地质出版社有限公司 中国地质科学院勘探技术研究所主办

地热井固井水泥石传热性能研究现状及展望

张丰琰,李立鑫. 2021. 地热井固井水泥石传热性能研究现状及展望. 钻探工程, 48(12): 54-64. doi: 10.12143/j.ztgc.2021.12.009
引用本文: 张丰琰,李立鑫. 2021. 地热井固井水泥石传热性能研究现状及展望. 钻探工程, 48(12): 54-64. doi: 10.12143/j.ztgc.2021.12.009
ZHANG Fengyan. 2021. Research status and prospect of thermal transfer performance of cement in geothermal wells. DRILLING ENGINEERING, 48(12): 54-64. doi: 10.12143/j.ztgc.2021.12.009
Citation: ZHANG Fengyan. 2021. Research status and prospect of thermal transfer performance of cement in geothermal wells. DRILLING ENGINEERING, 48(12): 54-64. doi: 10.12143/j.ztgc.2021.12.009

地热井固井水泥石传热性能研究现状及展望

  • 基金项目:

    国家重点研发计划项目“深部碳酸盐岩热储层水力喷射压裂起裂机理及裂缝形态研究”(编号:2019YFB1504102);中国地质科学院基本科研业务费项目“低密度保温地热固井水泥技术和科学钻探工程经费测算研究”(编号:JKY202008);中国地质调查局地质调查项目“雄安新区地热清洁能源调查评价项目”(编号:DD20189114)

详细信息
    作者简介: 张丰琰,男,汉族,1992年生,助理研究员,钻探工程专业,硕士,长期从事钻完井技术和工艺研究工作,北京市西城区百万庄大街26号,zhangfy18@cags.ac.cn。
  • 中图分类号: P634;TE256

Research status and prospect of thermal transfer performance of cement in geothermal wells

  • 固井水泥石传热性能是影响井筒热传递能力的重要因素。本文主要介绍了目前固井水泥石导热系数的主要研究手段,以及在此基础上取得的一些认识,例如外加高导热材料、水泥石微观结构和含水率与导热系数之间的关系。同时还指出了现有研究手段的统一和拓展、研究内容的系统化还有待进一步加强和改善。在分析建筑保温水泥和岩石等多孔材料研究经验的基础上,提出水泥石导热系数的研究不仅需要统一实验手段和推广使用数值模拟的方法,还要考虑水泥石养护条件、内部水分的动态变化和外加保温材料等因素对水泥石导热系数的影响。系统规范的研究手段和内容可有效提高研究的准确性、高效性和全面性,显著增加对水泥石热传导性能的认识,以期为后续的研究提供一定的借鉴。
  • 加载中
  • [1]

    DAVIS A P,MICHAELIDES E E. Geothermal power production from abandoned oil wells[J]. Energy, 2009,34(7):866-872.

    [2]

    [2] 李晓益,何汉平,段友智,等.砂岩孔隙型地热井提高热效工艺分析[J].石油钻采工艺,2017,39(4):484-490.

    LI Xiaoyi, HE Hanping, DUAN Youzhi,et al. Analysis on the thermal efficiency improvement process for geothermal well in porous sandstone[J]. Oil Drilling & Production Technology, 2017,39(4):484-490.

    [3]

    [3] 朱明,段友智,高小荣,等.地热井热损失影响因素敏感性分析[J].科技导报,2015,33(22):32-36.

    ZHU Ming, DUAN Youzhi, GAO Xiaorong, et al. Heat preservation suggestion and heat loss analysis of geothermal well[J]. Science & Technology Review, 2015,33(22):32-36.

    [4]

    [4] 方姚,张勇,冉真真.中深层地热井固井导热水泥导热系数研究[J].材料导报,2020,34(20):20028-20033,20052.

    FANG Yao, ZHANG Yong, RAN Zhenzhen. Thermal conductivity of cementing conductive cement in medium and deep geothermal well[J]. Materials Review, 2020,34(20):20028-20033,20052.

