赣西七宝山钴铅锌矿床碧玉岩的发现及对矿床成因的制约

孙建东, 李海立, 张雪辉, 陆凡, 徐敏成, 卢致慧. 2023. 赣西七宝山钴铅锌矿床碧玉岩的发现及对矿床成因的制约. 地质通报, 42(10): 1718-1727. doi: 10.12097/j.issn.1671-2552.2023.10.009
引用本文: 孙建东, 李海立, 张雪辉, 陆凡, 徐敏成, 卢致慧. 2023. 赣西七宝山钴铅锌矿床碧玉岩的发现及对矿床成因的制约. 地质通报, 42(10): 1718-1727. doi: 10.12097/j.issn.1671-2552.2023.10.009
SUN Jiandong, LI Haili, ZHANG Xuehui, LU Fan, XU Mincheng, LU Zhihui. 2023. The discovery of jasper rocks in the Qibaoshan cobalt-lead-zinc deposit in western Jiangxi Province and its restriction on the genesis of the deposit. Geological Bulletin of China, 42(10): 1718-1727. doi: 10.12097/j.issn.1671-2552.2023.10.009
Citation: SUN Jiandong, LI Haili, ZHANG Xuehui, LU Fan, XU Mincheng, LU Zhihui. 2023. The discovery of jasper rocks in the Qibaoshan cobalt-lead-zinc deposit in western Jiangxi Province and its restriction on the genesis of the deposit. Geological Bulletin of China, 42(10): 1718-1727. doi: 10.12097/j.issn.1671-2552.2023.10.009

赣西七宝山钴铅锌矿床碧玉岩的发现及对矿床成因的制约

  • 基金项目:
    国家重点研发项目《武夷德化-尤溪-永泰矿集区三维综合探测与深部成矿预测》(编号:2016YFC0600210)和中国地质调查局项目《钦杭成矿带武宁-平江地区钨铜多金属矿地质调查》(编号:DD20190153)、《江南陆块南缘成矿带(东段)战略性矿产调查》(编号:DD20240066)
详细信息
    作者简介: 孙建东(1987-),男,硕士,高级工程师,从事矿床地质研究工作。E-mail:njsunjiandong@163.com
    通讯作者: 张雪辉(1983-),男,正高级工程师,从事矿床地质研究工作。E-mail:185077008@qq.com
  • 中图分类号: P618.42;P618.43;P618.62

The discovery of jasper rocks in the Qibaoshan cobalt-lead-zinc deposit in western Jiangxi Province and its restriction on the genesis of the deposit

More Information
  • 对赣西七宝山钴铅锌矿中的碧玉岩进行岩石学、地球化学研究,可为矿床成因及区域海底火山活动成矿作用提供地质证据。赣西七宝山钴铅锌矿床为中型钴矿床,主矿体产于石炭系黄龙组铁白云岩中,矿石结构以粒状、胶状结构为主,块状、层纹状硫化物矿体与新发现的碧玉岩空间相依,同地产出,密切相伴,互相包夹,表明其与成矿具有密切的共生关系,属同期沉积产物;碧玉岩主量、微量、稀土数据表明,其具有高硅贫铝富铁、锰特征,Al/(Al+Fe+Mn)值为0.13~0.16,与热水成因的硅质岩相当;富集Rb、Ba、U、La、Zr、Hf元素,亏损K、Nd、P、Ti元素,U/Th值为185.83~373.85,Y/Ho值为26.88~50.00,稀土元素总量低,为0.88×10-6~2.16×10-6,LREE/HREE值介于0.07~0.36之间,轻、重稀土元素分馏程度不高,Ce无异常,δEu中等负异常,显示碧玉岩物质来源于深部海底热水,少量同生海水混合形成,形成于晚古生代陆缘裂谷海槽环境。研究成果为矿床属于海底火山喷流沉积成因提供了直接有利的证据。

  • 加载中
  • 图 1  七宝山钴铅锌矿区地质图(a)及剖面图(b)

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  标准化微量元素蛛网图(a)和稀土元素配分图(b) (标准化数值据Sun et al.,1989)

    Figure 2. 

    图 3  Al-Fe-Mn图解(底图据Adachi et al., 1986)

    Figure 3. 

    图 4  Al2O3/100-SiO2-Fe2O3/100-SiO2(a)和Al2O3/(Al2O3+Fe2O3)-Fe2O3/TiO2(b)图解(底图据Adachi et al.,1986)

    Figure 4. 

