Research Status of Pegmatite-hosted Li Deposits and Their Exploration Prospect in West China
-
摘要:
锂现为全球战略性关键金属矿产,花岗伟晶岩型锂矿是锂资源的重要类型之一,也是当前国际矿床学的研究热点。花岗伟晶岩划分为LCT(Li–Cs–Ta)、NYF(Nb–Y–F)及二者混合的LCT+NYF型,其中LCT型伟晶岩富集稀有元素Li、Rb、Cs、Be、Ga、Sn、Ta、Nb及B、P、F等助熔剂,通常与伸展背景下的晚造山和造山后阶段过铝质S型花岗岩具有成因联系。笔者分析了全球伟晶岩型锂矿床的时空分布特征,发现锂矿成矿事件主要发生在超大陆会聚造山作用的中晚期。研究表明中国花岗伟晶岩型锂矿空间分布相对集中,主要分布在9个锂成矿带,成矿期以三叠纪为主。花岗质岩浆结晶分异和下地壳物质低程度的部分熔融是伟晶岩两种主要的形成方式。稀有金属伟晶岩的成矿机制主要有分离结晶作用、岩浆不混溶、超临界流体和组成带状纯化。总结分析了中国西部西昆仑、川西松潘–甘孜、阿尔泰等3个典型伟晶岩型锂矿带的的成矿特点、分布特征、研究进展及找矿前景,并提出了构造–岩浆–变质–成矿的耦合关系是制约锂成矿过程和富集规律的关键科学问题。
Abstract:Lithium has become an important strategic critical metal in the world, and the granitic pegmatite type lithium deposit is one of the important types of lithium resources, which is also a popular interest in the current international ore deposit research. The granitic pegmatites are classified into LCT (Li–Cs–Ta), NYF (Nb–Y–F) and mixed LCT+NYF type. The LCT type pegmatites are characterized by enrichment of rare elements Li, Rb, Cs, Be, Ga, Sn, Ta>Nb and fluxing components B, P, F, usually related to late orogenic and post–orogenic peraluminous S–type granites in extensional background. In this paper, we review the temporal and spatial distribution characteristics of pegmatite type lithium deposits in the world. It is noted that the lithium mineralization events mainly occurred in the middle and late period of convergent orogeny associated with the supercontinent assembly. The study shows that the spatial distribution of granitic pegmatite lithium deposits in China is relatively concentrated, mainly distributed in nine lithium metallogenic belts, of which the main mineralization period is Triassic. Fractional crystallization of granitic magma and partial melting of lower crust material are the two significant formation modes of pegmatites. The four metallogenic mechanism of rare metal pegmatite mainly include fractional crystallization, magmatic immiscibility, supercritical fluids and constitutional zone refining (CZR). We summarize the metallogenic characteristics, distribution characteristics, research progress and exploration prospect of the three typical pegmatite type lithium metallogenic belts, West Kunlun, Songpan–Ganze and Altay, in western China. The coupling relationship of structure–magmatism–metamorphism–mineralization is the key scientific problem that restricts the mineralization process and enrichment regularity of lithium.
-
图 1 全球伟晶岩型锂矿床时空分布图(据陈衍景等,2021修改)
Figure 1.
图 2 花岗岩和伟晶岩型锂矿年龄统计直方图与超大陆事件(据Dittrich et al.,2019;陈衍景等,2021)
Figure 2.
图 3 中国主要伟晶岩型锂矿床及成矿带分布图(底图据毛景文等,2019)
Figure 3.
图 4 岩浆结晶分异成因的伟晶岩矿化分带模式图(据Černý et al.,1991b修改)
Figure 4.
图 5 伟晶岩熔体中边界层熔体形成及CZR过程原理图(据London,2018修改)
Figure 5.
图 6 西昆仑造山带地质简图及锂铍矿床分布图(据王核等,2021;Yan et al., 2022)
Figure 6.
图 7 川西松潘–甘孜造山带地质简图及锂铍矿床分布图(据付小方等,2021b)
Figure 7.
图 8 阿尔泰造山带地质简图(据Lv et al.,2021修改)
Figure 8.
表 1 花岗伟晶岩的分类及特征表(据Černý et al.,2005)
Table 1. Petrogenetic classification and characteristics of granitic pegmatites