    [5]

    [5] 杨书港.隔热套管完井工艺设计与现场实践[J].石油工业技术监督,2019,35(1):1-4.

    YANG Shugang. Thermal insulation casing completion technology design and field practice[J]. Technology Supervision in Petroleum Industry, 2019,35(1):1-4.

    [6]

    [6] 庄纯才.地热井筒热损失工程计算方法研究与应用[D].大庆:东北石油大学,2016.ZHUANG Chuncai. Research and application of engineering calculation method for geothermal wellbore heat loss[D]. Daqing: Northeast Petroleum University, 2016.

    [7]

    [7] BAGHBAN M H, HOVDE P J, JACOBSEN S. Analytical and experimental study on thermal conductivity of hardened cement pastes[J]. Materials and Structures, 2012,46,1537-1546.

    [8]

    [8] NEVILLE A M. Properties of Concrete[M]. Pearson: London, UK, 2011.

    [9]

    [9] 张浩,徐拴海,杨雨,等.地热井固井材料导热性能影响因素[J].煤田地质与勘探,2020,48(2):195-201.

    ZHANG Hao, XU Shuanhai, YANG Yu, et al. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. Coal Geology & Exploration, 2020,48(2):195-201.

    [10]

    [10] ICHIM A, TEODORIU C, FALCONE G. Influence of cement thermal properties on wellbore heat exchange[C]//41st Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, California: 2016.

    [11]

    [11] KRAUSE P. Thermal conductivity of the curing concrete[J]. Archit. Civ. Eng. Environment. Journal, 2008,1:67-74.

    [12]

    [12] 李瑞霞,王高升,宋先知,等.固井水泥对同轴型换热系统取热效果影响数值分析[J].建筑科学,2018,34(4):36-40.

    LI Ruixia, WANG Gaosheng, SONG Xianzhi, et al. Numerical analysis of the effect of cement sheath on the heat extraction performance of coaxial borehole heat exchangers geothermal system[J]. Building Science, 2018,34(4):36-40.

    [13]

    [13] AKTHAR F K, EVANS J R G. High porosity (90%) cementitious foams[J]. Cement Concrete Research, 2010,40(2):352-358.

    [14]

    [14] HASAN A R, KABIR C S. Fluid flow and heat transfer in wellbores[J]. Society of Petroleum Engineers, Texas, 2002:64-73.

    [15]

    [15] 宋绵,龚磊,王新峰,等.阜平县地热水化学特征及结垢腐蚀性研究[J].地质论评,2020,66(S1):146-148.

    SONG Mian, GONG Lei, WANG Xinfeng, et al. Study on chemical characteristics and scale corrosion of geothermal water in fuping county[J]. Geological Review, 2020,66(S1):146-148.

    [16]

    [16] AKPAN A E. Estimation of subsurface temperatures in the Tattapani Geothermal Field, Central India, from limited volume of magnetotelluric data and borehole thermograms using a constructive back-propagation neural network[J]. Earth Interactions, 2014,18:1-26.

    [17]

    [17] GORMAN J M, ABRAHAM J P, SPARROW E M. A novel,comprehensive numerical simulation for predicting temperatures within boreholes and the adjoining rock bed[J]. Geothermics, 2014,50:213-219.

    [18]

    [18] WU B, ZHANG X, JEFFREY R G. A model for downhole fluid and rock temperature prediction during circulation[J]. Geothermics, 2104,50:202-212.

    [19]

    [19] 齐迪.井筒换热型地热井产出温度影响因素及预测研究[D].青岛:中国石油大学(华东),2017.QI Di. Study on influencing factors and prediction of output temperature in wellbore heat-exchange geothermal well[D]. Qingdao: China University of Petroleum (East China), 2017.

    [20]

    [20] EBRAHIMI, MAHYAR, TORSHIZI, et al. Optimization of power generation from a set of low-temperature abandoned gas wells, using organic Rankine cycle[J]. Journal of Renewable & Sustainable Energy, 2012,4(6):866-872.

