Origin and deep prospecting implications of the 1665~1700 m copper orebody discovered by the scientific drilling in south Hunan
-
摘要:
湘南科学钻(ZK16508)位于宝山铜-铅-锌多金属矿田北西,旨在通过深部探测完善铜矿深部成矿模式和找矿标志。该科学钻在1664.82~1699.84 m处的石磴子组含炭质灰岩中揭露视厚度35.02 m的铜矿体,其中Cu达到工业品位,同时伴生Ag、Au、Ga和Se。为揭示深部铜矿体的成矿机理,对铜矿石开展了Re-Os同位素测年和硫同位素分析。铜矿体全岩Re-Os年龄为159.1±1.1 Ma,与成矿花岗闪长岩侵位年龄和浅部铜钼矿体成矿时代一致,说明它们是同一成矿系统的产物。铜矿石中的硫化物可分为2个世代,早阶段形成粗粒黄铁矿,晚阶段形成细粒共生的黄铁矿、黄铜矿、毒砂、菱铁矿等集合体。早阶段粗粒黄铁矿δ34S值(平均5.97‰)略高于花岗闪长岩值,说明早阶段热液流体在演化过程中萃取了少量的地层硫,晚阶段细粒黄铁矿δ34S值(平均3.79‰)大致与花岗闪长岩相当,说明形成黄铜矿的成矿流体为岩浆期后热液,演化过程中未受到地层的影响。研究表明,宝山矿田1.5 km以深铜矿找矿潜力大,其产出分布受成矿母岩花岗闪长岩和碳酸盐中的构造破碎带控制,磁异常是重要的找矿标志,而矽卡岩化则是指示铜多金属矿体分布的充分但不必要条件。
Abstract:The 3000-meter scientific drilling in south Hunan is located in the northwest of the Baoshan Cu-Pb-Zn ore field, and aims to improve the deep metallogenic model and prospecting clues of copper deposits through deep exploration.A 35.02-meter copper orebody was discovered by this scientific drilling at the depth interval of 1664.82~1699.84 m, with the mineralized element Cu reached the industrial grade, and Ag-Au-Ga-Se met the standard of comprehensive utilization.In order to reveal ore genesis of the deep Cu orebody, this study conducted Re-Os isotopic dating and sulfur isotopic analyses.The whole-rock Re-Os age of the copper ores was dated at 159.1±1.1 Ma, which is consistent with the emplacement age of the ore-associated granodiorite and the ore-forming age of the Cu-Mo orebody at shallow depths, indicating that they represent products of the same metallogenic system.The sulfides of the copper ore can be divided into two generations, with the coarse-grained pyrite at the early stage, while the fine-grained aggregates of pyrite, chalcopyrite, arsenopyrite and siderite at the late stage.The δ34S value of the early-stage coarse-grained pyrite(5.97‰ in average)is slightly higher than that of the granodiorite, indicating that the early-stage hydrothermal fluid extracted a small amount of sulfur from the carbonate formation.However, the δ34S value of the late-stage fine-grained pyrite(3.79‰ in average)is approximately similar to the granodiorite, indicating that the ore-forming fluid that responsible for chalcopyrite deposition is a post-magmatic hydrothermal fluid, which was not affected by the carbonate formation.Our results show that the prospecting potential of deep copper deposits below 1.5-kilometer depth of the Baoshan ore field is of great importance, with the distribution of orebodies controlled by the structural fracture zone in carbonate formation and associated with granodiorite.Magnetic anomalies are important prospecting clues, while skarnization is a sufficient but unnecessary clue that signals the distribution of copper orebodies.
-
图 1 湘南地区宝山矿田地质矿产图(据文一卓等,2022)
Figure 1.
图 2 湘南地区宝山矿田165勘探线地质剖面图(据周伟平,2011修改)
Figure 2.