类型 地球化学特征 伟晶岩组成 内部岩相结构分带 相关花岗岩 潜在的母体花岗岩性质 源岩 LCT型 Li、Rb、Cs、Be、
Sn、Ga、Ta>Nb,
(B、P、F)过铝质–次铝质 岩相分带显著 (同造山)–晚造山–(非造山);成分主要是不均匀 过铝质S, I或混合S+I型 未亏损LCT元素的中–上地壳表壳岩石和基底片麻岩 NYF型 Nb>Ta、Ti、Y、
Sc、REE、Zr、
Th、U及F次铝质–准铝质(–亚碱性) 无–弱的岩相分带 (同造山、晚造山、后造山)–主要为非造山;成分准均匀 (过铝质)–次铝质和准铝质A和I型 亏损LCT元素的中–下地壳麻粒岩,新生花岗岩,地幔物质交代的地壳 LCT+NYF
混合型混合的 次铝质–中等过铝质 出现岩相分带 (后造山)–非造山;成分不均匀 次铝质–弱过铝质 混合的岩石源区;受NYF花岗岩浆同化的上地壳 表 2 中国主要花岗伟晶岩型锂矿床及成矿时代统计表
Table 2. Formation ages of major pegmatite–type Li deposits in China
序号 矿床名称 成矿带 伟晶岩 测试方法 年龄(Ma) 资料来源 1 阿克塔斯 西昆仑 90-1石英钠长锂辉石伟晶岩 锡石LA–ICP–MS U–Pb 218±12 Yan et al.,2018 2 阿克塔斯 西昆仑 90-1石英钠长锂辉石伟晶岩 铌铁矿U–Pb 211.9±2.4 Yan et al.,2018 3 阿克塔斯 西昆仑 含锂辉石伟晶岩 白云母Ar–Ar 185±1 Gao et al.,2020 4 509道班西 西昆仑 含锂辉石伟晶岩 白云母Ar–Ar 197±1 Gao et al.,2020 5 505 西昆仑 18号锂辉石伟晶岩 锡石U–Pb 223±11 李侃等,2019 6 白龙山 西昆仑 含锂辉石伟晶岩 铌钽铁矿U–Pb 208.1±1.5 Wang et al.,2020 7 白龙山 西昆仑 含锂辉石伟晶岩 铌铁矿U–Pb 213.9±0.7 Zhou et al.,2021a 8 白龙山 西昆仑 不含锂辉石伟晶岩 铌铁矿U–Pb 212.3±0.9 Zhou et al.,2021a 9 白龙山 西昆仑 含锂辉石伟晶岩 独居石 U–Pb 207.4±0.6 Yan et al.,2022 10 雪凤岭 西昆仑 含锂辉石伟晶岩 铌钽铁矿U–Pb 208.4±1.7 Yan et al.,2022 11 康西瓦 西昆仑 含绿柱石白云母伟晶岩 锆石LA–ICP–MS 209±4.4 张泽等,2019 12 肖尔布隆 西昆仑 含锂辉石伟晶岩 铌钽铁矿U–Pb 204.6±2.1 Yan et al.,2022 13 霍什塔什 西昆仑 含锂辉石伟晶岩 铌钽铁矿U–Pb 205.7±2.7 Yan et al.,2022 14 霍什塔什 西昆仑 含锂辉石伟晶岩 独居石 U–Pb 204.2±0.8 Yan et al.,2022 15 木林场 西昆仑 含锂辉石伟晶岩 铌钽铁矿U–Pb 206.4±2.0 Yan et al.,2022 16 吐格曼 阿尔金 电气石钠长石英伟晶岩 锆石LA–ICP–MS 459.9±3.7 徐兴旺等,2019 17 吐格曼 阿尔金 含稀有金属伟晶岩 铌钽铁矿U–Pb 472±8 Gao et al.,2021 18 吐格曼北 阿尔金 白云母–锡石伟晶岩 锡石LA–ICP–MS U–Pb 468±8.7 李杭等,2020 19 吐格曼北 阿尔金 白云母–钠长石–锂辉石伟晶岩 锆石LA–ICP–MS 458.7±2.3 李杭等,2020 20 吐格曼北 阿尔金 白云母–钠长石–锂辉石伟晶岩 锆石LA–ICP–MS 454.7±4.0 李杭等,2020 21 吐格曼北 阿尔金 白云母–钠长石–锂辉石伟晶岩 白云母Ar–Ar 350.2±1.6 李杭等,2020 22 吐格曼北 阿尔金 含铌钽铁矿–白云母–石英伟晶岩 铌钽铁矿U–Pb 464.1±2.7 李杭等,2020 23 茶卡北山 柴北缘 富锂花岗伟晶岩 铌钽铁矿U–Pb 240.6±1.5 Pan et al.,2021 24 茶卡北山 柴北缘 含绿柱石花岗伟晶岩 锆石LA–ICP–MS 235.9±2.3 王秉璋等,2020 25 茶卡北山 柴北缘 含绿柱石锂辉石花岗伟晶岩 锆石LA–ICP–MS 217±1.8 王秉璋等,2020 26 锲墨格 柴北缘 绿柱石花岗伟晶岩 锆石LA–ICP–MS 229.5±1.3 李善平等,2021 27 别也萨麻斯 阿尔泰 锂辉石石英伟晶岩 锆石LA–ICP–MS 151±1.8 王春龙等,2015 28 卡鲁安 阿尔泰 805号含矿伟晶岩 锆石LA–ICP–MS 216±2.6 马占龙等,2015 29 卡鲁安 阿尔泰 806号含矿伟晶岩 锆石LA–ICP–MS 223.7±1.8 马占龙等,2015 30 卡鲁安 阿尔泰 807号含矿伟晶岩 锆石LA–ICP–MS 221±15 马占龙等,2015 31 卡鲁安 阿尔泰 650号伟晶岩 锆石SIMS U–Pb 205.0±12 刘涛等,2020 32 卡鲁安 阿尔泰 803号含矿伟晶岩 锆石LA–ICP–MS 224.6±2.3 Zhang et al.,2016 33 库卡拉盖 阿尔泰 650号早期钠长石伟晶岩 锆石LA–ICP–MS 227.9±2.6 马占龙等,2015 34 库卡拉盖 阿尔泰 650号晚期锂辉石钠
长石锂云母伟晶岩锆石LA–ICP–MS 211.3±2.4 马占龙等,2015 35 可可托海3号脉 阿尔泰 含锂辉石伟晶岩 锆石LA–ICP–MS 209.4±1.3 闫军武等,2020 36 可可托海3号脉 阿尔泰 伟晶岩 全岩Rb–Sr 218.4±5.8 Zhu et al.,2006 37 可可托海3号脉 阿尔泰 边缘带伟晶岩 辉钼矿Re–Os 208.8±2.4 Liu F et al.,2014 38 可可托海3号脉 阿尔泰 1带伟晶岩 SHRIMP 锆石U–Pb 220±9 Wang et al.,2007 39 可可托海3号脉 阿尔泰 5带伟晶岩 SHRIMP 锆石U–Pb 198±7 Wang et al.,2007 续表2 序号 矿床名称 成矿带 伟晶岩 测试方法 年龄(Ma) 资料来源 40 可可托海3号脉 阿尔泰 7带伟晶岩 SHRIMP 锆石U–Pb 213±6 Wang et al.,2007 41 阿祖拜 阿尔泰 01号含矿伟晶岩 锆石LA–ICP–MS 191.6±2.0 Zhang et al.,2016 42 佳木开 阿尔泰 09号含矿伟晶岩 锆石LA–ICP–MS 192.0±2.3 Zhang et al.,2016 43 大喀拉苏 阿尔泰 01号含矿伟晶岩 铌铁矿U–Pb 229.0±1.0 Feng et al.,2020 44 大喀拉苏 阿尔泰 01号含矿伟晶岩 铌铁矿U–Pb 228.1±0.6 Feng et al.,2020 45 加曼哈巴–大喀拉苏 阿尔泰 伟晶岩 锆石LA–ICP–MS 274~253 Lv et al.,2021 46 科鲁木特112脉 阿尔泰 