
    作者简介: 张帮禄(1987-), 男, 博士后, 矿物学、岩石学、矿床学专业。E-mail: zhangbanglu2008@126.com
    通讯作者: 吕志成(1966-), 男, 研究员, 地球化学专业。E-mail: zhichenglv@163.com
  • 中图分类号: P534.45;P531;P618.32

Lithofacies paleogeographical characteristics of the Late Carboniferous Malkansu metallogenic zone in West Kunlun and its control on manganese carbonates mineralization

More Information
  • 西昆仑玛尔坎苏锰矿带晚石炭世沉积岩系发育中国最富的大型碳酸锰矿床。含锰岩系岩相古地理在控制沉积锰矿形成方面具有重要意义, 但目前对玛尔坎苏锰矿带晚石炭世岩相古地理特征缺乏系统研究。通过对该锰矿带内典型地段沉积剖面沉积相展布规律研究, 表明矿带两端及中部含锰岩系(C2k)表现为浅水环境碳酸盐岩台地相沉积特征; 而在穆呼-玛尔坎土和奥尔托喀讷什矿区含锰岩系则主要发育深水台盆相沉积。斜坡相-台盆相沉积时空变化特征反映海进-海退沉积旋回。海进-海退事件可能与区域构造作用下发育的同生断裂活动有关。同生断裂可能控制该地区次级裂陷盆地沉积, 进而控制金属锰的浓集和沉淀。

  • 加载中
  • 图 1  西昆仑玛尔坎苏锰矿带大地构造简图(A)[1]和玛尔坎苏大型碳酸锰矿带地质图(B)[10]

    Figure 1. 

    图 2  青藏高原西北缘及周边地区晚石炭世古地理[15]

    Figure 2. 

    图 3  玛尔坎苏弧后盆地乌赤别里山口、奥尔托喀讷什、苏萨尔布拉克、琼喀讷什沟、穆呼-玛尔坎土和喀拉阿特河剖面地层柱状图(图中展示喀拉阿特河组地层厚度和锰矿化层位据参考文献[10])

    Figure 3. 

    图 4  喀拉阿特河剖面上石炭统沉积特征

    Figure 4. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 5  琼喀讷什沟剖面上石炭统沉积特征

    Figure 5. 

    图 图版Ⅱ   

    Figure 图版Ⅱ. 

    图 图版Ⅲ   

    Figure 图版Ⅲ. 

    图 6  玛尔坎苏锰矿带晚石炭世地层沉积相恢复剖面图

    Figure 6. 

    图 7  玛尔坎苏锰矿带上石炭统喀拉阿特河组(C2k)典型剖面沉积相对比

    Figure 7. 

    图 8  玛尔坎苏锰矿带上石炭统喀拉阿特河组(C2k)地层剖面分布及地层厚度等值线图

    Figure 8. 

    图 9  玛尔坎苏锰矿带晚石炭世岩相古地理分布图

    Figure 9. 

  • [1]

    覃英, 温官国, 李代平. 新疆西昆仑阿克陶地区优质富锰矿的发现及意义[J]. 西部探矿工程, 2014, 8: 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201408035.htm

    [2]

    高永宝, 滕家欣, 陈登辉, 等. 新疆西昆仑玛尔坎苏锰矿带成矿地质特征及找矿方向[J]. 西北地质, 2017, 50(1): 261-269. doi: 10.3969/j.issn.1009-6248.2017.01.022

    [3]

    李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 34(8): 2201-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808001.htm

    [4]

    张帮禄, 张连昌, 冯京, 等. 西昆仑玛尔坎苏地区奥尔托喀讷什大型碳酸锰矿床地质特征及成因探讨[J]. 地质论评, 2018, 64(2): 361-377. doi: 10.16509/j.georeview.2018.02.005

    [5]

    高永宝, 滕家欣, 陈登辉, 等. 西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 矿床地质, 2016, 35(S1): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808010.htm

    [6]

    高永宝, 滕家欣, 李文渊, 等. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 岩石学报, 2018, 34(8): 2341-2358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808010.htm

    [7]

    陈登辉, 隋清霖, 赵晓健, 等. 西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境[J]. 沉积学报, 2019, 37: 477-490. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903004.htm

    [8]

    董志国, 张连昌, 董飞羽, 等. 西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1358-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005007.htm

    [9]

    张连昌, 张帮禄, 董志国, 等. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1340-1357. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005006.htm

    [10]

    Zhang B L, Wang C L, Robbins L J, et al. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in western Kunlun mountains of Xinjiang Province, China: implications for the depositional environment and manganese carbonate mineralization[J]. Economic Geology, 2020, 115(7): 1559-1588. doi: 10.5382/econgeo.4729

    [11]

    Li W J, Peng Z D, Dong Z G, et al. Direct Re-Os dating of manganese ores and implications for the formation of the Ortokarnash manganese deposit, Northwest China[J]. Economic Geology, 2022, 117(1): 237-252. doi: 10.5382/econgeo.4865

    [12]

    贠杰, 高晓峰, 校培喜, 等. 西昆仑下石炭统乌鲁阿特组火山岩地球化学特征及地质意义[J]. 中国地质, 2015, 42(3): 587-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201503014.htm

    [13]

    Zhang C L, Zou H B, Ye X T, et al. Tectonic evolution of the West Kunlun Orogenic Belt along the northern margin of the Tibetan Plateau: implications for the assembly of the Tarim terrane to Gondwana[J]. Geoscience Frontiers, 2018, 10: 973-988.

