北山白头山铷矿赋矿花岗岩锆石U-Pb年龄、分异演化过程及对铷成矿的约束

吴世保, 雷如雄, 吴昌志. 2023. 北山白头山铷矿赋矿花岗岩锆石U-Pb年龄、分异演化过程及对铷成矿的约束. 地质通报, 42(5): 714-729. doi: 10.12097/j.issn.1671-2552.2023.05.005
引用本文: 吴世保, 雷如雄, 吴昌志. 2023. 北山白头山铷矿赋矿花岗岩锆石U-Pb年龄、分异演化过程及对铷成矿的约束. 地质通报, 42(5): 714-729. doi: 10.12097/j.issn.1671-2552.2023.05.005
WU Shibao, LEI Ruxiong, WU Changzhi. 2023. Zircon U-Pb age, differentiation process, and its constraints on Rb mineralization of the ore-bearing granites of the Baitoushan rubidium deposit in the Beishan area. Geological Bulletin of China, 42(5): 714-729. doi: 10.12097/j.issn.1671-2552.2023.05.005
Citation: WU Shibao, LEI Ruxiong, WU Changzhi. 2023. Zircon U-Pb age, differentiation process, and its constraints on Rb mineralization of the ore-bearing granites of the Baitoushan rubidium deposit in the Beishan area. Geological Bulletin of China, 42(5): 714-729. doi: 10.12097/j.issn.1671-2552.2023.05.005

北山白头山铷矿赋矿花岗岩锆石U-Pb年龄、分异演化过程及对铷成矿的约束

  • 基金项目:
    国家自然科学基金重大项目《东天山富铷花岗岩及相关铷矿的地质特征与成矿机制》(批准号:91962214)和长安大学中央高校基本科研业务费项目《中国关键矿产成矿机制与成矿规律》(编号:300102271302)、《中天山新元古代岩浆作用及全球构造意义》(编号:300102272201)
详细信息
    作者简介: 吴世保(1999-),男,在读硕士生,地质学专业。E-mail: wsbchd@163.com
    通讯作者: 雷如雄(1987-), 男,博士,教授,从事矿床学研究。E-mail: ruxionglei@chd.edu.cn
  • 中图分类号: P588.12+1;P618.77

Zircon U-Pb age, differentiation process, and its constraints on Rb mineralization of the ore-bearing granites of the Baitoushan rubidium deposit in the Beishan area

More Information
  • 白头山铷矿位于北山造山带,为近年来新发现的超大型铷矿,含石榴子石白云母花岗岩是其重要的赋矿岩体,对于理解铷富集成矿机制具有重要意义。白头山含石榴子石白云母花岗岩具有高硅(SiO2为73.56%~75.60%)、富碱(Na2O+K2O为8.84%~10.39%)、富铝(Al2O3为14.41%~15.01%),低Mg、Fe、Ca、P和Ti的特征,铝饱和指数较高(A/CNK=0.98~1.14)。微量元素方面,白头山含石榴子石白云母花岗岩富集Rb、Th、U、Ta,相对亏损Ba、Sr、P、Ti,具有明显的负Eu异常(Eu/Eu*为0.02~0.03)。岩石学、矿物学和地球化学特征指示,白头山含石榴子石白云母花岗岩属于高分异S型花岗岩,在岩浆演化过程中该花岗岩体系可能发生了云母、斜长石、锆石等矿物的结晶分异作用。稀土元素总量较低(32.06×10-6~45.33×10-6),具有明显的四分组效应(TE1.3=1.28~1.31),结合特征性元素对(Zr/Hf、Nb/Ta、Y/Ho、K/Rb)发育的non-CHARAC(不受离子电荷半径控制)行为,反映其经历了强烈的分异演化与熔流体作用。高分异花岗岩的强烈分异演化和熔流体作用是白头山铷矿富集成矿的关键控制因素。锆石U-Pb测年显示,白头山含石榴子石白云母花岗岩形成年龄为226±3.8 Ma,结合前人资料,表明印支期是东天山—北山地区高分异花岗岩和伴生稀有金属形成的重要阶段,为研究区稀有金属找矿提供了新的方向。

  • 加载中
  • 图 1  中亚造山带简图(a,据Sengör et al., 1993修改)和北山地区区域地质简图(b,据He et al., 2018; Xiao et al., 2011修改)

    Figure 1. 

