Geochemical Characteristics and Petrogenesis of the Early Cretaceous Mafic–Felsic Dykes in the Shijia Gold Deposit, Penglai, Shandong Province
-
摘要:
石家金矿床位于胶东金矿集区的蓬莱–栖霞金矿带北段,矿区广泛出露的早白垩世镁铁质–长英质脉岩与金矿体空间关系密切。脉岩岩石类型多样,主要包括煌斑岩、辉绿岩和花岗斑岩。各类脉岩的岩石地球化学特征研究表明,煌斑岩与辉绿岩具有低Si、低Fe和高Mg的特征,富集轻稀土和大离子亲石元素(如Ba、Sr、Pb),亏损高场强元素(如Nb、Ta、Zr、Hf、Ti),起源于富集岩石圈地幔的部分熔融,与岛弧火山岩类似。花岗斑岩具有高Si、高K、高Al的特点,富集轻稀土和大离子亲石元素(Th、U、Rb、Ba、Pb),亏损高场强元素(Ta、Nb、Ti、Zr、Hf),属高钾钙碱性系列过铝质岩石,是在软流圈上涌、幔源岩浆底侵背景下由杂砂岩部分熔融所形成的。虽然有学者认为这些脉岩可以作为有效的找矿标志,但年代学研究显示脉岩与金矿化无直接的成因联系。
Abstract:The Shijia gold deposit is situated in the north of the Penglai–Qixia gold belt in the Jiaodong Peninsula. Different types of early Cretaceous mafic–felsic dykes, mainly including lamprophyre, diabase, and granite porphyry dykes, are closed associated with gold mineralization in space at Shijia. Based on the study of geochemical characteristics of vein rocks, it is concluded that lamprophyre and diabase dykes are characterized by low contents of SiO2, TFe2O3 and high MgO, they are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; Such as Ba, Sr, and Pb), but depleted in high field strength elements (HFSEs; Such as Nb, Ta, Zr, Hf, and Ti). It is considered that lamprophyre and diabase dykes with arc–like trace element patterns are originated from partial melting of the enriched lithospheric mantle. Granite porphyry dykes are peraluminous, high potassium calc–alkaline rocks which are characterized by high concentrations of SiO2, K2O and Al2O3, with enrichment in LREEs and LILEs (Th, U, Rb, Ba, and Pb) and depletion in HFSEs (Ta, Nb, Ti, Zr, and Hf). They were formed by partial melting of greywacks under the background of asthenosphere upwelling and mantle–derived magma underplating. Although some researchers suggest that these dykes can be used as effective ore prospecting indicators, chronological studies show that there is no direct genetic relationship between the dykes and gold mineralization.
-
Key words:
- mafic–felsic dykes /
- petrogeochemistry /
- petrogenesis /
- Shijia gold deposit /
- Shandong Penglai
-
图 1 山东蓬莱石家地区区域地质图(a)和石家金矿区地质图(b)(据张英帅等,2021)
Figure 1.
图 7 Ba/Rb–Rb/Sr图解(a)(据Furman et al.,1999)与K/Yb–Dy/Yb图解(b)(据Duggen et al.,2005)
Figure 7.
图 9 石家金矿区花岗斑岩结晶分异趋势图解(底图据Eby,1990;Janousek et al.,2004)
Figure 9.
图 10 石家金矿区花岗斑岩源区判别图解(底图据Chen et al.,2014)
Figure 10.