1号带伟晶岩 锆石LA–ICP–MS 238.3±2.0 Lv et al.,2012 47 科鲁木特112脉 阿尔泰 2号带伟晶岩 锆石LA–ICP–MS 233.5±3.7 Lv et al.,2012 48 科鲁木特112脉 阿尔泰 3号带伟晶岩 锆石LA–ICP–MS 188.3±1.7 Lv et al.,2012 49 科鲁木特112脉 阿尔泰 5号带伟晶岩 锆石LA–ICP–MS 218.8±1.9 Lv et al.,2012 50 科鲁木特112脉 阿尔泰 6号带伟晶岩 锆石LA–ICP–MS 210.7±1.6 Lv et al.,2012 51 加曼哈巴 阿尔泰 伟晶岩 锆石LA–ICP–MS 394.8±4.0 Lv et al.,2018 52 切别林 阿尔泰 伟晶岩 锆石LA–ICP–MS 402.6±5.5 Lv et al.,2018 53 青河 阿尔泰 塔拉提伟晶岩 锆石LA–ICP–MS 385.9±3.5 Lv et al.,2018 54 青河 阿尔泰 阿木拉贡伟晶岩 锆石LA–ICP–MS 358.3±4.6 Lv et al.,2018 55 青河 阿尔泰 阿拉结科伟晶岩 锆石LA–ICP–MS 368.0±4.0 Lv et al.,2018 56 青河 阿尔泰 铁木勒特伟晶岩 锆石LA–ICP–MS 333.0±6.0 Lv et al.,2018 57 甲基卡 松潘–甘孜 308号含锂辉石伟晶岩 锡石U–Pb 210.9±4.6 代鸿章等,2018 58 甲基卡 松潘–甘孜 X3号钠长石锂辉石伟晶岩 锆石LA–ICP–MS 216±2 郝雪峰等,2015 59 甲基卡 松潘–甘孜 X3号钠长石锂辉石伟晶岩 铌钽铁矿U–Pb 214±2 郝雪峰等,2015 60 甲基卡 松潘–甘孜 含矿伟晶岩 锆石SIMS U–Pb 186.7 李贤芳等,2020 61 甲基卡 松潘–甘孜 134号锂辉石伟晶岩 白云母Ar–Ar 195.7±0.1 王登红等,2005 62 甲基卡 松潘–甘孜 104号钠长石伟晶岩 白云母Ar–Ar 198.9±0.4 王登红等,2005 63 甲基卡 松潘–甘孜 308号伟晶岩脉中细晶岩 锆石LA–ICP–MS 217±0.84 Dai et al.,2019 64 甲基卡 松潘–甘孜 308号含锂辉石伟晶岩 锡石U–Pb 211±4.6 Dai et al.,2019 65 甲基卡 松潘–甘孜 133号含锂辉石伟晶岩 锡石U–Pb 198±4.4 Dai et al.,2019 66 李家沟 松潘–甘孜 含锂辉石钠长石伟晶岩 锡石U–Pb 211.4±3.3 许家斌等,2020 67 李家沟 松潘–甘孜 含锂辉石钠长石伟晶岩 锆石LA–ICP–MS 198±3.4 邓运等,2018 68 李家沟 松潘–甘孜 钠长石伟晶岩 锆石LA–MC–ICP–MS 202.8±4.9 Fei et al.,2020 69 李家沟 松潘–甘孜 钠长石锂辉石伟晶岩 锆石LA–MC–ICP–MS 200.1±4.6 Fei et al.,2020 70 李家沟 松潘–甘孜 钠长石锂辉石伟晶岩 锡石U–Pb 211.4±3.3 Fei et al.,2020 71 李家沟 松潘-甘孜 钠长石锂辉石伟晶岩 铌钽铁矿U–Pb 211.1±1.0 Fei et al.,2020 72 党坝 松潘–甘孜 锂辉石钠长石伟晶岩 锡石U–Pb 208.1±1.9 费光春等,2020 73 党坝 松潘–甘孜 含锂云母锂辉石钠长石伟晶岩 锡石U–Pb 199.3±1.6 费光春等,2020 74 南阳山 东秦岭 363号锂矿化伟晶岩脉 铌钽铁矿U–Pb 387.8±1.6 Zhou et al.,2021b 75 南阳山 东秦岭 364号锂矿化伟晶岩脉 铌钽铁矿U–Pb 383.8±3.3 Zhou et al.,2021b 76 南阳山 东秦岭 366号锂矿化伟晶岩脉 铌钽铁矿U–Pb 422.0±3.2 Zhou et al.,2021b 77 南阳山 东秦岭 366号锂矿化伟晶岩脉 铌钽铁矿U–Pb 397.4±2.2 Zhou et al.,2021b 78 南阳山 东秦岭 703号锂矿化伟晶岩脉 铌钽铁矿U–Pb 409.5±1.5 Zhou et al.,2021b 79 前台 东秦岭 锂矿化伟晶岩脉 铌钽铁矿U–Pb 442.6±8.0 Zhou et al.,2021b 80 前台 东秦岭 锂矿化伟晶岩脉 铌钽铁矿U–Pb 410.8±2.0 Zhou et al.,2021b -
陈衍景, 薛莅治, 王孝磊, 等. 世界伟晶岩型锂矿床地质研究进展[J]. 地质学报, 2021, 95(10): 2971-2995 doi: 10.3969/j.issn.0001-5717.2021.10.004
CHEN Yanjing, XUE Lizhi, WANG Xiaolei, et al. Progress in geological study of pegmatite-type lithium deposits in the world[J]. Acta Geologica Sinica, 2021, 95(10): 2971-2995. doi: 10.3969/j.issn.0001-5717.2021.10.004
陈郑辉, 王登红, 龚羽飞, 等. 新疆哈密镜儿泉伟晶岩型稀有金属矿40Ar/39Ar年龄及其地质意义[J]. 矿床地质, 2006, 25(4): 470-476 doi: 10.3969/j.issn.0258-7106.2006.04.011
CHEN Zhenghui, WANG Denghong, Gong Yufei, et al. 40Ar/39Ar isotope dating of muscovite from Jingerquan pegmatite rare metal deposit in Hami, Xinjiang, and its geological significance[J]. Mineral Deposits, 2006, 25(4): 470-476. doi: 10.3969/j.issn.0258-7106.2006.04.011
代鸿章, 王登红, 刘丽君, 等. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义[J]. 地球科学, 2018, 43(10): 3664-3681
DAI Hongzhang, WANG Denghong, LIU Lijun, et al. Geochronology, geochemistry and their geological significances of No. 308 pegmatite vein in the Jiajika deposit, western Sichuan, China[J]. Earth Science, 2018, 43(10): 3664-3681.