    图 2  白头山铷矿区地质图(据参考文献修改)

    Figure 2. 

    图 3  白头山含石榴子石白云母花岗岩样品镜下照片(c和d显示石英中有少量钠长石呈旋涡式对称排列,形成雪球结构)

    Figure 3. 

    图 4  白头山含石榴子石白云母花岗岩代表性锆石透射光(a、b)和阴极发光(CL)图像(c、d)

    Figure 4. 

    图 5  不同类型锆石球粒陨石标准化稀土元素配分模式(标准化值据Sun et al., 1989)

    Figure 5. 

    图 6  白头山含石榴子石白云母花岗岩锆石U-Pb谐和图(a)和年龄加权平均值(b)

    Figure 6. 

    图 7  白头山含石榴子石白云母花岗岩相关图解

    Figure 7. 

    图 8  白头山含石榴子石白云母花岗岩元素特征相关性图

    Figure 8. 

    图 9  白头山含石榴子石白云母花岗岩四分组效应与特征性元素对比值图解

    Figure 9. 

    图 10  白头山含石榴子石白云母花岗岩TE1.3-Nb/Ta图解(a)和Zr/Hf-Nb/Ta图解(b)

    Figure 10. 

    表 1  白头山含石榴子石白云母花岗岩(BTS-13)锆石LA-ICP-MS主量和微量元素测试结果

    Table 1.  LA-ICP-MS zircon major and trace elements of the Baitoushan garnet-bearing muscovite granites