表 1 石家金矿区三种脉岩主微量元素含量及特征值
Table 1. Contents and characteristic values of major and trace elements in three types of mafic–felsic dykes in Shijia gold deposit
样品
类型样品
原号SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total Mg# La Ce Pr 煌斑岩 HBY-2a 47.53 0.71 12.27 7.73 0.12 10.19 8.71 1.60 2.39 0.53 8.80 100.57 72.31 97.30 180.00 20.60 HBY-3a 43.90 0.66 10.82 7.77 0.13 10.64 9.91 1.10 2.10 0.45 13.88 101.35 73.05 89.20 164.00 18.60 HBY-4 45.55 0.70 12.07 7.60 0.13 8.86 9.05 1.35 2.37 0.52 11.96 100.15 69.79 100.00 181.00 20.30 HBY-6 46.48 0.69 12.92 7.47 0.12 9.64 8.09 1.65 2.43 0.50 9.51 99.49 71.87 103.00 189.00 21.40 HBY-8 46.38 0.66 11.48 7.78 0.12 11.14 9.05 1.38 2.11 0.46 10.12 100.68 73.94 87.50 162.00 18.30 HBY-9 46.57 0.67 11.39 7.65 0.12 10.52 9.07 1.40 2.29 0.48 9.70 99.85 73.15 94.00 172.00 19.70 HBY-10 46.52 0.69 12.65 7.48 0.12 8.69 8.33 1.51 2.56 0.51 10.68 99.75 69.69 105.00 193.00 21.40 PM-13 47.35 0.71 13.69 7.44 0.11 8.16 8.46 1.94 2.23 0.51 8.34 98.95 68.50 107.00 193.00 21.90 PM-16 48.07 0.73 13.37 7.52 0.13 8.44 8.84 1.99 2.39 0.53 8.27 100.29 68.98 108.00 198.00 22.30 辉绿岩 SCBY-2 48.98 0.82 14.16 7.64 0.12 8.09 8.27 1.58 2.37 0.35 8.96 101.36 67.72 50.00 94.10 10.60 SCBY-3 48.53 0.79 14.19 7.68 0.12 8.37 8.00 1.46 2.35 0.34 9.13 100.97 68.35 47.90 90.10 10.40 SCBY-4 49.86 0.84 14.48 7.65 0.12 7.82 8.45 1.68 2.32 0.37 9.07 102.67 66.96 50.30 93.80 11.00 SCBY-5 49.21 0.82 14.75 7.52 0.12 7.99 8.04 1.89 2.31 0.36 8.33 101.34 67.77 51.10 95.30 10.90 SCBY-6 48.86 0.81 14.23 7.54 0.12 8.16 8.27 1.72 2.25 0.35 8.68 100.99 68.18 49.40 93.20 10.40 SCBY-7 47.07 0.79 15.08 7.26 0.12 7.37 8.04 1.66 2.35 0.35 9.35 99.45 66.78 51.60 96.20 11.10 SCBY-8 49.19 0.82 14.58 7.51 0.12 7.87 7.77 1.64 2.38 0.36 9.20 101.45 67.49 50.40 93.50 10.90 SCBY-9 49.63 0.83 14.83 7.55 0.12 7.61 7.86 1.68 2.39 0.37 8.68 101.56 66.63 53.00 98.60 11.20 SCBY-10 49.45 0.84 15.07 7.60 0.12 7.14 7.62 1.63 2.51 0.38 9.43 101.79 65.02 52.80 100.00 11.40 SCBY-11 48.70 0.82 14.60 7.53 0.12 7.97 8.02 1.64 2.35 0.36 8.87 100.96 67.72 51.10 95.20 10.90 花岗
斑岩SYBY-2 73.26 0.18 15.36 1.40 0.04 0.47 1.69 2.17 4.03 0.07 2.72 101.38 39.74 77.30 124.00 11.90 SYBY-3 72.93 0.18 15.63 1.25 0.04 0.46 1.59 2.38 4.07 0.07 2.57 101.17 42.23 73.50 120.00 11.50 SYBY-4 71.07 0.20 16.04 1.66 0.05 0.56 2.38 2.96 3.04 0.09 3.41 101.46 40.02 101.00 160.00 15.30 SYBY-5 74.88 0.21 15.86 1.63 0.03 0.63 0.91 1.89 4.01 0.09 2.47 102.60 43.16 89.50 143.00 13.90 SYBY-6 72.82 0.21 16.55 1.80 0.02 0.46 0.89 2.38 4.05 0.09 2.29 101.56 33.37 94.00 154.00 14.70 SYBY-7 71.31 0.20 15.87 1.58 0.04 