邓运, 费光春, 李剑, 等. 四川李家沟伟晶岩型锂辉石矿床碳氢氧同位素及成矿时代研究[J]. 矿物岩石, 2018, 38(3): 40-47
DENG Yun, FEI Guangchun, LI Jian, et al. Study of C-H-O isotopes and geochronology of the Lijiagou pegmatite spodumene deposit in Sichuan Province[J]. Journal of Mineral Petrology, 2018, 38(3): 40-47.
丁坤, 梁婷, 周义, 等. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据[J]. 西北地质, 2020, 53(1): 24-34
DING Kun, LIANG Ting, ZHOU Yi, et al. Petrogenesis of the Dahongliutan biotite monzogranite in western Kunlun orogen: Evidence from zircon U-Pb age and Li-Hf isotope[J]. Northwestern Geology, 2020, 53(1): 24-34.
费光春, 杨峥, 杨继忆, 等. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定: 来自LA-MC-ICP-MS锡石 U-Pb定年的证据[J]. 地质学报, 2020, 94(3): 836-849 doi: 10.3969/j.issn.0001-5717.2020.03.012
FEI Guangchun, YANG Zheng, YANG Jiyi, et al. New precise timing constraint for the Dangba granitic pegmatite type rare- metal deposits, Markam, Sichuan Province: Evidence from cassiterite LA-MC-ICP-MS U-Pb dating[J]. Acta Geologica Sinica, 2020, 94(3): 836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012
付小方, 袁蔺平, 王登红, 等. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J]. 矿床地质, 2015, 34(6): 1172-1186
FU Xiaofang, YUAN Linping, WANG Denghong, et al. Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan[J]. Mineral Deposits, 2015, 34(6): 1172-1186.
付小方, 黄韬, 邹付戈, 等. 甲基卡式锂矿田控矿作用与深部找矿方向[J]. 地质学报, 2021a, 95(3): 791-808 doi: 10.3969/j.issn.0001-5717.2021.03.013
FU Xiaofang, HUANG Tao, ZOU Fuge, et al. Ore-controlling mechanism and deep prospecting direction of Jiajika-like lithium mines[J]. Acta Geologica Sinica, 2021a, 95(3): 791-808. doi: 10.3969/j.issn.0001-5717.2021.03.013
付小方, 梁斌, 邹付戈, 等. 川西甲基卡锂等稀有多金属矿田成矿地质特征与成因分析[J]. 地质学报, 2021b, 95(10): 3054-3068 doi: 10.3969/j.issn.0001-5717.2021.10.008
FU Xiaofang, LIANG Bin, ZOU Fuge, et al. Discussion on metallogenic geological characteristics and genesis of rare polymetallic ore fields in western Sichuan[J]. Acta Geologica Sinica, 2021b, 95(10): 3054-3068. doi: 10.3969/j.issn.0001-5717.2021.10.008
郝雪峰, 付小方, 梁斌, 等. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质, 2015, 34(6): 1199-1208
HAO Xuefeng, FU Xiaofang, LIANG Bin, et al. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan and their geological significance[J]. Mineral Deposits, 2015, 34(6): 1199-1208.
李杭, 洪涛, 杨智全, 等. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究—以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 2020, 36(9): 2869-2892 doi: 10.18654/1000-0569/2020.09.16
LI Hang, HONG Tao, YANG Zhiquan, et al. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 2020, 36(9): 2869-2892. doi: 10.18654/1000-0569/2020.09.16
李寄邦, 张辉, 吕正航. 东天山镜儿泉伟晶岩与花岗岩成因关系: 来自锆石U-Pb定年和Hf同位素证据[J]. 地球化学, 2020, 49(4): 385-403
LI Jibang, ZHANG Hui, LÜ Zhenghang. Genetic linkage between pegmatites and granites from Jingerquan, East Tianshan Mountains: Evidence from zircon U-Pb geochronological and Hf isotopic data[J]. Geochimica, 2020, 49(4): 385-403.
李建康, 李鹏, 严清高, 等. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 2021, 95(10): 2996-3016 doi: 10.3969/j.issn.0001-5717.2021.10.005
LI Jiankang, LI Peng, YAN Qinggao, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10): 2996-3016. doi: 10.3969/j.issn.0001-5717.2021.10.005
李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2269-2283
LI Jiankang, LIU Xifang, WANG Denghong. The Metallogenetic Regularity of Lithium Deposit in China[J]. Acta Geologica Sinica, 2014, 88(12): 2269-2283.
李建康, 王登红, 张德会, 等. 川西典型伟晶岩型矿床的形成机制及大陆动力学背景[M]. 北京: 原子能出版社, 2007, 72 – 122
LI Jiankang, WANG Denghong, ZHANG Dehui, et al. Mineralization Mechanism and Continental Geodynamic of Pegmatite Type Deposits in Western Sichuan, China[M]. Beijing: Atomic Energy Press, 2007, 72 – 122.
