pXRF原位分析在柴北缘鱼卡金红石矿床勘查中的应用

林成贵, 程志中, 郑有业, 许荣科, 白杰, 陈鑫, 颜廷杰. 2023. pXRF原位分析在柴北缘鱼卡金红石矿床勘查中的应用. 地质通报, 42(6): 966-977. doi: 10.12097/j.issn.1671-2552.2023.06.009
引用本文: 林成贵, 程志中, 郑有业, 许荣科, 白杰, 陈鑫, 颜廷杰. 2023. pXRF原位分析在柴北缘鱼卡金红石矿床勘查中的应用. 地质通报, 42(6): 966-977. doi: 10.12097/j.issn.1671-2552.2023.06.009
LIN Chenggui, CHENG Zhizhong, ZHENG Youye, XU Rongke, BAI Jie, CHEN Xin, YAN Tingjie. 2023. Application of pXRF in-situ analysis in the exploration of Yuka rutile deposit, North Qaidam. Geological Bulletin of China, 42(6): 966-977. doi: 10.12097/j.issn.1671-2552.2023.06.009
Citation: LIN Chenggui, CHENG Zhizhong, ZHENG Youye, XU Rongke, BAI Jie, CHEN Xin, YAN Tingjie. 2023. Application of pXRF in-situ analysis in the exploration of Yuka rutile deposit, North Qaidam. Geological Bulletin of China, 42(6): 966-977. doi: 10.12097/j.issn.1671-2552.2023.06.009

pXRF原位分析在柴北缘鱼卡金红石矿床勘查中的应用

  • 基金项目:
    国家重点研发计划课题《深部矿产资源三维找矿预测评价示范》(编号: 2017YFC0601506)、《矿产勘查区块优选评价和勘查理论技术跟踪与推广》(编号: 20221692)
详细信息
    作者简介: 林成贵(1990-), 男, 在读博士生, 工程师, 从事找矿预测和勘查技术研究。E-mail: linchenggui1991@163.com
    通讯作者: 白杰(1992-), 男, 硕士, 工程师, 从事自然资源管理工作。E-mail: nagisamy@163.com
  • 中图分类号: P578.4+7

Application of pXRF in-situ analysis in the exploration of Yuka rutile deposit, North Qaidam

More Information
  • 便携式X射线荧光分析(pXRF)具有快速、高效、绿色、便捷等优点, 在矿产勘查中的应用越来越广泛。样品的不平度效应和不均匀效应等问题, 使得pXRF现场原位分析结果与实验室分析结果存在一定偏差。将该技术运用于柴北缘鱼卡金红石矿床勘查找矿, 对pXRF原位分析的稳定性进行试验, 并与实验室XRF法测试结果进行对比分析。结果表明, pXRF原位分析单点重复测量结果稳定, 分析测试最优时间为25~30 s; pXRF和实验室XRF法对样品Ti含量具有显著相关性, 存在线性关系。野外快速分析, 评价榴辉岩的Ti含量, 结果表明, 当pXRF原位分析榴辉岩中Ti含量在0~0.52%时, 对应非矿化榴辉岩; Ti含量在0.52%~0.86%时, 对应金红石贫矿体; Ti含量大于0.86%时, 对应的榴辉岩为金红石工业矿体。在槽探编录和钻探施工过程中, 使用pXRF分析可在野外快速判断榴辉岩的含矿性, 辅助找矿工作中圈定矿体, 大大减少样品采集的工作量, 节约成本和时间, 提高对榴辉岩型金红石矿床的勘查效率。

  • 加载中
  • 图 1  柴北缘鱼卡金红石矿床地质简图

    Figure 1. 

    图 2  鱼卡金红石矿床中榴辉岩野外和镜下照片

    Figure 2. 

    图 3  pXRF单点重复性分析结果

    Figure 3. 

    图 4  不同测试时间pXRF分析Ti含量稳定性对比

    Figure 4. 

    图 5  不同探槽样品pXRF分析与实验室分析Ti含量对比图

    Figure 5. 

    图 6  pXRF分析与实验室分析Ti含量相关系数图

    Figure 6. 