    样品 SiO2 Ti Y ZrO2 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Pb Pb Th U
    1 32.7 104 1697 61.9 19.4 33.6 362 106 382 237 26.5 224 43.3 270 54.8 171 38.8 371 60.6 11504 3.75 570 221 932 1854
    2 32.7 33.7 998 62.4 4.14 59.9 111 125 353 119 17.9 83.8 15.0 115 32.6 129 32.5 329 55.5 12320 3.65 160 147 610 1888
    3 32.7 818 2964 48.4 772 89.7 878 298 1175 678 64.1 594 118 573 72.3 142 21.3 136 15.6 32178 219 3529 658 4019 1969
    4 32.7 4.77 284 56.6 5.86 20.6 81.5 23.9 76.1 26.6 2.67 30.1 7.91 48.5 5.20 9.05 1.61 10.6 1.05 39921 7.36 40.3 136.4 207 3089
    5 32.7 0.16 40.8 58.1 0.89 0.014 0.021 0.013 0.075 0.062 0.022 2.85 1.05 6.14 0.65 1.89 0.34 2.74 0.75 60803 9.27 15.1 32.9 10.3 1235
    6 32.7 52.0 1197 55.6 21.6 22.2 249 90.3 381 178 14.1 129 17.1 141 41.2 166 39.8 378 63.9 10487 8.49 921 608 3798 4727
    7 32.7 102 3045 61.1 10.2 838 2621 600 1600 389 22.5 310 51.0 395 108 374 78.1 682 103 9266 3.35 996 752 5119 3221
    8 32.7 11.4 808 67.2 5.27 0.65 11.3 1.63 7.98 5.89 0.33 17.9 5.61 73.0 27.1 122 30.2 295 50.4 13770 4.59 40.2 169 548 2835
    9 32.7 9.99 1227 67.0 0.60 0.003 0.71 0.23 1.71 5.17 0.18 23.1 9.29 121 40.4 153 32.9 288 46.2 13337 0.40 40.2 58.5 46.0 219
    10 32.7 127 381 54.7 4.77 7.79 38.6 9.27 21.9 5.90 0.44 8.13 2.66 32.2 13.0 57.3 13.6 136 22.5 8823 0.99 0.00 26.7 21.3 36.0
    11 32.7 20.3 3057 66.6 1.20 1.22 11.5 3.57 11.0 13.6 1.10 43.1 18.6 281 104 450 107 983 155 13974 0.99 62.5 81.1 186 636
    12 32.7 3.06 1355 63.1 6.79 15.2 148 71.2 257 137 17.0 118 23.0 176 44.3 159 36.1 332 54.4 12405 4.58 475 214 714 1978
    13 32.7 13.9 1850 68.3 1.66 0.00 5.17 0.13 5.10 7.19 0.42 34.5 12.5 173 63.3 265 61.9 583 93.1 12490 0.96 48.9 35.3 188 306
    14 32.7 128 2048 53.4 268 59.9 1254 204 770 406 42.0 366 75.0 390 44.2 80.7 12.3 89.1 8.61 50583 46.6 928 225 1017 1966
    15 32.7 44.5 829 64.6 5.26 23.9 110 69.0 267 134 10.8 88.7 13.5 101 27.7 109 25.5 252 41.0 13314 3.87 584 238 476 2372
    16 32.7 9.39 952 66.7 7.14 2.26 46.8 10.3 43.7 24.7 2.13 26.0 7.30 88.2 31.7 141 36.9 334 58.8 13544 5.02 157 203 649 2869
    17 32.7 6.91 638 58.8 1.33 0.0098 11.7 0.073 0.20 0.73 0.30 10.0 3.10 46.9 20.8 102 27.2 272 51.7 9532 0.62 44.3 21.4 145 206
    18 32.7 0.66 274 70.5 16.9 2.48 36.9 10.7 38.7 18.2 1.85 21.7 6.11 35.5 5.14 12.7 2.88 26.1 2.90 63704 83.7 73.6 42.4 79.7 1627
    19 32.7 15.2 3260 69.1 1.88 0.011 11.3 0.48 4.92 12.1 1.71 56.1 22.0 299 113 493 116 1092 173 12358 1.06 31.3 21.1 131 212
    20 32.7 415 4740 52.0 571 74.8 1213 289 1085 805 58.3 1150 302 1221 88.2 126 16.7 108 12.1 43221 439 1387 296 2610 2578
    21 32.7 0.84 64.2 70.2 2.74 1.03 9.83 3.45 12.5 7.86 0.45 9.99 2.63 11.4 0.88 1.92 0.27 1.85 0.16 86959 20.2 129 46.2 22.2 2125
    22 32.7 4.37 1043 67.6 1.37 0.17 11.2 1.35 11.6 12.7 0.78 32.8 9.62 110 36.2 148 33.5 310 49.3 11165 0.98 0.00 87.0 404 1125
    23 32.7 583 1777 64.2 15.4 46.6 661 234 894 413 29.4 272 41.1 256 59.9 214 48.7 480 80.5 9793 6.21 918 334 1505 2769
    24 32.7 23.5 3199 54.0 809 114 1144 477 1889 954 107 727 124 602 77.1 156 22.9 143 17.3 42864 162 1965 396 1236 2686
    25 32.7 15.4 1847 60.3 3.97 0.014 8.10 1.09 9.52 18.4 0.32 51.0 17.3 200 66.5 258 53.0 454 67.3 10055 1.92 95.5 66.6 735 817
    注:主量元素含量单位为%,微量元素含量单位为10-6
    下载: 导出CSV

    表 2  白头山含石榴子石白云母花岗岩LA-ICP-MS锆石U-Th-Pb定年结果

    Table 2.  LA-ICP-MS zircon U-Th-Pb dating results of the Baitoushan garnet-bearing muscovite granites