李侃, 高永宝, 滕家欣, 等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(4): 206-221 doi: 10.3969/j.issn.1009-6248.2019.04.016
LI Kan, GAO Yongbao, TENG Jiaxin, et al. Metallogenic geological characteristics, mineralization age and resource potential of the granite-pegmatite-type rare metal deposits in Dahongliutan area, Hetian County, Xinjiang[J]. Northwestern Geology, 2019, 52(4): 206-221. doi: 10.3969/j.issn.1009-6248.2019.04.016
李鹏, 刘翔, 李建康, 等. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 2019, 93(6): 1374-1391 doi: 10.3969/j.issn.0001-5717.2019.06.016
LI Peng, LIU Xiang, LI Jiankang, et al. Mineralogical and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite, NE Hunan, and its metallogenic epoch[J]. Acta Geologica Sinica, 2019, 93(6): 1374-1391. doi: 10.3969/j.issn.0001-5717.2019.06.016
李善平, 潘彤, 王秉璋, 等. 柴达木盆地北缘锲墨格山含绿柱石花岗伟晶岩特征及构造意义[J]. 大地构造与成矿学, 2021, 45(3): 608-619
LI Shanping, PAN Tong, WANG Bingzhang, et al. Characteristics and tectonic significance of beryl-bearing pegmatites in Qiemoge Mountain, northern margin of Qaidam Basin[J]. Geotectonica et Metallogenia, 2021, 45(3): 608-619.
李文渊, 张照伟, 高永宝, 等.昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J].中国地质, 2022, 49(5): 1385-1407.
LI Wenyuan, ZHANG Zhaowei, GAO Yongbao, et al. Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium[J]. Geology in China, 2022, 49(5): 1385-1407.
李五福, 李善平, 王秉璋, 等. 青海三江北段草陇(绿柱石-)锂辉石花岗伟晶岩的发现及其Li-Be找矿意义[J/OL]. 大地构造与成矿学. https: //doi. org/10.16539/j. ddgzyckx. 2021.05. 021
LI Wufu, LI Shanping, WANG Bingzhang, et al. Discovery of the (Beryl-bearing) Spodumene Pegmatite in the Caolong Area in the Sanjiang Northern Section of the Qinghai: Implications for Li-Be Mineralization[J/OL]. Geotectonica et Metallogenia.https://doi.org/10.16539/j.ddgzyckx.2021.05.021
李贤芳, 田世洪, 王登红, 等. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 2020, 39(2): 273-304
LI XianFang, TIAN Shihong, WANG Denghong, et al. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry [J]. Mineral Deposits, 2020, 39(2): 273-304.
刘丽君, 付小方, 王登红, 等. 甲基卡式稀有金属矿床的地质特征与成矿规律[J]. 矿床地质, 2015, 34(6): 1187-1198
LIU Lijun, FU Xiaofang, WANG Denghong, et al. Geological characteristics and metallogeny of Jiajika-style rare metal deposits[J]. Mineral Deposits, 2015, 34(6): 1187-1198.
刘涛, 田世洪, 王登红, 等. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U-Pb定年、Hf-O同位素和全岩地球化学证据[J]. 地质学报, 2020, 94(11): 3293-3320 doi: 10.3969/j.issn.0001-5717.2020.11.009
LIU Tao, TIAN Shihong, WANG Denghong, et al. Genetic relationship between granite and pegmatite in Kalu'an hard-rock-type lithium deposit in Xinjiang: results from zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry[J]. Acta Geologica Sinica, 2020, 94(11): 3293-3320. doi: 10.3969/j.issn.0001-5717.2020.11.009
刘翔, 周芳春, 李鹏, 等. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义[J]. 矿床地质, 2019, 38(4): 771-791 doi: 10.16111/j.0258-7106.2019.04.007
LIU Xiang, ZHOU Fangchun, LI Peng, et al. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance[J]. Mineral Deposits, 2019, 38(4): 771-791. doi: 10.16111/j.0258-7106.2019.04.007
马占龙, 张辉, 唐勇, 等. 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究[J]. 地球化学, 2015, 44(1): 9-26 doi: 10.19700/j.0379-1726.2015.01.002
MA Zhanlong, ZHANG Hui, TANG Yong, et al. Zircon U-Pb geochronology and Hf isotopes of pegmatites from the Kalu'an mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite[J]. Geochimica, 2015, 44(1): 9-26. doi: 10.19700/j.0379-1726.2015.01.002
毛景文, 袁顺达, 谢桂青, 等. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 2019, 38(5): 935-969 doi: 10.16111/j.0258-7106.2019.05.001
MAO Jingwen, YUAN Shunda, XIE Guiqing, et al. New advances on metallogenic studies and exploration on critical minerals of China in 21st century[J]. Mineral Deposits, 2019, 38(5): 935-969. doi: 10.16111/j.0258-7106.2019.05.001
乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7): 1180-1194 doi: 10.3969/j.issn.0001-5717.2015.07.003
QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan monzogranite in Western Kunlun: constraints from SHRIMP zircon U-Pb geochronology and geochemical characteristics[J]. Acta Geologica Sinica, 2015, 89(7): 1180-1194. doi: 10.3969/j.issn.0001-5717.2015.07.003
秦克章, 周起凤, 唐冬梅, 等. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜[J]. 地质学报, 2021, 95(10): 3039-3053 doi: 10.3969/j.issn.0001-5717.2021.10.007
QIN Kezhang, ZHOU Qifeng, TANG Dongmei, et al. The emplacement mechnism, melt-fluid evolution, rare-element metallogenesis and puzzles of the Koktokay No. 3 pegmatitic rare element deposit, Altai[J]. Acta Geologica Sinica, 2021, 95(10): 3039-3053. doi: 10.3969/j.issn.0001-5717.2021.10.007
涂其军, 韩琼, 李平, 等. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 2019, 93(11): 2862-2873 doi: 10.3969/j.issn.0001-5717.2019.11.011
TU Qijun, HAN Qiong, LI Ping, et al. Basic characteristics and exploitation progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica, 2019, 93(11): 2862-2873. doi: 10.3969/j.issn.0001-5717.2019.11.011
王秉璋, 韩杰, 谢祥镭, 等. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J]. 大地构造与成矿学, 2020, 44(1): 69-79
WANG Bingzhang, HAN Jie, XIE Xianglei, et al. Discovery of the indosinian (Beryl-bearing) spodumene pegmatitic dike swarm in the Chakabeishan area in the northeastern margin of the Tibetan plateau: implications for Li-Be mineralization[J]. Geotectonica et Metallogenia, 2020, 44(1): 69-79.