    [14]

    潘裕生, 方爱民. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 2010, 45(1): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001010.htm

    [15]

    计文化, 陈守建, 李荣社, 等. 青藏高原及领区古生代构造-岩相古地理综合研究[M]. 武汉: 中国地质大学出版社, 2014: 1-381.

    [16]

    李江海, 周肖贝, 李维波, 等. 塔里木盆地及邻区寒武纪-三叠纪构造古地理格局的初步重建[J]. 地质论评, 2015, 61(6): 1225-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201506004.htm

    [17]

    Li S, Zhao S, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75.

    [18]

    刘景彦, 林畅松, 彭丽, 等. 构造不整合的分布样式及其对地层圈闭的制约——以塔里木盆地中泥盆世末为例[J]. 石油与天然气地质, 2008, 29(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200802016.htm

    [19]

    杨永剑, 刘家铎, 田景春, 等. 塔里木盆地下石炭统巴楚组岩相古地理特征及演化[J]. 天然气地球科学, 2011, 22(1): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101013.htm

    [20]

    Matte P, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 1996, 142: 311-330.

    [21]

    Mattern F, Schneider W. Suturing of the Proto-and Paleo-Tethys oceans in the West Kunlun (Xinjiang, China)[J]. Journal of Asian Earth Sciences, 2000, 18: 637-650.

    [22]

    潘裕生. 喀喇昆仑山-昆仑山地区地质演化[M]. 北京: 科学出版社, 2000.

    [23]

    Xiao W J, Windley B F, Liu D Y, et al. Accretionary tectonics of the West Kunlun orogeny, China: a Paleozoic-Early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia[J]. The Journal of Geology, 2005, 113: 687-705.

    [24]

    Jiang Y H, Liao S Y, Yang W Z, et al. An island arc origin of plagiogranites at Oytag, West Kunlun orogeny, northern China: SHRIMP zircon U-Pb chronology, elemental and Sr-Nd-Hf isotopic geochemistry and Paleozoic tectonic implications[J]. Lithos, 2008, 106: 323-335.

    [25]

    Domeier M, Torsvik T H. Plate tectonics in the late Paleozoic[J]. Geosciences Frontier, 2014, 5: 303-350.

    [26]

    Cao H W, Huang Y, Li G M, et al. Late Triassic sedimentary records in the northern Tethys Himalaya: tectonic link with Great India[J]. Geosciences Frontier, 2018, 9: 273-291.

    [27]

    Metcalfe I, Henderson C M, Wakita K. Lower Permian conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, northern Thailand[J]. Gondwana Research, 2017, 44: 54-66.

    [28]

    Chen J T, Montañez I P, Qi Y P, et al. Strontium and carbon isotopic evidence for decoupling of ρCO2 from continental weathering at the apex of the late Paleozoic glaciation[J]. Geology, 2018, 46: 395-398.

    [29]

    Pu R H, Yun L, Su J Y, et al. Growth conditions and 3-D seismic delineation of carboniferous barrier reefs in the southwestern Tarim Basin[J]. Journal of Earth Science, 2014, 25: 315-323.

    [30]

    刘宝珺, 曾允孚. 岩相古地理基础和工作方法[M]. 北京: 地质出版社, 1985.

    [31]

    周琦, 杜远生, 覃英. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式——以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例[J]. 矿床地质, 2013, 32(3): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303001.htm

    [32]

    周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201602001.htm

    [33]

    杜远生, 黄虎, 杨江海, 等. 晚古生代-中三叠世右江盆地的格局和转换[J]. 地质论评, 2013, 59(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201301002.htm

    [34]

    杜远生, 周琦, 余文超, 等. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用[J]. 地质科技情报, 2015, 34(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506001.htm

    [35]

    杨胜堂, 禚喜准, 陈骁帅, 等. 黔东北大塘坡组菱锰矿矿床控矿因素研究[J]. 矿床地质, 2016, 35: 1062-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605013.htm

    [36]

    李升福, 王泽华, 李朗田, 等. 桂西南优质锰矿成矿机理分析[J]. 资源环境与工程, 2009, 23(4): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200904001.htm

    [37]

    杨瑞东, 高军波, 程玛莉, 等. 贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征[J]. 地质学报, 2010, 84(12): 1781-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012007.htm

    [38]

    付勇, 徐志刚, 裴浩翔, 等. 中国锰矿成矿规律初探[J]. 地质学报, 2014, 88(12): 2192-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412004.htm

    [39]

    秦元奎, 张华成, 姚敬劬. 广西大新县下雷锰矿床的地球化学特征及其意义[J]. 地质论评, 2010, 56(5): 664-672. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201005009.htm

    [40]

    欧莉华. 桂西南地区上泥盆统锰矿沉积特征与成矿机理研究[D]. 成都理工大学博士学位论文, 2013.

    [41]

    Chen F G, Wang Q F, Yang S J, et al. Space time distribution of manganese ore deposits along the southern margin of the South China Block, in the context of Palaeo-Tethyan evolution[J]. International Geology Review, 2018, 60: 72-86.

    [42]

    慕生禄. 西昆仑昆盖山火山岩构造环境与典型矿床研究[D]. 中国科学院大学博士学位论文, 2016.

    [43]

    张帮禄. 西昆仑奥尔托喀讷什大型碳酸锰矿床沉积环境及成矿机制[D]. 中国科学院大学博士学位论文, 2020.

    河南省地质调查院.新疆1:5万喀腊嘎依恰提幅、克牙孜幅、玛里他巴尔山幅、博托彦幅、穆呼幅区域地质调查报告.中国地质调查局,2013.

  • 加载中

(12)

计量
  • 文章访问数:  839
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2022-04-24
修回日期:  2022-07-31
刊出日期:  2022-11-15

目录