0.65 1.55 2.16 3.85 0.08 2.64 99.93 44.81 93.20 150.00 14.10 SYBY-8 72.76 0.18 15.55 1.50 0.04 0.39 1.44 2.45 4.09 0.07 2.70 101.17 34.18 75.30 122.00 11.80 SYBY-9 74.98 0.19 15.33 1.48 0.04 0.50 1.08 2.17 4.11 0.07 2.51 102.45 39.95 82.30 135.00 12.90 SYBY-10 70.93 0.18 15.75 1.43 0.03 0.50 1.46 2.32 4.00 0.07 2.70 99.37 40.97 79.80 131.00 12.60 SYBY-11 75.09 0.18 15.16 1.43 0.03 0.42 0.98 1.90 4.29 0.07 2.43 101.98 37.03 75.00 123.00 11.90 样品
类型样品
原号Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Rb Ba Th U Nb 煌斑岩 HBY-2a 76.80 11.10 3.35 10.40 1.11 4.23 0.66 2.21 0.22 1.46 0.22 44.50 2389.00 17.00 2.46 6.30 HBY-3a 71.80 10.30 3.30 9.81 1.01 4.08 0.62 2.04 0.21 1.42 0.20 41.80 3043.00 15.60 2.32 5.70 HBY-4 75.90 10.90 3.88 10.90 1.13 4.44 0.69 2.27 0.24 1.59 0.23 48.20 4086.00 17.10 2.54 6.48 HBY-6 80.40 11.50 3.42 10.80 1.14 4.56 0.69 2.24 0.21 1.59 0.22 44.80 2514.00 17.90 2.73 6.81 HBY-8 67.50 9.94 3.23 9.36 1.04 3.96 0.60 2.00 0.20 1.39 0.20 40.70 3136.00 15.00 2.23 5.59 HBY-9 74.40 10.80 3.38 10.20 1.08 4.30 0.65 2.18 0.22 1.41 0.20 42.50 2618.00 16.50 2.39 5.94 HBY-10 80.20 11.40 3.90 10.90 1.15 4.54 0.68 2.32 0.23 1.59 0.23 49.90 3617.00 18.50 2.79 6.88 PM-13 79.60 11.30 3.67 11.40 1.19 4.67 0.71 2.40 0.26 1.65 0.25 48.20 3146.00 18.30 2.78 7.51 PM-16 83.80 11.50 3.95 11.50 1.23 4.69 0.73 2.39 0.25 1.66 0.25 44.00 3438.00 18.40 2.67 7.39 续表1 样品
类型样品
原号Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Rb Ba Th U Nb 辉绿岩 SCBY-2 40.30 6.26 2.11 6.40 0.80 3.62 0.62 1.96 0.22 1.57 0.24 65.30 1387.00 6.18 1.03 6.39 SCBY-3 39.90 6.03 2.01 6.19 0.78 3.56 0.64 1.92 0.22 1.54 0.23 68.70 1324.00 6.44 1.01 6.09 SCBY-4 41.40 6.23 2.13 6.39 0.81 3.76 0.64 2.03 0.24 1.64 0.24 61.70 1411.00 6.78 1.08 6.36 SCBY-5 40.20 6.18 2.06 6.37 0.77 3.71 0.62 1.96 0.24 1.68 0.24 53.70 1331.00 6.82 1.11 6.31 SCBY-6 37.90 6.04 2.05 6.18 0.75 3.55 0.63 2.03 0.24 1.59 0.25 56.10 1382.00 6.56 1.03 6.21 SCBY-7 43.00 6.35 2.23 6.74 0.81 3.76 0.64 2.10 0.24 1.58 0.24 67.40 1386.00 6.98 1.11 6.62 SCBY-8 42.20 6.19 2.14 6.40 0.79 3.74 0.66 2.05 0.24 1.65 0.24 64.40 1371.00 6.81 1.10 6.41 SCBY-9 40.80 6.19 2.07 6.33 0.79 3.56 0.64 2.11 0.24 1.63 0.24 62.00 1341.00 7.08 1.15 6.57 SCBY-10 43.20 6.38 2.10 6.57 0.81 3.76 0.67 2.16 0.26 1.65 0.26 66.60 1261.00 7.31 1.23 6.79 SCBY-11 41.60 6.07 2.14 6.29 0.79 3.53 0.65 2.01 0.24 1.58 0.24 65.70 1422.00 6.80 1.08 6.34 花岗斑岩 SYBY-2 38.90 4.44 1.43 4.93 0.48 1.82 0.29 1.07 0.12 0.81 0.13 102.00 1550.00 21.50 3.52 7.63 SYBY-3 37.50 4.39 1.45 5.02 0.50 1.93 0.30 1.09 0.12 0.88 0.13 105.00 1721.00 21.70 3.65 7.92 SYBY-4 47.40 5.33 