王春龙, 秦克章, 唐冬梅, 等. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义[J]. 岩石学报, 2015, 31(8): 2337-2352
WANG Chunlong, QIN Kezhang, TANG Dongmei, et al. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications[J]. Acta Petrologica Sinica, 2015, 31(8): 2337-2352.
王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209 doi: 10.3969/j.issn.0001-5717.2019.06.003
WANG Denghong. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
王登红, 李建康, 付小方. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 2005, 34(6): 541-547 doi: 10.3321/j.issn:0379-1726.2005.06.001
WANG Denghong, LI Jiankang, FU Xiaofang. 40Ar/39Ar dating for the Jiajika pegmatite-type rare metal deposit in western Sichuan and its significance[J]. Geochemica, 2005, 34(6): 541-547. doi: 10.3321/j.issn:0379-1726.2005.06.001
王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053-1062
WANG He, LI Pei, MA Huadong, et al. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 2017, 41(6): 1053-1062.
王核, 徐义刚, 闫庆贺, 等. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 2021, 95(10): 3085-3098 doi: 10.3969/j.issn.0001-5717.2021.10.010
WANG He, XU Yigang, YAN Qinghe, et al. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang[J]. Acta Geologica Sinica, 2021, 95(10): 3085-3098. doi: 10.3969/j.issn.0001-5717.2021.10.010
王汝成, 谢磊, 诸泽颖, 等. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2019, 35(1): 69-75 doi: 10.18654/1000-0569/2019.01.04
WANG Rucheng, XIE Lei, ZHU Zeying, et al. Micas: important indicators of granite-pegmatite-related rare-metal mineralization[J]. Acta Petrologica Sinica, 2019, 35(1): 69-75. doi: 10.18654/1000-0569/2019.01.04
王瑞江, 王登红, 李建康, 等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社, 2015, 1−429
WANG Ruijiang, WANG Denghong, LI Jiankang, et al. Mineral Resources and Mineral Development of Rare Earth, Rare Metal and Rare-Scattered Elements Mineral Resources[M]. Beijing: Geological Publishing House, 2015, 1-429.
魏小鹏, 王核, 胡军, 等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质[J]. 地球化学, 2017, 46(1): 66-80 doi: 10.3969/j.issn.0379-1726.2017.01.006
WEI Xiaopeng, WANG He, HU Jun, et al. Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen: Geotectonic implications[J]. Geochimica, 2017, 46(1): 66-80. doi: 10.3969/j.issn.0379-1726.2017.01.006
熊欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2): 241-253 doi: 10.3969/j.issn.1000-6524.2019.02.008
XIONG Xin, LI Jiankang, WANG Denghong, et al. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 2019, 38(2): 241-253. doi: 10.3969/j.issn.1000-6524.2019.02.008
许家斌, 费光春, 覃立业, 等. 四川可尔因矿田李家沟伟晶岩型稀有金属矿床锡石LA-MC-ICP-MS U-Pb定年及地质意义[J]. 地质与勘探, 2020, 56(2): 346-358
XU Jiabin, FEI Guangchun, QIN Liye, et al. LA-MC-ICP-MS U-Pb dating of cassiterite from the Lijiagou pegmatite-type rare-metal deposit in the Ke'eryin orefield, Sichuan Province and its geological implication[J]. Geology and Exploration, 2020, 56(2): 346-358.
徐兴旺, 李杭, 石福品, 等. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测[J]. 岩石学报, 2019, 35(11): 3303-3316 doi: 10.18654/1000-0569/2019.11.03
XU Xingwang, LI Hang, SHI Fupin, et al. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, middle part of Altyn Tagh[J]. Acta Petrologica Sinica, 2019, 35(11): 3303-3316. doi: 10.18654/1000-0569/2019.11.03
许志琴, 付小方, 赵中宝, 等. 片麻岩穹隆与伟晶岩型锂矿的成矿规律探讨[J]. 地球科学, 2019, 44(5): 1452-1463
XU Zhiqin, FU Xiaofang, ZHAO Zhongbao, et al. Discussion on relationships of gneiss dome and metallogenic regularity of pegmatite-type lithium deposits[J]. Earth Science, 2019, 44(5): 1452-1463.
许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106 doi: 10.3969/j.issn.0001-5717.2018.06.001
XU Zhiqin, WANG Rucheng, ZHAO Zhongbao, et al. On the Structural Backgrounds of the Large-scale "Hard-rock Type" Lithium Ore Belts in China[J]. Acta Geologica Sinica, 2018, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
许志琴, 朱文斌, 郑碧海, 等. 新能源锂矿战略与大陆动力学研究——纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10): 2937-2954 doi: 10.3969/j.issn.0001-5717.2021.10.002
XU Zhiqin, ZHU Wenbin, ZHENG Bihai, et al. New energy strategy for lithium resource and the continental dynamics research—celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University[J]. Acta Geologica Sinica, 2021, 95(10): 2937-2954. doi: 10.3969/j.issn.0001-5717.2021.10.002
闫军武, 刘锋, 申颖, 等. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成[J]. 地球学报, 2020, 41(5): 663-674 doi: 10.3975/cagsb.2020.072701
YAN Junwu, LIU Feng, SHEN Ying, et al. Constraints on timing of magmatic activity and formation of pegmatite in the Koktokay pegmatite field, Xinjiang[J]. Acta Geoscientica Sinica, 2020, 41(5): 663-674. doi: 10.3975/cagsb.2020.072701
杨富全, 张志欣, 刘国仁, 等. 新疆中亚造山带三叠纪矿床地质特征、时空分布及找矿方向[J]. 矿床地质, 2020, 39(2): 197-214 doi: 10.16111/j.0258-7106.2020.02.001
YANG Fuquan, ZHANG Zhixin, LIU Guoren, et al. A review of geological characteristics and time-space distribution as well as prospecting direction of Triassic deposits in Central Asian Orogenic Belt, Xinjiang[J]. Mineral Deposits, 2020, 39(2): 197-214. doi: 10.16111/j.0258-7106.2020.02.001
杨富全, 张忠利, 王蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42(6): 1010-1026 doi: 10.16539/j.ddgzyckx.2018.06.006
YANG Fuquan, ZHANG Zhongli, WANG Rui, et al. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang[J]. Geotectonica et Metallogenia, 2018, 42(6): 1010-1026. doi: 10.16539/j.ddgzyckx.2018.06.006
翟明国, 胡波. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1): 1-11 doi: 10.19814/j.jese.2020.10018
ZHAI Mingguo, HU Bo. Thinking to state security, international competition, and national strategy of mineral resources[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 1-11. doi: 10.19814/j.jese.2020.10018
翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111
ZHAI Mingguo, WU Fuyuan, HU Ruizhong, et al. Critical metal mineral resources: current research status and scientific issues[J]. Science Foundation in China, 2019, 33(2): 106-111.