    样号 类型 含量/10-6 Th/U 同位素比值 年龄/Ma
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    BTS-13
    1 932 1854 0.50 0.0917 0.0027 0.8544 0.0251 0.0674 0.0010 1461 57 627 14 420 6
    2 610 1888 0.32 0.0660 0.0018 0.6216 0.0178 0.0681 0.0011 806 56 491 11 425 7
    3 4019 1969 2.04 0.2821 0.0085 2.3886 0.1064 0.0601 0.0014 3376 47 1239 32 376 9
    4 继承锆石 207 3089 0.07 0.0540 0.0023 0.4434 0.0622 0.0600 0.0087 372 96 373 44 375 53
    5 / 10.3 1235 0.01 0.0577 0.0023 0.3444 0.0142 0.0431 0.0007 520 89 301 11 272 4
    6 3798 4727 0.80 0.0795 0.0027 0.7509 0.0287 0.0682 0.0014 1187 66 569 17 425 8
    7 5119 3221 1.59 0.0949 0.0027 0.8977 0.0279 0.0684 0.0012 1528 58 650 15 427 7
    8 继承锆石 548 2835 0.19 0.0573 0.0018 0.5368 0.0179 0.0677 0.0010 506 69 436 12 422 6
    9 46.0 219 0.21 0.1158 0.0038 3.9628 0.1424 0.2475 0.0041 1894 59 1627 29 1426 21
    10 21.3 36.0 0.59 0.1367 0.0068 7.4552 0.3700 0.4001 0.0095 2187 86 2168 44 2170 44
    11 186 636 0.29 0.0770 0.0026 1.5506 0.0576 0.1459 0.0024 1120 69 951 23 878 13
    12 714 1978 0.36 0.0828 0.0034 0.7641 0.0275 0.0680 0.0011 1265 81 576 16 424 6
    13 继承锆石 188 306 0.62 0.0580 0.0046 0.5368 0.0393 0.0679 0.0016 528 176 436 26 423 10
    14 1017 1966 0.52 0.1524 0.0053 0.9316 0.0358 0.0441 0.0007 2373 54 668 19 278 5
    15 476 2372 0.20 0.0872 0.0029 0.8333 0.0318 0.0687 0.0011 1365 64 615 18 428 7
    16 继承锆石 649 2869 0.23 0.0621 0.0017 0.5859 0.0187 0.0680 0.0011 680 61 468 12 424 7
    17 继承锆石 145 206 0.70 0.0549 0.0041 0.4334 0.0338 0.0571 0.0013 409 169 366 24 358 8
    18 79.7 1627 0.05 0.0565 0.0030 0.2774 0.0148 0.0355 0.0007 472 119 249 12 225 4
    19 继承锆石 131 212 0.62 0.0542 0.0038 0.4479 0.0293 0.0605 0.0012 376 157 376 21 378 7
    20 2610 2578 1.01 0.1694 0.0091 0.8460 0.0479 0.0360 0.0006 2552 90 622 26 228 4
    21 22.2 2125 0.01 0.0527 0.0022 0.2628 0.0111 0.0362 0.0008 317 94 237 9 229 5
    22 继承锆石 404 1125 0.36 0.0552 0.0018 0.5144 0.0181 0.0675 0.0012 420 77 421 12 421 7
    23 1505 2769 0.54 0.0952 0.0038 0.7696 0.0203 0.0600 0.0017 1532 74 580 12 376 10
    24 1236 2686 0.46 0.2204 0.0073 1.0920 0.0486 0.0356 0.0008 2984 54 749 24 226 5
    25 735 817 0.90 0.0524 0.0029 0.2536 0.0130 0.0355 0.0007 306 128 229 11 225 4
    下载: 导出CSV

    表 3  白头山含石榴子石白云母花岗岩主量、微量和稀土元素组成

    Table 3.  Major, trace and rare earth element compositions of the Baitoushan garnet-bearing muscovite granites