    图 7  pXRF原位分析和实验室分析鱼卡金红石矿探槽中样品TiO2含量

    Figure 7. 

    图 8  pXRF原位分析和实验室分析鱼卡金红石矿钻孔中样品TiO2含量

    Figure 8. 

    表 1  pXRF分析Ti元素重复性测量结果

    Table 1.  The repeatability measurement results of Ti element analyzed by pXRF  %

    序号 TC164HX1 TC170HX10 TC161HX7 序号 TC164HX1 TC170HX10 TC161HX7
    1 2.49 2.02 1.72 11 2.48 2.01 1.75
    2 2.52 2.05 1.73 12 2.42 2.03 1.73
    3 2.49 2.01 1.73 13 2.47 2.00 1.71
    4 2.50 2.01 1.73 14 2.49 2.01 1.72
    5 2.56 2.05 1.71 15 2.50 2.01 1.72
    6 2.46 2.04 1.73 16 2.50 2.01 1.73
    7 2.57 2.04 1.73 17 2.40 2.04 1.72
    8 2.58 2.04 1.74 18 2.40 2.00 1.74
    9 2.59 2.03 1.72 19 2.45 2.01 1.73
    10 2.48 2.05 1.75 20 2.47 2.00 1.73
    下载: 导出CSV

    表 2  不同测试时间pXRF分析Ti元素测量结果

    Table 2.  The measurement results of Ti element analyzed by pXRF at different test time  %

    序号 TC164HX1 TC170HX10 TC161HX7 序号 TC164HX1 TC170HX10 TC161HX7
    1 2.27 2.05 1.60 16 2.49 2.05 1.73
    2 2.45 1.99 1.89 17 2.48 2.06 1.72
    3 2.46 2.01 1.80 18 2.48 2.05 1.73
    4 2.53 1.98 1.85 19 2.47 2.05 1.72
    5 2.40 1.99 1.77 20 2.48 2.06 1.73
    6 2.41 2.00 1.77 21 2.48 2.06 1.73
    7 2.42 2.00 1.78 22 2.49 2.06 1.73
    8 2.43 2.00 1.76 23 2.49 2.06 1.72
    9 2.45 1.99 1.71 24 2.49 2.06 1.73
    10 2.46 2.00 1.73 25 2.49 2.06 1.73
    11 2.47 2.01 1.78 26 3.01 2.06 1.73
    12 2.47 2.02 1.74 27 3.01 2.05 1.73
    13 2.49 2.03 1.75 28 3.00 2.05 1.73
    14 2.47 2.04 1.75 29 3.00 2.05 1.73
    15 2.49 2.06 1.73 30 3.00 2.05 1.73
    下载: 导出CSV
  • [1]

    Adlington L W, Freestone I C. Using handheld pXRF to study medieval stained glass: A methodology using trace elements[J]. MRS Advances, 2017, 2: 1785-1800. doi: 10.1557/adv.2017.233

    [2]

    Balaram V. Field-portable analytical instruments in mineral exploration: past, present and future[J]. Journal of Applied Geochemistry, 2017, 19: 382-399.

    [3]

    Bendicho C, Lavilla I, Pena-Pereira F, et al. Green chemistry in analytical atomic pectrometry: a review[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1831-1857.

    [4]

    Bruno L. A review of pXRF (field portable X-ray fluorescence)applications for applied geochemistry[J]. Journal of Geochemical Exploration, 2018, 188: 350-363. doi: 10.1016/j.gexplo.2018.02.006

    [5]

    Bull A, Brown M T, Turner A. Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae[J]. Environmental Pollution, 2017, 220: 228-233. doi: 10.1016/j.envpol.2016.09.049

    [6]

    Chen X, Xu R K, Zheng Y Y, et al. Petrology and geochemistry of high niobium eclogite in the North Qaidam orogen, Western China: implications for an eclogite facies metamorphosed island arc slice[J]. Journal of Asian Earth Sciences, 2018, 164: 380-397. doi: 10.1016/j.jseaes.2018.07.003

    [7]

    Chen X, Schertl H P, Cambeses A, et al. Frommagmatic generation to UHP metamorphic overprint and subsequent exhumation: a rapid cycle of plate movement recorded by the supra-subduction zone ophiolite from the North Qaidam orogen [J]. Lithos, 2019, 350: 105238.