    [21]

    [21] SONG Xianzhi, WANG Gaosheng, SHI Yu, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018,64,1298-1310.

    [22]

    [22] SONG Xianzhi, ZHENG Rui, LI Gensheng, et al. Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir[J]. Geothermics, 2018,76:190-200.

    [23]

    [23] ICHIM A, TEODORIU C, FALCONE G. Estimation of cement thermal properties through the three-phase model with application to geothermal wells[J]. Energies, 2018,11(10):2839.

    [24]

    [24] 马超.多孔建筑材料内部湿分布及湿传递对导热系数影响研究[D].西安:西安建筑科技大学,2017.MA Chao. Research on effect of moisture distribution and transfer on thermal conductivity of porous building materials[D]. Xi’an: Xi’an University of Architecture and Technology, 2017.

    [25]

    [25] SONG Xianzhi, ZHENG Rui, LI Ruixia, et al. Study on thermal conductivity of cement with thermal conductive materials in geothermal well[J]. Geothermics, 2019,81:1-11.

    [26]

    [26] WANG Sheng, JIAN Liming, SHU Zhihong, et al. A high thermal conductivity cement for geothermal exploitation application[J]. Natural Resources Research, 2020,29:3675-3687

    [27]

    [27] WON J, LEE D, NA K, et al. Physical properties of G-class cement for geothermal well cementing in South Korea[J]. Renewable Energy, 2015,80:123-131.

    [28]

    [28] 杨雨,徐拴海,张浩,等.填料对地热井固井材料导热性能的影响[J].煤田地质与勘探,2020,48(5):182-189.

    YANG Yu, XU Shuanhai, ZHANG Hao, et al. Effect of thermally conductive filler on thermal conductivity of cementing materials in geothermal wells[J]. Coal Geology & Exploration, 2020,48(5):182-189.

    [29]

    [29] PASCUAL-MUÑOZ P, INDACOECHEA-Vega I, ZAMORA-BARRAZA D, et al. Experimental analysis of enhanced cement-sand-based geothermal grouting materials[J]. Construction and Building Materials, 2018,185(10):481-488.

    [30]

    [30] 段云星,杨浩.固井界面接触热阻对井筒温度场预测的影响[J].科学技术与工程,2020,20(28):11539-11547.

    DUAN Yunxing, YANG Hao. Influence of thermal contact resistance of cementing interface on prediction of wellbore temperature field[J]. Science technology and engineering, 2020,20(28):11539-11547.

    [31]

    [31] 贾子龙,郑佳,郭艳春,等.岩石地层条件下回填料对地埋孔换热能力的影响[J].城市地质,2020,15(4):410-414.

    JIA Zilong, ZHENG Jia, GUO Yanchun, et al. Influence of backfilling materials on the heat transfer capacity of buried hole under the lithostraligraphic condition[J]. Urban Geology, 2020,15(4):410-414.

    [32]

    [32] MIDTTOMME K, ROALDSET E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998,4(2):165-172.

    [33]

    [33] 杨淑贞,张文仁,李国桦,等.柴达木盆地岩石热导率的饱水试验研究及热流校正[J].岩石学报,1993(2):199-204.

    YANG Shuzhen, ZHANG Wenren, LI Guohua, et al. Experimental redearch on the thermal conductivity of water-saturated rocks and correction to the heat flow observed in Caidam Basin[J]. Acta Petrological Sinica, 1993(2):199-204.

    [34]

    [34] 王祥.基于水泥基的保温隔热墙体材料研究与应用[D].合肥:安徽理工大学,2010.WANG Xiang. Research and application of thermal insulation wall material based on cement[D]. Hefei: Anhui University of Science & Technology, 2020.

    [35]

    [35] WIKTORSKI E, COBBAH C, SUI Dan. Experimental study of temperature effects on wellbore material properties to enhance temperature profile modeling for production wells[J]. Journal of Petroleum Science and Engineering, 2019,176:689-701.

    [36]

    [36] ABDULAGATOVA Z, ABDULAGATOV I M, EMIROV V N. Effect of temperature and pressure on the thermal conductivity of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2009,46(6):1055-1071.