    送样编号 20BTS-05 20BTS-09 20BTS-11 20BTS-12 送样编号 20BTS-05 20BTS-09 20BTS-11 20BTS-12
    SiO2 74.07 74.30 73.71 75.43 Hf 2.9 2.9 2.9 2.3
    TiO2 0.01 0.01 0.01 0.01 Ta 39.2 53.2 54.1 26.0
    Al2O3 14.64 15.05 14.88 14.38 Th 4.16 3.45 3.71 3.90
    TFe2O3 0.80 0.65 0.71 0.75 U 2.41 1.41 1.76 1.31
    MnO 0.19 0.14 0.16 0.12 La 5.6 3.5 4.7 6.1
    MgO 0.05 0.03 0.02 0.02 Ce 13.6 9.8 12.1 14.5
    CaO 0.86 0.37 0.28 0.23 Pr 1.80 1.38 1.57 1.80
    Na2O 6.11 5.85 4.88 4.73 Nd 7.6 5.8 6.6 7.8
    P2O5 0.02 0.02 0.02 0.02 Sm 3.58 3.05 3.47 3.73
    K2O 3.05 3.83 5.52 4.09 Eu 0.04 0.02 0.04 0.03
    总计 99.80 100.25 100.20 99.78 Gd 3.60 3.80 3.82 3.83
    K2O+Na2O 9.17 9.66 10.39 8.84 Tb 0.58 0.62 0.63 0.68
    K2O/Na2O 0.50 0.65 1.13 0.86 Dy 2.88 2.65 2.96 3.35
    A/NK 1.10 1.09 1.06 1.18 Ho 0.41 0.28 0.36 0.47
    ASI 0.98 1.04 1.02 1.14 Er 0.95 0.53 0.80 1.18
    刚玉 0.30 1.05 0.70 2.22 Tm 0.15 0.07 0.12 0.18
    分异指数(DI) 95.10 96.88 97.43 96.24 Yb 1.09 0.48 0.75 1.44
    固结指数(SI) 0.50 0.29 0.18 0.21 Lu 0.16 0.08 0.11 0.24
    Li 2.1 1.5 1.5 2.9 K/Rb 27.65 24.92 35.40 25.11
    Sc 2.1 1.5 1.5 2.9 Nb/Ta 2.02 1.69 1.55 3.21
    Ga 40.3 40.9 40.8 39.7 Zr/Hf 7.93 6.90 7.24 9.57
    Rb 933 1280 1305 1390 Y/Ho 37.80 46.43 40.28 39.57
    Sr 19.7 11.0 13.4 12.2 TE1.3 1.28 1.31 1.30 1.29
    Y 15.5 13.0 14.5 18.6 LREE/HREE 1.50 0.91 1.21 1.51
    Zr 23 20 21 22 ΣREE 42.04 32.06 38.03 45.33
    Nb 79.1 90.1 84.1 83.4 Eu/Eu* 0.03 0.02 0.03 0.02
    Sn 58 47 28 76 (La/Lu)N 3.63 4.54 4.44 2.64
    W 1.9 1.7 1.4 2.1 10000×Ga/Al 5.72 5.54 5.31 5.32
    Cs 23.6 34.4 37.1 39.2 Zr+Nb+Ce+Y 131.2 132.9 131.7 138.5
    Ba 20.7 22.6 22.5 16.5
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • [1]

    Ballouard C, Poujol M, Boulvais P, et al. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3): 231-234. doi: 10.1130/G37475.1

    [2]

    Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333. doi: 10.1007/s004100050159

    [3]

    Breiter K, Lamarao C N, Kras Borges R M, et al. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites[J]. Lithos, 2014, 192: 208-225. http://smartsearch.nstl.gov.cn/paper_detail.html?id=bc0d857d4cf24c5a52beb760a08e6e44

    [4]