张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814 doi: 10.16111/j.0258-7106.2019.04.008
ZHANG Hui, LV Zhenghang, TANG Yong. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 2019, 38(4): 792-814. doi: 10.16111/j.0258-7106.2019.04.008
张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10): 2955-2970 doi: 10.3969/j.issn.0001-5717.2021.10.003
ZHANG Hui, LV Zhenghang, TANG Yong. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 2021, 95(10): 2955-2970. doi: 10.3969/j.issn.0001-5717.2021.10.003
张泽, 梁婷, 凤永刚, 等. 新疆西昆仑造山带康西瓦含绿柱石白云母伟晶岩的地质特征与年代学研究[J]. 西北地质, 2019, 52(1): 75-88 doi: 10.19751/j.cnki.61-1149/p.2019.01.007
ZHANG Ze, LIANG Ting, FENG Yonggang, et al. Geologic feature and chronology study of Kangxiwa beryl-bearing muscovite pegmatite in West Kunlun orogenic belt, Xinjiang[J]. Northwestern Geology, 2019, 52(1): 75-88. doi: 10.19751/j.cnki.61-1149/p.2019.01.007
赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11): 3325-3347 doi: 10.18654/1000-0569/2021.11.06
ZHAO Junxing, HE Changtong, QIN Kezhang, et al. Geochronology, source features and the characteristics of the fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 2021, 37(11): 3325-3347. doi: 10.18654/1000-0569/2021.11.06
周起凤, 秦克章, 唐冬梅, 等. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 2013, 29(9): 3004-3022
ZHOU Qifeng, QIN Kezhang, TANG Dongmei, et al. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare- element deposit, Altai[J]. Acta Petrologica Sinica, 2013, 29(9): 3004-3022.
邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006, 1 − 284
ZOU Tianren, LI Qingchang. Rare and Rare Earth Metallic Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006, 1 − 284.
Bradley D C, McCauley A D, Stillings L L. Mineral-deposit model for lithium-cesium-tantalum pegmatite. Scientific Investigations Report (No. 2010-5070-O). New York: US Geological Survey, 2017, https: //doi. org. /10.3133/sir20105070.
Cai K S, Sun M, Yuan C, et al. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance[J]. Chemical Geology, 2012, 294-295: 26-41. doi: 10.1016/j.chemgeo.2011.11.031
Černý P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43: 2005-2026. doi: 10.2113/gscanmin.43.6.2005
Černý P, London D, Novak M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8: 257-261. doi: 10.2113/gselements.8.4.257
Černý P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied Geochemistry, 1992, 7: 393-416.
Černý P. Rare-element granite pegmatites. Part I: anatomy and internal evolution of pegmatite deposits[J]. Geoscience Canada, 1991a, 18: 49-67.
Černý P. Rare-element granite pegmatites. Part II: regional to global environments and petrogenesis[J]. Geoscience Canada, 1991b, 18: 68-81.
Dai H Z, Wang D H, Liu L J, et al. Geochronology and geochemistry of Li(Be)-bearing granitic pegmatites from the Jiajika superlarge Li-polymetallic deposit in Western Sichuan, China[J]. Journal of Earth Science, 2019, 30(4): 707-727. doi: 10.1007/s12583-019-1011-9
Dittrich T, Seifert T, Schulz B, et al. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations[M]. Switzerland: Springer, 2019, 1 − 125.
Ding K, Liang T, Yang X Q, et al. Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt, NW China[J]. Journal of Central South University, 2019, 26: 3420-3435. doi: 10.1007/s11771-019-4264-7
Fan J J, Tang G, Wei G J, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, 2020, 352-353: 105236. doi: 10.1016/j.lithos.2019.105236
Fei G C, Menuge J F, Li Y Q, et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364-365: 105555.
Feng Y G, Liang T, Linnen R, et al. LA-ICP-MS dating of high‑uranium columbite from no. 1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance[J]. Lithos, 2020, 362-363: 105461. doi: 10.1016/j.lithos.2020.105461
Gao Y B, Bagas L, Li K, et al. Newly discovered Triassic lithium deposits in the Dahongliutan area, Northwest China: A case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Science, 2020, 8: 591966. doi: 10.3389/feart.2020.591966
Gao Y B, Zhao X M, Bagas L, et al. Newly discovered Ordovician Li-Be deposits at Tugeman in the Altyn-Tagh Orogen, NW China[J]. Ore Geology Reviews, 2021, 139: 104515. doi: 10.1016/j.oregeorev.2021.104515
Hulsbosch N, Hertogen J, Dewaele S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 2014, 132: 349-374. doi: 10.1016/j.gca.2014.02.006
Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006
Li J K, Chou I M. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China[J]. Journal of Geochemical Exploration, 2016, 171: 29-36. doi: 10.1016/j.gexplo.2015.10.012
Liu C, Wang R C, Wu F Y, et al. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith[J]. Lithos, 2020, 358-359: 105421. doi: 10.1016/j.lithos.2020.105421
Liu F, Zhang Z X, Li Q, et al. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton[J]. Ore Geology Reviews, 2014, 56: 209-219. doi: 10.1016/j.oregeorev.2013.08.020
London D, Evensen J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 445-486. doi: 10.2138/rmg.2002.50.11
London D, Morgan VI G B. Experimental crystallization of the macusani obsidian, with applications to lithium-rich granitic pegmatites[J]. Journal of Petrology, 2017, 58(5): 1005-1030.