    [37]

    [37] 王世芳,吴涛.多孔介质有效热导率的一种新模型[J].工程热物理学报,2016,37(12):2626-2630.

    WANG Shifang, WU Tao. A new fractal model for the effective thermal conductivity of porous media[J]. Journal of Engineering Thermophysics, 2016,37(12):2626-2630.

    [38]

    [38] 王成文,王瑞和,步玉环,等.深水固井水泥性能及水化机理[J].石油学报,2009,30(2):280-284.

    WANG Chengwen, WANG Ruihe, BU Yuhuan, et al. Properties and hydration mechanism of deepwater cementing system[J]. Acta Petrolei Sinica, 2009,30(2):280-284.

    [39]

    [39] QOMI M J A, PELLENQ R. Physical origins of thermal properties of cement paste[J]. Phys. Rev. Applied, 2015.

    [40]

    [40] 陈驰,朱传庆,唐博宁,等.岩石热导率影响因素研究进展[J].地球物理学进展,2020,35(6):2047-2057.

    CHEN Chi, ZHU Chuanqing, TANG Boning, et al. Progress in the study of the influencing factors of rock thermal conductivity[J]. Progress in Geophysics, 2020,35(6):2047-2057.

    [41]

    [41] BLÁZQUEZ C S, MARTÍN A F, NIETO I M, et al. Analysis and study of different grouting materials in vertical geothermal closedloop systems[J]. Renewable Energy, 2017,114:1189-1200.

    [42]

    [42] 蒋国盛,郑少军,代天,等.纳米二氧化硅在固井水泥浆中的应用研究进展[J].钻探工程,2021,48(1):68-74.

    JIANG Guosheng, ZHENG Shaojun,DAI Tian, et al. Research status of nano-silica application in well cementing slurry[J]. Drilling Engineering, 2021,48(1):68-74.

    [43]

    [43] BORINAGA-TREVINO R, PASCUAL-MUNOZ P, CALZADA-PEREZ M A, et al. Freeze-thaw durability of cement-based geothermal grouting materials[J]. Construction & Building Materials, 2014,55(3):390-397.

    [44]

    [44] GARNIER B, BOUDENNE A. Use of hollow metallic particles for the thermal conductivity enhancement and lightening of filled polymer[J]. Polymer Degradation and Stability, 2016,127:113-118.

    [45]

    [45] 赵进.江苏油田保温水泥浆技术可行性探讨[J].内蒙古石油化工,2020,46(11):86-88.

    ZHAO Jin. Discussion on feasibility of thermal insulation cement slurry technology in Jiangsu Oilfield[J]. Inner Mongolia Petrochemical Industry, 2020,46(11):86-88.

    [46]

    [46] BRIGAUD F, Mineralogy VASSEUR G..ntary rocks[J]. Geophysical Journal International, 1989,98(3):525-542.

    [47]

    [47] BUNTEBARTH G. Thermal properties of KTB—Oberpfalz VB core samples at elevated temperature and pressure: Buntebarth, G Sci Drilling V2,N2-3,P73-80[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1991,29(4): 219.

    [48]

    [48] MIDTTOMME K, ROALDSET E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998,4(2):165-172.

    [49]

    [49] TAVMAN I H. Effective thermal conductivity of granular porous materials[J]. International Communications in Heat and Mass Transfer, 1996,23(2):169-176.

    [50]

    [50] FUCHS S, FÖRSTER A. Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin[J]. Geochemistry, 2010,70:13-22.

    [51]

    [51] WU Rui, LIAO Qiang, ZHU Xun, et al. A fractal model for determining oxygen effective diffusivity of gas diffusion layer under the dry and wet conditions[J]. International Journal of Heat and Mass Transfer, 2011,54:4341-4348.

    [52]

    [52] MIAO Tongjun, CHENG Sujun, CHEN Aimin, et al. Analysis of axial thermal conductivity of dual-porosity fractal porous media with random fractures[J]. International Journal of Heat and Mass Transfer, 2016,102:884-890.