    Burnham C W. Magmas and hydrothermal fluids[J]. Geochemistry of Hydrothermal Ore Deposits, 1979: 71-136. http://ci.nii.ac.jp/naid/10004656540

    [5]

    Černý P, Halden N M, Ferreira K, et al. Extreme fractionation and deformation of the leucogranite-pegmatite suite at Red Cross lake, Manitoba, Canada. II. Petrology of the leucogranites and pegmatites[J]. The Canadian Mineralogist, 2012, 50(6): 1807-1822. doi: 10.3749/canmin.50.6.1807

    [6]

    Chen B, Ma X, Wang Z. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons(South China)and implications for polymetallic mineralization[J]. Journal of Asian Earth Sciences, 2014, 93: 301-314. doi: 10.1016/j.jseaes.2014.07.022

    [7]

    Chen B Y, Wu C Z, Brzozowski M J, et al. Geochronology and tectonic setting of the giant Guobaoshan Rb deposit, Central Tianshan, NW China[J]. Ore Geology Reviews, 2022, 141. http://www.sciencedirect.com/science/article/pii/S0169136821006624

    [8]

    Clarke D B. The mineralogy of peraluminous granites; a review[J]. The Canadian Mineralogist, 1981, 19(1): 3-17.

    [9]

    Dill H G. Pegmatites and aplites: Their genetic and applied ore geology[J]. Ore Geology Reviews, 2015, 69: 417-561. doi: 10.1016/j.oregeorev.2015.02.022

    [10]

    Dingwell D B, Scarfe C M, Cronin D J. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: implications for phonolites, trachytes and rhyolites[J]. GeoScience World, 1985, 70(1/2): 80-87. http://ammin.geoscienceworld.org/content/70/1-2/80

    [11]

    Gervasoni F, Klemme S, Rocha-Junior E R V, et al. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts[J]. Contributions to Mineralogy and Petrology, 2016, 171(3): 21. doi: 10.1007/s00410-016-1227-y

    [12]

    He Z Y, Klemd R, Yan L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1-14. doi: 10.1016/j.earscirev.2018.05.012

    [13]

    Helmy H M, Kaindl R, Shibata T. Genetically related Mo-Bi-Ag and U-F mineralization in A-type granite, Gabal Gattar, Eastern Desert, Egypt[J]. Ore Geology Reviews, 2014, 62: 181-190. doi: 10.1016/j.oregeorev.2014.03.008

    [14]

    Huang L, Jiang S. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province[J]. Acta Petrologica Sinica, 2012, 28(12): 3887-3900. http://www.oalib.com/paper/1475724

    [15]

    Huang X L, Wang R C, Chen X M, et al. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China[J]. The Canadian Mineralogist, 2002, 40(4): 1047-1068. doi: 10.2113/gscanmin.40.4.1047

    [16]

    Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 489-508. http://ieg.or.kr/include/file_down.php?save_path=/data1/ref&filename=00020063003000489.pdf&filename2=00020063003000489.pdf

    [17]

    Jahn B M, Wu F, Capdevila R, et al. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59(4): 171-198. doi: 10.1016/S0024-4937(01)00066-4

    [18]

    Keppler H, Wyllie P J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF[J]. Contributions to Mineralogy and Petrology, 1991, 109(2): 139-150. doi: 10.1007/BF00306474

    [19]

    King P L, White A, Chappell B W, et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    [20]

    Linnen, R L, Lichtervelde V, et al. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. doi: 10.2113/gselements.8.4.275

    [21]

    Linnen R L, Cuney M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization[C]//Linnen R L, Samson I M. Rare-element geochemistry and mineral deposits. Geological Association of Canada, GAC, Short Course, 2005.

    [22]

    Li S, Wang T, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J]. Lithos, 2012, 134/135: 123-145. doi: 10.1016/j.lithos.2011.12.005

    [23]

    Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43. http://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f.pdf

    [24]

    London D. Pegmatites[J]. The Canadian Mineralogist, 2008, 10: 1-347.