1.53 6.21 0.57 2.11 0.33 1.23 0.12 0.90 0.14 101.00 1078.00 22.90 3.69 7.84 SYBY-5 46.40 5.01 1.65 5.76 0.54 2.04 0.31 1.18 0.13 0.91 0.14 121.00 1670.00 22.30 3.56 7.67 SYBY-6 45.30 5.02 1.65 5.90 0.54 2.05 0.32 1.24 0.12 0.95 0.14 123.00 1762.00 23.20 3.27 8.10 SYBY-7 44.10 4.93 1.64 5.77 0.53 2.00 0.31 1.10 0.12 0.87 0.13 104.00 1758.00 22.50 3.51 7.69 SYBY-8 36.70 4.31 1.43 4.91 0.45 1.81 0.29 1.03 0.11 0.84 0.13 93.80 1563.00 20.90 3.17 7.39 SYBY-9 40.60 4.67 1.45 5.47 0.50 1.91 0.30 1.12 0.11 0.84 0.12 102.00 1376.00 22.70 3.55 7.82 SYBY-10 39.00 4.51 1.49 5.14 0.50 1.98 0.30 1.12 0.13 0.88 0.14 104.00 1659.00 22.20 3.66 7.81 SYBY-11 38.60 4.36 1.45 5.07 0.48 1.97 0.29 1.09 0.12 0.87 0.14 107.00 1517.00 22.20 3.63 7.49 样品
类型样品
原号Ta K Pb Sr P Zr Hf Ti Y V Cr Co Ni δEu (La/Yb)N ∑REE 煌斑岩 HBY-2a 0.33 19824.00 24.30 3426.00 2321.00 154.00 3.66 4270.00 16.40 130.00 574.00 42.60 170.00 0.94 47.80 409.66 HBY-3a 0.31 17409.00 17.90 1962.00 1973.00 140.00 3.37 3937.00 15.00 127.00 571.00 49.80 225.00 0.99 45.06 376.58 HBY-4 0.33 19635.00 20.80 2353.00 2261.00 157.00 3.61 4200.00 16.50 135.00 467.00 50.30 170.00 1.08 45.11 413.46 HBY-6 0.35 20150.00 26.40 2392.00 2196.00 163.00 3.70 4143.00 17.00 134.00 374.00 45.50 164.00 0.92 46.47 430.17 HBY-8 0.29 17539.00 20.20 2320.00 2027.00 137.00 3.37 3936.00 14.70 124.00 527.00 44.60 207.00 1.01 45.15 367.21 HBY-9 0.32 18998.00 23.00 3106.00 2076.00 148.00 3.46 4016.00 16.00 129.00 563.00 52.50 197.00 0.97 47.82 394.53 HBY-10 0.38 21258.00 19.30 3365.00 2244.00 160.00 3.85 4164.00 16.60 131.00 333.00 52.60 163.00 1.05 47.37 436.54 PM-13 0.38 18520.00 23.20 2193.00 2215.65 169.00 3.94 4282.00 17.50 145.00 355.00 44.80 157.00 0.98 46.52 439.00 PM-16 0.38 19804.00 26.40 3184.00 2303.00 164.00 3.72 4374.00 17.70 142.00 332.00 44.50 138.00 1.04 46.67 450.25 辉绿岩 SCBY-2 0.38 19673.00 15.80 802.00 1539.00 118.00 2.89 4920.00 14.90 149.00 373.00 47.20 130.00 1.01 22.84 218.80 SCBY-3 0.37 19537.00 10.70 774.00 1489.00 126.00 3.02 4757.00 15.00 144.00 392.00 52.70 134.00 1.00 22.31 211.42 SCBY-4 0.38 19262.00 14.40 794.00 1607.00 140.00 3.31 5060.00 15.60 147.00 364.00 51.50 116.00 1.02 22.00 220.61 SCBY-5 0.36 19210.00 11.20 777.00 1562.00 139.00 3.33 4890.00 15.50 144.00 371.00 49.90 120.00 1.00 21.82 221.34 SCBY-6 0.36 18671.00 11.90 830.00 1516.00 135.00 3.19 4842.00 15.50 146.00 437.00 52.60 134.00 1.02 22.29 214.19 SCBY-7 0.36 19515.00 13.10 841.00 1542.00 140.00 3.23 4747.00 15.60 148.00 338.00 41.40 113.00 1.03 23.43 226.59 SCBY-8 0.36 19775.00 12.70 795.00 1564.00 140.00 3.30 4935.00 15.70 147.00 387.00 47.00 124.00 1.03 21.91 221.10 SCBY-9 0.37 19857.00 16.10 768.00 1636.00 142.00 3.31 4988.00 16.00 142.00 322.00 38.60 113.00 1.00 23.32 227.40 SCBY-10 0.39 20811.00 12.60 788.00 1663.00 147.00 3.27 5056.00 16.20 147.00 315.00 355.00 119.00 0.98 22.95 232.01 SCBY-11 0.38 19519.00 12.30 791.00 1552.00 136.00 3.34 4899.00 15.50 147.00 379.00 348.00 123.00 1.05 23.20 222.33 续表1 样品