    [8]

    Gazley M F, Tutt C M, Fisher L A, et al. Objective geological logging using portable XRF geochemical multi-element data at Plutonic Gold Mine, Marymia Inlier, Western Australia[J]. Journal of Geochemical Exploration, 2014, 143: 74-83. doi: 10.1016/j.gexplo.2014.03.019

    [9]

    Hall Gwendy E M, Bonham-Carter Graeme F, Buchar Angelina. Evaluation of portable X-ray fluorescence (pXRF)in exploration andmining: Phase 1, control reference materials [J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14: 99-123. doi: 10.1144/geochem2013-241

    [10]

    Hall G E M, McClenaghan M B, Pagé L. Application of portable XRF to the direct analysis of till samples from various deposit types in Canada[J]. Geochemistry: Exploration, Environment, Analysis, 2016, 16(1): 62-84. doi: 10.1144/geochem2015-371

    [11]

    Kalnicky D J, Singhvi R. Field portable XRF analysis of environmental samples[J]. Journal of Hazardous Materials, 2001, 83(1/2): 93-122.

    [12]

    Lin C G, Cheng Z Z, Chen X, et al. Application of multi-component gas geochemical survey for deep mineralexploration in covered areas[J]. Journal of Geochemical Exploration, 2021, 220: 106656. doi: 10.1016/j.gexplo.2020.106656

    [13]

    Nathan C, Robert J S, Rachel S, et al. Comparison of XRF and pXRF for analysis of archaeological obsidian from southern Perú[J]. Journal of Archaeological Science, 2007, 34(12): 2012-2024. doi: 10.1016/j.jas.2007.01.015

    [14]

    Pringle J K, Jeffery A J, Ruffell A, et al. The use of portable XRF as a forensic geoscience non-destructive trace evidence tool for environmental and criminal investigations[J]. Forensic Science International, 2021, 332: 111175.

    [15]

    Rhodes J R, Rautala P. Application of a microprocessor-based portable XRFanalyzer in minerals analysis[J]. The International Journal of Applied Radiation and Isotopes, 1983, 34(1): 333-343. doi: 10.1016/0020-708X(83)90134-5

    [16]

    Ross P S, Bourke A, Fresia B. Improving lithological discriminationin exploration drill-cores using portable X-ray fluorescence measurements: (2)applications to the Zn-Cu Matagami mining camp, Canada[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14: 187-196. doi: 10.1144/geochem2012-164

    [17]

    Rouillon M, Taylor M P. Can field portable X -ray fluorescence (pXRF)produce high quality data for application in environmental contamination research?[J]. Environmental Pollution, 2016, 214: 255-264. doi: 10.1016/j.envpol.2016.03.055

    [18]

    Ryan J G, Shervais J W, Li Y, et al. Application of a handheld X-rayfluorescence spectrometer for real-time high-density quantitativeanalysis of drilled igneous rocks and sediments during IODPExpedition 352[J]. Chemical Geology, 2017, 451: 55-66. doi: 10.1016/j.chemgeo.2017.01.007

    [19]

    Somarin A K, Steinhage I. Use of field-portable XRF in exploration of PGE-enriched zones in the Pilanesberg PGE deposit, Bushveld Complex, South Africa[J]. Geochemistry: Exploration, Environment, Analysis, 2021, 21: 1-7.

    [20]

    Steiner A E, Conrey R M, Wolff J A. pXRF calibrations for volcanic rocks and the application of in-field-analysis to the geosciences[J]. Chemical Geology, 2017, 453: 35-54. doi: 10.1016/j.chemgeo.2017.01.023

    [21]

    Yuan Z X, Cheng Q M, Xia Q L, et al. Spatial patterns of geochemical elements measured on rock surfaces by portable X-ray fluorescence: application to hand speci-mens and rock outcrops[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 265-276. doi: 10.1144/geochem2012-173

    [22]