    表 1  碧玉岩主量、微量及稀土元素分析结果

    Table 1.  The main, trace and rare earth element analysis results of jadeite rocks

    送样号 QBS-YQ1 QBS-YQ2 QBS-YQ3 QBS-YQ4 QBS-YQ5 QBS-YQ1 QBS-YQ2 QBS-YQ3 QBS-YQ4 QBS-YQ5
    SiO2 95.21 98.62 90.71 93.48 96.83 Cu 58.30 2.00 2.20 106.00 32.10
    Al2O3 0.14 0.09 0.09 0.18 0.17 Pb 99.20 83.10 63.60 33.10 18.40
    FeO 0.13 0.04 0.07 0.60 0.60 Zn 23.40 23.50 22.00 463.00 90.70
    Fe2O3 0.55 0.45 0.35 0.58 0.47 Cr 21.30 2.00 3.90 20.60 16.50
    CaO 1.18 0.34 0.39 1.71 0.73 Ni 2.30 0.67 0.76 32.90 20.30
    MgO 0.75 0.22 0.24 0.85 0.35 Co 1.10 0.62 0.42 94.30 50.80
    K2O 0.01 0.00 0.00 0.01 0.01 Rb 0.40 0.32 0.20 1.00 0.88
    Na2O 0.04 0.04 0.04 0.05 0.04 Cs 0.42 0.39 0.39 0.52 0.51
    TiO2 0.03 0.01 0.01 0.02 0.01 Bi 0.81 0.08 0.08 <0.05 0.05
    P2O5 0.00 0.00 0.00 0.00 0.00 Hg 0.09 0.03 0.01 0.04 0.02
    MnO 0.03 0.02 0.02 0.12 0.08 Sr 5.20 3.20 3.00 6.20 3.80
    烧失量 1.87 0.53 8.48 2.41 1.00 Ba 2.80 2.70 2.80 3.30 4.20
    SO2 0.02 0.01 0.02 0.23 0.09 V 3.20 1.40 1.40 9.20 7.50
    Si 444313.33 460226.67 423313.33 436240.00 451873.33 Nb 0.18 0.04 0.02 0.21 0.14
    Al 370.59 248.82 243.53 476.47 450.00 Ta < 0.005 < 0.005 < 0.005 < 0.005 < 0.005
    Fe 1909.36 1575.00 1225.00 2041.27 1656.27 Zr 12.30 11.90 92.70 12.10 12.30
    Mn 216.90 123.94 131.69 929.58 627.46 Hf 0.70 0.60 2.20 0.50 0.50
    Si/Al 1198.94 1849.61 1738.24 915.57 1004.16 Be 0.06 0.07 0.04 0.04 0.04
    Fe2O3/SiO2 0.01 0.00 0.00 0.01 0.00 Ga 0.22 0.15 0.14 0.33 0.25
    Al2O3/SiO2 0.00 0.00 0.00 0.00 0.00 Sn < 1.00 < 1.00 < 1.00 < 1.00 < 1.00
    Fe2O3/100-SiO2 0.11 0.33 0.04 0.09 0.15 Au < 3.00 < 3.00 < 3.00 < 3.00 < 3.00
    Al2O3/100-SiO2 0.03 0.07 0.01 0.03 0.05 Ag 0.42 0.07 0.09 0.09 0.05
    Fe2O3/TiO2 17.60 34.62 25.00 29.16 47.32 U 17.30 30.60 22.30 24.60 24.30
    Al2O3/(Fe2O3+Al2O3) 0.20 0.17 0.21 0.24 0.26 Th 0.06 0.12 0.12 0.09 0.07
    Al/(Al+Fe+Mn) 0.15 0.13 0.15 0.14 0.16 U/Th 283.61 255.00 185.83 276.40 373.85
    送样号 QBS-YQ1 QBS-YQ2 QBS-YQ3 QBS-YQ4 QBS-YQ5 TSK SW-1
    (150 m)
    SW-2
    (400 m)
    SW-3
    (1502 m)
    SW-4
    (2500 m)
    HW
    (热水)
    La 0.22 0.20 0.18 0.50 0.33 2.07 1.44 2.54 4.96 5.37 161.88
    Ce 0.42 0.38 0.38 0.70 0.70 3.17 0.79 0.35 0.65 0.61 336.82
    Pr 0.04 0.06 0.04 0.08 0.07 0.50 0.22 0.33 0.62 0.72 43.35
    Nd 0.20 0.19 0.16 0.36 0.30 1.89 1.14 1.65 2.98 3.41 177.22
    Sm 0.05 0.05 0.04 0.14 0.09 0.40 0.27 0.33 0.59 0.66 43.00
    Eu 0.01 0.01 0.01 0.02 0.01 0.08 0.07 0.09 0.16 0.19 210.06
    Gd 0.05 0.05 0.03 0.15 0.10 0.51 0.40 0.53 0.90 1.06 42.48
    Tb 0.01 0.01 0.00 0.02 0.01 0.12 0.07 0.09 0.17 0.18 5.60
    Dy 0.04 0.02 0.01 0.10 0.06 0.58 0.50 0.71 1.22 1.37 29.03
    Ho 0.01 0.00 0.00 0.02 0.01 0.13 0.14 0.20 0.35 0.38 4.70
    Er 0.02 0.01 0.01 0.03 0.03 0.33 0.42 0.67 1.23 1.33 10.60
    Tm 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.10 0.19 0.21 1.29
    Yb 0.03 0.01 0.01 0.04 0.03 0.29 0.39 0.66 1.33 1.45 6.43
    Lu 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.11 0.24 0.26 0.82
    Y 0.20 0.21 0.11 0.43 0.31 4.61 7.84 10.77 19.20 21.14 141.98
    Y/Ho 35.71 50.00 47.83 26.88 33.33 34.69 57.99 54.87 54.17 55.03 30.19
    ΣREE 1.09 0.99 0.88 2.16 1.74 10.18 5.98 8.37 15.59 17.20 1073.28
    LREE 0.94 0.89 0.81 1.80 1.50 8.11 3.94 5.30 9.96 10.96 972.33
    HREE 0.15 0.11 0.07 0.36 0.24 2.07 2.04 3.07 5.63 6.24 100.95
    LREE/HREE 6.45 8.36 11.50 5.01 6.20 3.92 1.94 1.73 1.77 1.76 9.63
    (La/Yb)N 5.84 10.25 14.67 9.69 8.77 5.19 2.67 2.76 2.69 2.65 18.06
    δEu 0.51 0.58 0.63 0.46 0.42 0.55 0.69 0.68 0.69 0.67 15.03
    δCe 1.07 0.87 1.05 0.87 1.15 0.76 0.34 0.09 0.09 0.08 0.99
    注:主量元素含量单位为%;微量、稀土元素含量单位为10-6。其中TSK数据为11个样品加权平均值,据参考文献Man et al.,2020;SW-1(150 m)、SW-2(400 m)、SW-3(1502 m)、SW-4(2500 m)数据据参考文献Alibo et al.,1999不同深度现代海水数据;HW(热水)数据据参考文献(Bau et al.,1999)中大西洋洋脊热液流体数据。δEu=EuN/0.5(SmN+GdN);δCe=CeN/0.5(LaN+PrN)
    下载: 导出CSV
  • [1]

    Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.

    [2]

    Alibo D S, Nozaki Y. Rare earth elements in seawater: particle association, shale normalization, and Ce oxidation[J]. Geochim. Cosmochim. Acta., 1999, 63: 363-372. doi: 10.1016/S0016-7037(98)00279-8

    [3]

    Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chem. Geol., 1999, 155: 77-90. doi: 10.1016/S0009-2541(98)00142-9

    [4]

    Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions-A PVTX Summary from 300℃ to 500℃[J]. Am. J., 1991, 291(4): 309-338.

    [5]

    Bogdanov Y A. Low-temperature hydrothermal deposits of Franklin seamout, Woodlark Basin, Papua New Guinea[J]. Marine Geology, 1997, 142(1/4): 99-117.

    [6]

    Bostrom K, Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4

    [7]

    Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Joural of Sedimentary Research, 1996, 66(1): 107-118.

    [8]

    Grenne T. Geochemistry of jasper beds from the Ordovician Lokken Ophiolite, Norway: Origin of Proximal and Distal Siliceous Exhalites[J]. Economic Geology, 2005, 100(8): 1511-1527. doi: 10.2113/gsecongeo.100.8.1511

    [9]

    Hekinian R, Hoffert M, Larque P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions[J]. Economic Geology, 1993, 88(8): 2099-2121. doi: 10.2113/gsecongeo.88.8.2099

    [10]

    Man R H, Xue C J, Zhao X B, et al. Genesis of the Tuokesai Zn-Pb deposit in the Sayram Massif, Xinjiang, NW China: Constraints from geology, jasperite geochemistry and Si-S-Pb isotopes[J]. Ore Geology Reviews, 2020, 121: 1-11.