表 1 湘南科学钻铜矿化层样品化学分析结果
Table 1. Geochemical results of the samples in the copper orebody discovered by the scientific drilling
样品编号 采样位置/m Cu/% Pb/% Zn/% Ag /(g·t-1) Au /(g·t-1) Ga/% Se/% MFe/% WO3/% Sn/% Mo/% ZK16508-38 1664.82~1665.82 0.41 0.02 0.01 4.32 0.06 0.000883 0.00291 0.16 0.006 0.011 0.006 ZK16508-39 1665.82~1666.82 0.57 0.02 0.01 4.88 0.06 0.000609 0.00290 0.28 0.003 0.015 0.003 ZK16508-40 1666.82~1667.82 0.54 0.09 0.06 7.97 0.04 0.000572 0.00329 0.24 0.006 0.009 0.004 ZK16508-41 1667.82~1668.82 0.38 0.02 0.01 4.72 0.05 0.000883 0.00220 0.07 0.051 0.026 0.003 ZK16508-42 1668.82~1670.23 0.32 0.02 0.01 4.81 0.08 0.00109 0.00156 0.12 0.017 0.031 0.002 ZK16508-43 1670.23~1671.99 0.01 0.02 0.07 4.7 0.01 0.000231 0.0000234 0.02 0.002 0.004 0.001 ZK16508-44 1671.99~1672.99 0.31 0.02 0.01 5.04 0.04 0.00102 0.00208 0.18 0.027 0.022 0.007 ZK16508-45 1672.99~1673.99 0.19 0.02 0.01 3.83 0.03 0.000809 0.000974 0.23 0.038 0.018 0.041 ZK16508-46 1673.99~1674.99 0.14 0.01 0.01 4.36 0.01 0.000646 0.000762 0.23 0.037 0.017 0.043 ZK16508-47 1674.99~1675.99 0.33 0.02 0.01 3.51 0.05 0.00239 0.00151 0.13 0.035 0.008 0.002 ZK16508-48 1675.99~1676.99 0.51 0.02 0.01 3.89 0.05 0.00188 0.00153 0.26 0.016 0.019 0.001 ZK16508-49 1676.99~1677.99 0.47 0.02 0.03 4.79 0.12 0.00154 0.00136 0.07 0.015 0.017 0.011 ZK16508-50 1677.99~1678.99 0.37 0.01 0.01 4.16 0.03 0.00119 0.00170 1.54 0.001 0.019 0.002 ZK16508-51 1678.99~1679.99 0.34 0.02 0.02 6.50 0.05 0.000759 0.00170 0.03 0.006 0.010 0.002 ZK16508-52 1679.99~1680.99 0.28 0.02 0.01 4.68 0.02 0.00121 0.00130 0.05 0.002 0.025 0.006 ZK16508-53 1680.99~1681.99 0.71 0.06 0.04 6.13 0.09 0.000886 0.00194 0.13 0.01 0.016 0.002 ZK16508-54 1681.99~1682.99 0.79 0.02 0.01 5.14 0.13 0.00139 0.00190 0.13 0.02 0.017 0.008 ZK16508-55 1682.99~1683.99 0.46 0.02 0.01 2.99 0.02 0.00116 0.00207 3.17 0.01 0.021 0.001 ZK16508-56 1683.99~1684.99 0.76 0.02 0.01 4.38 0.03 0.000987 0.00325 9.95 0.00 0.033 0.002 ZK16508-57 1684.99~1685.99 0.85 0.02 0.02 4.11 0.05 0.000993 0.00358 15.83 0.01 0.038 0.003 ZK16508-58 1685.99~1686.99 0.47 0.02 0.01 3.64 0.04 0.000702 0.00184 4.15 0.03 0.012 0.004 ZK16508-59 1686.99~1687.99 0.49 0.02 0.03 4.63 0.05 0.00224 0.00100 34.71 0.00 0.013 0.003 ZK16508-60 1687.99~1688.99 0.66 0.02 0.03 2.85 0.05 0.00123 0.00116 19.58 0.01 0.020 0.002 ZK16508-61 1688.99~1689.99 0.24 0.01 0.01 2.57 0.09 0.00147 0.000836 16.11 0.003 0.024 0.007 ZK16508-62 1689.99~1690.99 0.03 0.03 0.01 1.84 0.06 0.00129 0.000172 0.27 0.003 0.022 0.011 ZK16508-63 1690.99~1691.99 0.02 0.03 0.01 1.23 0.09 0.00142 0.0000942 0.13 0.001 0.014 0.004 ZK16508-64 1691.99~1692.99 0.05 0.03 0.01 1.99 0.03 0.00155 0.000282 0.26 0.001 0.032 0.007 ZK16508-65 1692.99~1693.99 0.95 0.03 0.01 5.46 0.06 0.000388 0.00266 0.07 0.001 0.016 0.001 ZK16508-66 1693.99~1694.99 1.26 0.17 0.11 11.64 0.11 0.000261 0.00340 0.24 0.002 0.009 0.001 ZK16508-67 1694.99~1695.99 0.61 0.38 0.19 13.66 0.11 0.000993 0.00248 0.22 0.011 0.019 0.001 ZK16508-68 1695.99~1696.99 0.65 0.06 0.01 4.10 0.03 0.000853 0.00179 0.29 0.027 0.035 0.008 ZK16508-69 1696.99~1697.99 0.37 0.01 0.01 2.68 0.06 0.00118 0.00157 0.13 0.013 0.046 0.005 ZK16508-70 1697.99~1698.99 0.16 0.01 0.01 3.86 0.03 0.00109 0.000533 11.40 0.004 0.029 0.002 ZK16508-71 1698.99~1699.84 0.36 0.01 0.01 4.15 0.09 0.00108 0.00136 12.20 0.001 0.020 0.001 表 2 湘南科学钻铜矿化层Re-Os同位素测试结果