    Zhang W, Lentz D R, Charnley B E. Petrogeochemical assessment of rock units and identification of alteration/mineralization indicators using portable X-ray fluorescence measurements: Applications to the Fire Tower Zone(W-Mo-Bi)and the North Zone (Sn-Zn-In), Mount Pleasant deposit, New Brunswick, Canada[J]. Journal of Geochemical Exploration, 2017, 177: 61-72. doi: 10.1016/j.gexplo.2017.02.005

    [23]

    Zou H, Pei Q M, Li X Y, et al. Application of field-portable geophysical and geochemical methods fortracing the Mesozoic-Cenozoic vein-type fluorite deposits in shallowoverburden areas: A case from the Wuliji'Oboo deposit, Inner Mongolia, NE China [J]. Ore Geology Reviews, 2022, 142: 104685. doi: 10.1016/j.oregeorev.2021.104685

    [24]

    陈鑫, 许荣科, 郑有业, 等. 青海柴北缘UHP变质带铁石观西榴辉岩峰期温度的确定及其地质意义[J]. 地质通报, 2015, 34(12): 2292-2301. doi: 10.3969/j.issn.1671-2552.2015.12.015 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20151215&flag=1

    [25]

    陈鑫, 郑有业, 许荣科, 等. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J]. 岩石学报, 2018, 34(6): 1685-1703. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806009.htm

    [26]

    黄威, 胡邦琦, 徐磊, 等. 基于便携式X射线荧光光谱法的深海沉积物现场成分快速检测及适用性评估[J]. 地质通报, 2021, 40(2/3): 423-4333. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2021020323&flag=1

    [27]

    林成贵, 许荣科, 郑有业, 等. 柴北缘鱼卡榴辉岩型金红石矿地质特征及其原岩性质探讨[J]. 西北地质, 2017, 50(2): 142-155. doi: 10.3969/j.issn.1009-6248.2017.02.016

    [28]

    林成贵, 郑有业, 程志中, 等. 柴北缘鱼卡榴辉岩型金红石矿床成矿物理条件[J]. 地质通报, 2019, 38(5): 866-883. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190516&flag=1

    [29]

    林成贵, 程志中, 姚晓峰, 等. 基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性[J]. 地球科学, 2020, 45(11): 4038-4053. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011012.htm

    [30]

    马静艳, 唐力君, 劳昌玲, 等. 野外现场地质实验分析技术及应用[J]. 分析仪器, 2018, 12(1): 12-19. doi: 10.3969/j.issn.1001-232x.2018.01.003

    [31]

    聂黎行, 张烨, 朱俐, 等. 便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J]. 光谱学与光谱分析, 2017, 37(10): 3225-3228. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201710052.htm

    [32]

    邵雪维, 彭永明, 王功文, 等. 短波红外光谱、X射线荧光光谱、黄铁矿热电性分析在胶东新城金矿田深部找矿中的应用[J]. 地学前缘, 2021, 28(3): 236-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103025.htm

    [33]

    孙伟涛, 郑有业, 牛学瑶, 等. 手持式X射线荧光光谱分析仪在斑岩铜矿快速勘查中的应用[J]. 岩矿测试, 2021, 40(2): 206-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202102005.htm

    [34]

    唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202003018.htm

    [35]

    王永开, 徐永利, 郑有业, 等. 柴达木盆地北缘鱼卡—铁石观一带金红石矿床的发现及其地质意义[J]. 地质通报, 2014, 33(6): 900-911. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140613&flag=1

    [36]

    尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试, 2009, 28(1): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200901011.htm

    [37]

    袁兆宪, 周树斌, 常浩, 等. 基于pXRF原位分析的内蒙古兴和曹四夭钼矿床深部岩石地球化学特征[J]. 矿物岩石地球化学通报, 2020, 39(5): 973-982. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202005010.htm

    [38]

    张广玉, 赵世煌, 邓晃, 等. 手持式X射线荧光光谱多点测试技术在地质岩心和岩石标本预研究中的应用[J]. 岩矿测试, 2017, 36(5): 501-509. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201705009.htm

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1041
  • PDF下载数:  23
  • 施引文献:  0
出版历程
收稿日期:  2022-05-20
修回日期:  2022-07-11
刊出日期:  2023-06-15

目录