    [25]

    Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication[J]. US Geol. Sur. Open File Rep., 2003, 39: 91-445. http://www.researchgate.net/publication/284758218_ISOPLOT_30_A_Geochronological_Toolkit_for_Microsoft_Excel_Berkeley_Geochronology_Center_Special_Publication

    [26]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [27]

    Mysen B O, Cody G D. Solubility and solution mechanism of H2O in alkali silicate melts andglasses at high pressure and temperature[J]. Geochimica Et Cosmochimica Acta, 2004, 68(24): 5113-5126. doi: 10.1016/j.gca.2004.07.021

    [28]

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745

    [29]

    Rudnick R L, Gao S. 4.1 - Composition of the Continental Crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry(Second Edition). Oxford; Elsevier, 2014: 1-51.

    [30]

    Sami M, Ntaflos T, Farahat E S, et al. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian Shield(Egypt): constraints from whole-rock geochemistry and Sr-Nd isotopes[J]. Lithos, 2018, 304: 329-346. http://www.sciencedirect.com/science/article/pii/S002449371830063X

    [31]

    Sengör M C A, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0

    [32]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [33]

    Tao J H, Li W X, Li X H, et al. Petrogenesis of early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: Evidence from zircon U-Pb dating, Hf-O isotope and whole-rock geochemistry[J]. Science China(Earth Sciences), 2013, 56(6): 922-939. doi: 10.1007/s11430-013-4593-6

    [34]

    Wang X, Chen J, Ren M. Hydrothermal zircon geochronology: Age constraint on Nanling Range tungsten mineralization(Southeast China)[J]. Ore Geology Reviews, 2016, 74: 63-75. doi: 10.1016/j.oregeorev.2015.10.034

    [35]

    Webster J D, Rebbert C R. Experimental investigation of H2O and Cl- solubilities in F-enriched silicate liquids; implications for volatile saturation of topaz rhyolite magmas[J]. Contributions to Mineralogy and Petrology, 1998, 132(2): 198-207. doi: 10.1007/s004100050416

    [36]

    Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2011, 310(10): 1553-1594. http://www.onacademic.com/detail/journal_1000034854506410_6b36.html

    [37]

    Zhi J, Lei R X, Chen B Y, et al. Zircon genesis and geochronology for the Zhangbaoshan super-large rubidium deposit in the eastern Tianshan, NW China: Implication to magmatic-hydrothermal evolution and mineralization processes[J]. Frontiers in Earth Science, 2021, 9. DOI:10.3389/feart.2021.682720.

    [38]

    Zhu J, Lü X, Cao X, et al. U-Pb zircon geochronology, geochemistry and kinetics of the Huaniushan A-type granite in Northwest China[J]. Chinese Journal of Geochemistry, 2012, 31(1): 85-94. doi: 10.1007/s11631-012-0553-7

    [39]

    黄春梅, 李光明, 张志, 等. 藏南错那洞淡色花岗岩成因: 来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 2018, 25(6): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806018.htm

    [40]

    李华芹, 陈富文. 中国新疆区域成矿作用年代学[M]. 北京: 地质出版社, 2004: 1-391.

    [41]

    李舢, 王涛, 童英. 中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境[J]. 岩石矿物学杂志, 2010, 29(6): 642-662. doi: 10.3969/j.issn.1000-6524.2010.06.004

    [42]

    李通国, 梁明宏, 余君鹏, 等. 甘肃省稀有(稀土)金属成矿地质背景研究[M]. 北京: 地质出版社, 2018.