Table 2. Re-Os isotopic results of the samples in the copper orebody discovered by the scientific drilling
样品编号 Re/10-9 普Os/10-9 187Re/10-9 187Os/10-9 模式年龄/Ma 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZK16508-44 477.7 4.0 0.1230 0.0027 300.2 2.5 0.8053 0.0049 160.8 2.3 ZK16508-45 1455 12 0.0512 0.0007 914.2 7.4 2.424 0.016 158.9 2.3 ZK16508-46 1621 14 0.0404 0.0007 1019 9 2.679 0.016 157.6 2.3 ZK16508-54 362.4 2.9 0.0197 0.0004 227.8 1.8 0.5999 0.0035 157.9 2.2 ZK16508-62 463.1 3.6 0.0074 0.0005 291.0 2.2 0.7664 0.0049 157.9 2.2 ZK16508-67 365.7 2.7 0.0688 0.0007 229.8 1.7 0.6148 0.0036 160.3 2.2 ZK16508-68 941.9 8.0 0.0699 0.0010 592.0 5.0 1.584 0.009 160.3 2.3 ZK16508-69 316.4 2.1 0.0954 0.0012 198.8 1.3 0.5282 0.0033 159.2 2.1 表 3 湘南科学钻铜矿石中黄铁矿原位硫同位素测试结果
Table 3. In situ sulfur isotopic results of pyrite in the copper ores discovered by the scientific drilling
样品编号 类型 δ34S/‰ 样品编号 类型 δ34S/‰ 样品编号 类型 δ34S/‰ ZK16508-38-1 Py1 4.69 ZK16508-38-10 Py2 2.50 ZK16508-44-18 Py2 3.78 ZK16508-38-2 Py1 4.68 ZK16508-38-11 Py2 4.44 ZK16508-44-19 Py2 3.94 ZK16508-38-3 Py1 5.33 ZK16508-38-12 Py2 5.92 ZK16508-38-20 Cp2 3.34 ZK16508-38-4 Py1 4.76 ZK16508-38-13 Py2 3.68 ZK16508-38-21 Cp2 1.83 ZK16508-38-5 Py1 5.01 ZK16508-38-14 Py2 2.38 ZK16508-38-22 Cp2 1.40 ZK16508-38-6 Py1 4.82 ZK16508-38-15 Py2 4.44 ZK16508-38-23 Cp2 3.95 ZK16508-38-7 Py1 4.57 ZK16508-38-16 Py2 3.70 ZK16508-38-24 Cp2 3.36 ZK16508-44-1 Py1 6.61 ZK16508-38-17 Py2 4.21 ZK16508-38-25 Cp2 3.83 ZK16508-44-2 Py1 7.22 ZK16508-38-18 Py2 3.29 ZK16508-44-20 Cp2 3.86 ZK16508-44-3 Py1 7.37 ZK16508-38-19 Py2 4.32 ZK16508-44-21 Cp2 1.83 ZK16508-44-4 Py1 6.70 ZK16508-44-10 Py2 3.46 ZK16508-44-22 Cp2 1.97 ZK16508-44-5 Py1 7.24 ZK16508-44-11 Py2 1.76 ZK16508-44-23 Cp2 2.21 ZK16508-44-6 Py1 6.66 ZK16508-44-12 Py2 6.45 ZK16508-44-24 Cp2 2.47 ZK16508-44-7 Py1 6.58 ZK16508-44-13 Py2 3.02 ZK16508-44-25 Cp2 2.31 ZK16508-44-8 Py1 6.53 ZK16508-44-14 Py2 3.54 ZK16508-44-26 Cp2 2.07 ZK16508-44-9 Py1 6.78 ZK16508-44-15 Py2 3.63 ZK16508-44-27 Cp2 2.76 ZK16508-38-8 Py2 4.02 ZK16508-44-16 Py2 3.55 ZK16508-44-28 Cp2 2.18 ZK16508-38-9 Py2 3.61 ZK16508-44-17 Py2 3.85 -
[1] Fu J L, Hu Z C, Zhang W, et al. In situ sulfur isotopes(δ34S and δ33S)analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS[J]. Analytica Chimica Acta, 2016, 911: 14-26. doi: 10.1016/j.aca.2016.01.026
[2] Li H, Kong H, Zhou Z K, et al. Ore-forming material sources of the Jurassic Cu-Pb-Zn mineralization in the Qin-Hang ore belt, South China: Constraints from S-Pbisotopes[J]. Geochemistry, 2019, 79: 280-306. doi: 10.1016/j.geoch.2018.12.008
[3] 鲍谈, 叶霖, 杨玉龙, 等. 湖南宝山Pb-Zn多金属矿床硫同位素地球化学特征及其地质意义[J]. 矿物学报, 2014, 34(2): 261-266.