London D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184-187: 74-104. doi: 10.1016/j.lithos.2013.10.025
London D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80: 281-303. doi: 10.1016/j.lithos.2004.02.009
London D. Melt boundary layers and the growth of pegmatitic textures[J]. The Canadian Mineralogist, 1999, 37: 826-827.
London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
London D. Pegmatites[M]. Canadian Mineralogist Special Publication, 2008, 10: 1 − 368.
London D. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. The Canadian Mineralogist, 1992, 30: 499-540.
London D. The magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase equilibrium experiments[J]. American Mineralogist, 1986, 71: 376-395.
Lv Z H, Zhang H, Tang Y. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos, 2021, 380-381: 105865. doi: 10.1016/j.lithos.2020.105865
Lv Z H, Zhang H, Tang Y, et al. Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon U-Pb and Hf isotopes[J]. Lithos, 2012, 154: 374-391.
Lv Z H, Zhang H, Tang Y, et al. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 2018, 95: 161-181.
Martin R F, De Vito C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. The Canadian Mineralogist, 2005, 43: 2027-2048.
Pan T, Ding Q F, Zhou X, et al. Columbite-tantalite group mineral U-Pb geochronology of Chaqiabeishan Li-rich granitic pegmatites in the Quanji Massif, NW China: Implications for the genesis and emplacement ages of pegmatites[J]. Frontiers in Earth Science, 2021, 8: 606951. doi: 10.3389/feart.2020.606951
Selway J B, Breaks F W, Tindle A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14: 1-30. doi: 10.2113/gsemg.14.1-4.1
Shaw R A, Goodenough K M, Roberts N M W, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281: 338-362. doi: 10.1016/j.precamres.2016.06.008
Shearer C K, Papike J J, Jolliff B L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota[J]. The Canadian Mineralogist, 1992, 30: 785-809.
Simmons W B, Webber K L. Pegmatite genesis: State of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438. doi: 10.1127/0935-1221/2008/0020-1833
Simmons W, Falster A, Webber K, et al. Bulk composition of the Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis[J]. The Canadian Mineralogist, 2016, 54: 1053-1070. doi: 10.3749/canmin.1600017
Thomas R, Davidson P, Appel K. The enhanced element enrichment in the supercritical states of granite-pegmatite systems[J]. Acta Geochimica, 2019, 38(3): 335-349. doi: 10.1007/s11631-019-00319-z
Thomas R, Davidson P, Beurlen H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012, 106: 55-73.
Thomas R, Davidson P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state—Consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 2016, 72: 1088-1101. doi: 10.1016/j.oregeorev.2015.10.004
Veksler I V, Thomas R, Schimdt C. Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite[J]. American Mineralogist, 2002, 87: 775-779. doi: 10.2138/am-2002-5-621
Wang H, Gao H, Zhang X Y, et al. Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360-361: 105449. doi: 10.1016/j.lithos.2020.105449
Wang R C, Zhou M F. Granites: origin and associated mineralization[J]. Science China Earth Sciences, 2018, 61: 1932-1933.
Wang T, Hong D W, Jahn B M, et al. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen[J]. The Journal of Geology, 2006, 114(6): 735-751. doi: 10.1086/507617
Wang T, Tong Y, Jahn B M, et al. SHRIMP U–Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite [J]. Ore Geology Reviews, 2007, 32: 325-336. doi: 10.1016/j.oregeorev.2006.10.001
Webster J D, Thomas R, Rhede D. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2589-2604. doi: 10.1016/S0016-7037(97)00123-3
Wu F Y, Liu X C, Ji W Q, et al. Highly fractionated granites: recognition and research[J]. Science China Earth Sciences, 2017, 60: 1201-1219. doi: 10.1007/s11430-016-5139-1
Xu Z Q, Fu X F, Wang R C, et al. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354-355: 105281. doi: 10.1016/j.lithos.2019.105281
Yan Q H, Qiu Z W, Wang H, et al. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 2018, 100: 561-573. doi: 10.1016/j.oregeorev.2016.11.010
Yan Q H, Wang H, Chi G X, et al. Recognition of a 600-km-long Late Triassic rare-metal (Li–Rb–Be–Nb–Ta) pegmatite belt in the Western Kunlun orogenic belt[J]. Economic Geology, 2022, 117(1): 213-236. doi: 10.5382/econgeo.4858
Yuan F, Liu J J, Carranza E J M, et al. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China[J]. Lithos, 2018, 302-303: 20-36. doi: 10.1016/j.lithos.2017.12.022
Zagorsky V Y. On emplacement of compositionally heterogeneous pegmatite melts: petrogenetic implications[J]. Estudos Geologicos, 2009, 19(2): 365-369.
Zhang Q C, Liu Y, Wu Z H, et al. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys[J]. International Geology Review, 2019, 61(2): 175-194. doi: 10.1080/00206814.2017.1419444
Zhang X, Zhang H, Ma Z L, et al. A new model for the granite–pegmatite genetic relationships in the Kaluan–Azubai–Qiongkuer pegmatite-related ore fields, the Chinese Altay[J]. Journal of Asian Earth Sciences, 2016, 124: 139-155. doi: 10.1016/j.jseaes.2016.04.020
Zheng Y L, Xu Z Q, Li G W, et al. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau[J]. Lithos, 2020, 362-363: 105475.
Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 2021a, 584: 120484.
Zhou Q F, Qin K Z, Tang D M. Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, central China: Implications for formation times and ore genesis[J]. Journal of Asian Earth Sciences, 2021b, 218: 104879.
Zhou Q F, Qin K Z, Tang D M, et al. Mineralogy of Koktokay No. 3 pegmatite, Altai, NW China: implications for evolution and melt-fluid processes of rare-metal pegmatites[J]. European Journal of Mineralogy, 2015, 27(3): 433-457. doi: 10.1127/ejm/2015/0027-2443
Zhu Y F, Zeng Y S, Gu L B. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China[J]. Journal of Asian Earth Sciences, 2006, 27(1): 61-77.