    [43]

    刘志超, 刘小驰, 俞良军, 等. 喜马拉雅康巴淡色花岗岩的高分异成因及岩浆-热液演化特征[J]. 南京大学学报(自然科学), 2020a, 56(6): 800-814. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202006004.htm

    [44]

    刘志超, 吴福元, 刘小驰, 等. 喜马拉雅淡色花岗岩结晶分异机制概述[J]. 岩石学报, 2020b, 36(12): 3551-3571. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202012001.htm

    [45]

    毛景文, 李红艳, 裴荣富. 湖南千里山花岗岩体的Nd-Sr同位素及岩石成因研究[J]. 矿床地质, 1995, 3: 235-242. doi: 10.16111/j.0258-7106.1995.03.006

    [46]

    苗来成, 朱明帅, 张福勤. 北山地区中生代岩浆活动与成矿构造背景分析[J]. 中国地质, 2014, 41(4): 1190-1204. doi: 10.3969/j.issn.1000-3657.2014.04.013

    [47]

    聂凤军, 江思宏, 赵省民, 等. 北山北带古生代岩浆活动与金矿床的形成[J]. 矿物岩石地球化学通报, 2000, 4: 228. doi: 10.3969/j.issn.1007-2802.2000.04.007

    [48]

    邱检生, 胡建, 王孝磊, 等. 广东河源白石冈岩体: 一个高分异的I型花岗岩[J]. 地质学报, 2005, 4: 503-514. doi: 10.3321/j.issn:0001-5717.2005.04.008

    [49]

    任云伟, 任邦方, 牛文超, 等. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物[J]. 地球科学, 2019, 44(1): 312-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901024.htm

    [50]

    谭洪旗, 吕丰强, 李超, 等. 川西滴痴山高分异花岗岩与辉钼矿的成因联系[J/OL]. 地球科学. 2022: 1-23.

    [51]

    王楠, 刘治博, 宋扬, 等. 西藏班戈地区早白垩世高分异花岗岩年代学及岩石成因[J]. 岩石学报, 2020, 36(2): 409-425. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002005.htm

    [52]

    王清利. 天山及邻区古生代构造-岩浆-成矿事件年代学研究[D]., 中国地质科学院博士学位论文, 2008.

    [53]

    王鑫玉, 袁超, 龙晓平, 等. 北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义[J]. 地球化学, 2018, 47(1): 63-78. doi: 10.19700/j.0379-1726.2018.01.005

    [54]

    吴昌志, 贾力, 雷如雄, 等. 中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展[J]. 岩石学报, 2021, 37(9): 2604-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202109002.htm

    [55]

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 6: 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [56]

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm

    [57]

    于俊博. 甘肃北山成矿带白头山地球化学特征研究[D]. 中国地质科学院硕士学位论文, 2015.

    [58]

    袁禹. 北山造山带大陆地壳的形成与演化[D]. 中国地质大学博士学位论文, 2019.

    [59]

    张天福, 郭硕, 辛后田, 等. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约[J]. 地球科学, 2019, 44(1): 248-267 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901019.htm

    [60]

    赵振华, 增田彰正, 夏巴尼. M.B. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, (3): 221-233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    [61]

    周延庆. 西藏虾别错地区花岗岩的地球化学特征及地质意义[D]. 中国地质大学(北京)硕士学位论文, 2020.

    [62]

    朱金初, 吴长年, 刘昌实, 等. 新疆阿尔泰可可托海3号伟晶岩脉岩浆——热液演化和成因[J]. 高校地质学报, 2000, (1): 40-52. doi: 10.3969/j.issn.1006-7493.2000.01.006

    [63]

    朱永峰. 新疆的印支运动与成矿[J]. 地质通报, 2007, (5): 510-519. doi: 10.3969/j.issn.1671-2552.2007.05.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20070585&flag=1

    [64]

    左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990, (4): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199004000.htm

    [65]

    左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003, (1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm

    甘肃省地质调查院. 甘肃省肃北县白头山铷矿普查报告[R]. 2017.

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1535
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2022-04-20
修回日期:  2022-05-31
刊出日期:  2023-05-15

目录