[4] 丁腾, 马东升, 陆建军, 等. 湖南宝山矿床花岗岩类硫-铅同位素和流体包裹体研究及其成因意义[J]. 矿床地质, 2016, 35(4): 663- 676. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201604003.htm
[5] 杜安道, 何红蓼, 殷宁万, 等. 辉钼矿的铼-锇同位素地质年龄测定方法研究[J]. 地质学报, 1994, 68(4): 339-347. doi: 10.3321/j.issn:0001-5717.1994.04.005
[6] 黄富年, 鲁艺, 段华辉. 湖南宝山西部铅锌银矿床地质特征及找矿方向[J]. 国土资源导刊, 2015, 12(1): 24-28.
[7] 孔华, 全铁军, 奚小双, 等. 湖南宝山矿区煌斑岩的地球化学特征及地质意义[J]. 中国有色金属学报, 2013, 23(9): 2671-2682. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201309039.htm
[8] 李超, 裴浩翔, 王登红, 等. 山东孔辛头铜钼矿成矿时代及物质来源: 来自黄铜矿、辉钼矿Re-Os同位素证据[J]. 地质学报, 2016, 90(2): 240-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201602004.htm
[9] 李厚民, 李立兴, 余金杰, 等. 湘南地区钨锡多金属矿床矿石矿物组合、矿化蚀变特征及成矿流体组成[J]. 地质学报, 2021, 95(10): 3127-3145. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202110013.htm
[10] 路远发, 马丽艳, 屈文俊, 等. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究[J]. 岩石学报, 2006, 22(10): 2483-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610008.htm
[11] 毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm
[12] 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329-2338.
[13] 弥佳茹, 袁顺达, 轩一撒, 等. 湖南宝山-大坊矿区成矿花岗闪长斑岩的锆石U-Pb年龄、Hf同位素及微量元素组成对区域成矿作用的指示[J]. 岩石学报, 2018, 34(9): 2548-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809004.htm
[14] 彭建堂, 胡瑞忠, 袁顺达, 等. 湘南中生代花岗质岩石成岩成矿的时限[J]. 地质论评, 2008, 54(5): 617-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200805009.htm
[15] 屈文俊, 杜安道. 高温密闭溶样电感藕合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 2003, 22(4): 254-262.
[16] 王登红, 陈毓川, 赵正, 等. 对南岭与找矿有关问题的探讨[J]. 矿床地质, 2013, 32(4): 854-863. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304018.htm
[17] 王登红, 陈振宇, 黄凡, 等. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 2014, 38(2): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402003.htm
[18] 文一卓, 孟雨红, 许以明, 等. 湖南首个固体矿产勘查3000m科学深钻选址研究[J]. 地质与勘探. 2022, 58(5): 975-988.
[19] 伍光英. 湖南宝山花岗闪长质隐爆角砾岩的岩石学、地球化学特征及锆石SHRIMP定年[J]. 现代地质, 2005, 19(2), 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200502005.htm
[20] 谢银财, 陆建军, 马东升, 等. 湘南宝山铅锌多金属矿区花岗闪长斑岩及其暗色包体成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约[J]. 岩石学报, 2013, 29(12): 4186-4214.
[21] 袁顺达. 南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J]. 矿物岩石地球化学通报, 2017, 36(5): 736-749. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705006.htm
[22] 赵正, 陈毓川, 郭娜欣, 等. 南岭科学钻探NLSD-1矿化规律与深部找矿方向[J]. 中国地质, 2016, 43(5): 1613-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605011.htm
[23] 周伟平. 湖南桂阳宝山西部铜矿床地质特征[J]. 矿产勘查, 2011, 2(5): 475-478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201105004.htm
① 国家地质总局.金属非金属矿产地质普查勘探采样规定及方法[N].1978.
② 湖南省有色地质勘查局一总队.湖南省桂阳县宝山铅锌银矿接替资源勘查[N].2010.