    [53]

    [53] 方姚.面向中深层地热井的固井复合材料性能研究与井下换热过程模拟[D].南京:东南大学,2019.FANG Yao. Well cementation composites performance research and numerical simulation of underground heat exchange process for mid-deep geothermal well[D]. Nanchang: Southeast University, 2019.

    [54]

    [54] BECKER R, KATZ A. Effect of moisture movement on tested thermal conductivity of moist materials[J]. Journal of Materials in Civil Engineering, 1990,2(2):72-83.

    [55]

    [55] CHO W J, KWON S, CHOI J W. The thermal conductivity for granite with various water contents[J]. Engineering Geology, 2009,107(3-4):167-171.

    [56]

    [56] QIN Menghao, BELARBI R, AIET-MOKHTAR A, et al. Simulation of coupled heat and moisture transfer in air-conditioned buildings[J]. Automation in Construction, 2009,18(5):624-631.

    [57]

    [57] TAOUKIL D, BOUARDI A E, SICK F, et al. Moisture content influence on the thermal conductivity and diffusivity of wood-concrete composite[J]. Construction & Building Materials, 2013,48(11):104-115.

    [58]

    [58] 曹国举,宫经伟,蔺元,等.水泥石导热系数影响因素研究[J].人民黄河,2020,42(2):94-98,116.

    CAO Guoju, GONG Jingwei, LIN Yuan, et al. Research on influence factor of thermal conductivity of cement stone[J]. Yellow River, 2020,42(2):94-98,116.

    [59]

    [59] WON J, CHOI H J, LEE H, et al. Numerical investigation on the effect of cementing properties on the thermal and mechanical stability of geothermal wells[J]. Energies, 2017,9(12):1016.

    [60]

    [60] 易灿,闫振来,郭磊.井下循环温度及其影响因素的数值模拟研究[J].石油钻探技术,2007(6):47-49.

    YI Can, YAN Zhenlai, GUO Lei. Numerical simulation of circulating temperature and it’s impacting parameters[J]. Petroleum Drilling Techniques, 2007(6):47-49.

    [61]

    [61] 宋戈.气井井筒瞬态温度压力耦合模型研究[D].成都:西南石油大学,2015.SONG Ge. Study on coupling model of transient temperature and pressure in gas well bore[D]. Chengdu: Southwest Petroleum University, 2015.

    [62]

    [62] 庞伟,段友智,高小荣,等.水热型地热井局部完井井段生产研究[J].水动力学研究与进展A辑,2015,30(4):446-451.

    PANG Wei, DUAN Youzhi, GAO Xiaorong, et al. Research on partial producing of hydrothermal wells[J]. Chinese Journal of Hydrodynamics, 2015,30(4):446-451.

    [63]

    [63] 马振喜.钻井井筒温度场的分析研究[D].北京:中国石油大学(北京),2019.MA Zhenxi. Analysis and research on temperature field of drilling wellbore[D]. Beijing: China University of Petroleum, 2019.

    [64]

    [64] 黄津津.含湿量对轻质保温混凝土导热系数影响的实验研究[D].西安:西安建筑科技大学,2020.HUANG Jinjin. Experimental study on the influence of moisture content on thermal conductivity of lightweight insulating concrete[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.

    [65]

    [65] GB/T 10294—2008,绝热材料稳态热阻及有关特性的测定 防护热板法[S].GB/T 10294—2008, Thermal insulation—Determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus[S].

    [66]

    [66] GB/T 10295—2008,绝热材料稳态热阻及有关特性的测定 热流计法[S].GB/T 10295—2008, Thermal insulation—Determination of steady-state thermal resistance and related properties—Heat flow meter apparatus[S].

    [67]

    [67] 刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.LIU Wei, FAN Aiwu, HUANG Xiaoming. Theory and Application of Heat and Mass Transfer in Porous Media[M]. Beijing: Science Press, 2006.