    [11]

    Mero J L. Hot brines and recent heavy metal deposits in the Red Sea[J]. Chem. Geol., 1971, 7(2): 149-150. doi: 10.1016/0009-2541(71)90039-8

    [12]

    Murray R W, Buchholtz M R B T, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Compled and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimi. Et Cosmochim. Acta, 1991, 55(7): 1875-1895. doi: 10.1016/0016-7037(91)90030-9

    [13]

    Murray R W, Buchholtz M R B T, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis[J]. Geochimica Et Cosmochimica Acta, 1992a, 56(7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I

    [14]

    Murray R W, Buchholtz M R B T, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record[J]. Geochimi. Et Cosmochim. Acta., 1992b, 56(5): 1897-1913. doi: 10.1016/0016-7037(92)90319-E

    [15]

    Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.

    [16]

    Nozaki Y, Zhang, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth Planet. Sci. Lett., 1997, 148: 329-340. doi: 10.1016/S0012-821X(97)00034-4

    [17]

    Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society of London, Special Publications, 1989, 42: 313-345.

    [18]

    Wen H J, Fan H F, Tian S H, et al. The formation conditions of the early Ediacaran cherts, South China[J]. Chem. Geol., 2016, 430: 45-69. doi: 10.1016/j.chemgeo.2016.03.005

    [19]

    Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108.

    [20]

    陈先沛, 高计元, 陈多福, 等. 热水沉积作用的概念和几个岩石学标志[J]. 沉积学报, 1992, 10(3) : 124-130. doi: 10.14027/j.cnki.cjxb.1992.03.015

    [21]

    丁少辉, 王昆, 惠军, 等. 江西省成矿规律图说明书[M]. 北京: 地质出版社, 2014.

    [22]

    郭云峰, 安芳. 别子型火山成因块状硫化物矿床的地质和地球化学特征[J]. 世界地质, 2018, 37(2): 113-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201802012.htm

    [23]

    侯增谦, 韩发, 夏林圻, 等. 现代与古代海底热水成矿作用——以若干火山成因块状硫化物矿床为例[M]. 北京: 地质出版社, 2003.

    [24]

    华明弟. 论莫托沙拉碧玉铁锰矿床的火山-沉积成因[J]. 新疆地质, 1985, (1): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198501001.htm

    [25]

    江西铜业集团公司七宝山矿业有限公司[R]. 江西省上高县江西铜业集团公司七宝山铅锌矿资源储量核实报告. 2013.

    [26]

    黎彤. 大洋地壳和大陆地壳的元素丰度[J]. 大地构造与成矿学, 1984, 8(1): 19-27. doi: 10.16539/j.ddgzyckx.1984.01.004

    [27]

    黎彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 1994, 23(2): 140-145. doi: 10.19700/j.0379-1726.1994.02.005

    [28]

    李红阳, 杨秋荣, 李英杰. 现代成矿理论[M]. 北京: 地震出版社, 2006.

    [29]

    卢宗柳, 莫江平. 新疆阿吾拉勒富铁矿地质特征和矿床成因[J]. 地质与勘探, 2006, 42(5): 8-11. doi: 10.3969/j.issn.0495-5331.2006.05.002

    [30]

    舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120703&flag=1

    [31]

    孙剑, 朱祥坤, 李志红, 等. 海南石碌铁矿碧玉及其对矿床成因的制约[J]. 岩石学报, 2014, 30(5): 1269-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201405006.htm

    [32]

    孙治雷, 李军, 孙致学, 等. 热液喷口系统中Fe-Si氧化物沉淀体的形成及微生物的作用[J]. 地球科学进展, 2010, 25(12): 1325-1336. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201012005.htm

    [33]

    汪明, 左慧, 石富文, 等. 广西大厂锡多金属矿床研究综述[J]. 西部探矿工程, 2014, 26(1): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201401050.htm

    [34]

    王小红, 杨合群, 孙南一, 等. 额济纳旗碧玉岭铜矿田成矿特征及找矿标志[J]. 西北地质, 2008, (4): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200804004.htm

    [35]

    王学平, 周建廷, 范爱春. 江西省上高县七宝山铅锌铁钴矿床成矿模式[J]. 东华理工大学学报(自然科学版), 2011, 34(3): 248-256. doi: 10.3969/j.issn.1674-3504.2011.03.008

    [36]

    杨明桂, 王发宁, 曾勇, 等. 江西北部金属成矿地质[M]. 武汉: 中国地质大学出版社, 2004.

    [37]

    翟裕生. 中国重要成矿系列的形成机制和结构特征[M]. 北京: 地质出版社, 2008.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  577
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2021-07-22
修回日期:  2021-08-08
刊出日期:  2023-10-15

目录