    [68]

    [68] 郭平业,卜墨华,李清波,等.岩石有效热导率精准测量及表征模型研究进展[J].岩石力学与工程学报,2020,39(10):1983-2013.

    GUO Pingye, BU Mohua, LI Qingbo, et al. Research progress of accurate measurement and characterization model of effective thermal conductivity of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020,39(10):1983-2013.

    [69]

    [69] 韩晓烽.多孔建筑材料热湿耦合传递特性的数值模拟与实验研究[D].北京:中国计量大学,2017.HAN Xiaofeng. Numerical simulation and experimental study on coupled heat and moisture transfer characteristics of porous building materials[D]. Beijing: China Jiliang University, 2017.

    [70]

    [70] 申娜娜.空心玻璃微珠轻质高强材料的制备与性能研究[D].天津:天津大学,2014.SHEN Nana. Study on preparation and properties of hollow glass bead light weight and high strength material[D]. Tianjin: Tianjin University, 2014.

    [71]

    [71] 周建伟,杨文,程宝军,等.超细粉煤灰和偏高岭土对高强混凝土耐热性能的影响[J].硅酸盐通报,2020,39(6):1784-1790.

    ZHOU Jianwei, YANG Wen, CHENG Baojun, et al. Effect of ultra-fine fly ash and metakaolin on heat resistance of high strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2020,39(6):1784-1790.

    [72]

    [72] 王瑞.超细粉煤灰高强混凝土性能研究[D].合肥:安徽理工大学,2018.WANG Rui. Study on properties of ultra fine fly ash high strength concrete[D]. Hefei: Anhui University of Science and Technology, 2018.

    [73]

    [73] 刘静静,李远兵,李亚伟,等.隔热材料的热导率与孔径分布的相关性研究[J].耐火材料,2016,50(5):335-339.

    LIU Jingjing, LI Yuanbing, LI Yawei, et al. Correlation of thermal conductivity and pore size distribution of insulating refractories[J]. Refractories, 2016,50(5):335-339.

    [74]

    [74] 习雨同.泡沫混凝土气孔结构与性能研究[D].南京:南京航空航天大学,2016.XI Yutong. Research on pore structure and properties of foam concrete[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.

    [75]

    [75] 崔玉理,贺鸿珠.温度对泡沫混凝土性能影响[J].建筑材料学报,2015,18(5):120-123,130.

    CUI Yuli, HE Hongzhu. Effect of temperature on performance of foam concrete[J]. Journal of Building Materials, 2015,18(5):120-123,130.

    [76]

    [76] 朱静.中深层地热井底部液固流动与传热强化研究[D].南京:东南大学,2019.ZHU Jing. Study on liquid-solid flow and heat transfer enhancement at the bottom of medium-deep geothermal wells[D]. Nanjing: Southeast University, 2019.

    [77]

    [77] 石司琴.钢渣泡沫混凝土保温性能研究[D].合肥:安徽工业大学,2016.SHI Siqin. Research on thermal insulation performance of steel slag foamed concrete[D]. Hefei: Anhui University of Technology, 2016.

    [78]

    [78] 张婵韬.玻化微珠保温砂浆导热系数模型研究[D].长沙:湖南大学,2014.ZHANG Chantao. Study on thermal conductivity model of hollow beads insulating mortar[D]. Changsha: Hunan University, 2014.

    [79]

    [79] 代丹丹.超轻发泡水泥保温板孔结构与性能关系的研究[D].北京:北京工业大学, 2016.DAI Dandan. Study on the relationship between pore structure and property of super light foam cement insulation board[D]. Beijing: Beijing University of Technology, 2016.

    [80]

    [80] 李康宗.混凝土中热湿耦合传输试验及数值模拟研究[D].郑州:河南工业大学,2019.LI Kangzong. Study on thermal and wet coupling transmission test and numerical simulation in concrete[D]. Zhengzhou: Henan University of Technology, 2019.

  • 加载中
计量
  • 文章访问数:  841
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2021-06-09
修回日期:  2021-10-14

目录