类型样品
原号Ta K Pb Sr P Zr Hf Ti Y V Cr Co Ni δEu (La/Yb)N ∑REE 花岗
斑岩SYBY-2 0.68 33462.00 29.40 203.00 305.00 117.00 3.47 1092.00 7.87 16.90 4.41 73.90 7.31 0.93 68.28 267.62 SYBY-3 0.71 33801.00 53.20 194.00 300.00 124.00 3.59 1093.00 8.18 17.70 5.48 82.90 8.30 0.94 59.98 258.31 SYBY-4 0.61 25241.00 24.30 231.00 409.00 131.00 3.67 1225.00 9.01 21.20 5.97 54.70 6.78 0.81 80.77 342.16 SYBY-5 0.60 33255.00 40.20 151.00 389.00 132.00 3.61 1255.00 8.42 22.20 6.82 56.00 5.90 0.94 70.78 310.46 SYBY-6 0.66 33604.00 26.10 194.00 377.00 139.00 3.82 1281.00 8.64 20.60 5.82 57.40 6.45 0.92 70.83 325.93 SYBY-7 0.65 31929.00 25.60 209.00 349.00 125.00 3.55 1203.00 8.28 17.70 4.77 64.50 6.86 0.94 76.93 318.80 SYBY-8 0.68 33944.00 32.60 161.00 301.00 113.00 3.33 1102.00 7.54 16.60 4.85 78.80 7.73 0.95 64.30 261.11 SYBY-9 0.70 34091.00 31.50 132.00 319.00 115.00 3.49 1139.00 7.61 15.60 4.81 79.60 8.00 0.88 70.53 287.29 SYBY-10 0.70 33184.00 28.50 188.00 298.00 122.00 3.62 1050.00 8.01 17.50 6.00 74.30 8.15 0.94 64.90 278.60 SYBY-11 0.69 35648.00 30.70 130.00 291.00 120.00 3.48 1067.00 7.94 14.70 4.65 119.00 8.14 0.94 61.69 264.34 注:主量元素为%,微量元素为10−6。 -
黄智龙, 朱成明, 肖化云, 等. 煌斑岩岩浆能携带金吗?—高温超高压实验的证据[J]. 科学通报. 1999, 44(12): 1331-1334
HUANG Zhilong, ZHU Chengming, XIAO Huayun, et al. Can lamprophyre carry gold? -evidences from high temperature-high pressure experiment[J]. Chinese Science Bulletin, 1999, 44(12): 1331-1334.
刘辅臣, 卢作祥, 范永香, 等. 玲珑金矿中基性脉岩与矿化关系探讨[J]. 地球科学, 1984, (4): 37-45
LIU Fuchen, LU Zuoxiang, FAN Yongxiang, et al. On the Relation between Intermediate-basic Dykes and Mineralization in Linglong Gold Ore Field[J]. Earth Science, 1984, (4): 37-45.
刘辅臣, 卢作祥, 范永香, 等. 玲珑金矿的重要预测标志——中基性脉岩[J]. 地质科技情报, 1983, (S1): 122-130
LIU Fuchen, LU Zuoxiang, FAN Yongxiang, et al. An Important Prediction Indicator of Linglong Gold Deposit: Intermediate-basic Dykes[J]. Geological Science and Technology Information, 1983, (S1): 122-130.
刘燊, 胡瑞忠, 赵军红, 等. 山东中生代基性脉岩的元素地球化学及其成因[J]. 地球化学, 2005, (04): 339-350 doi: 10.3321/j.issn:0379-1726.2005.04.004
LIU Shen, HU Ruizhong, ZHAO Junhong, et al. Geochemistry and petrogenesis of the Mesozoic mafic dikes from Shandong Province[J]. Geochemical, 2005, (04): 339-350. doi: 10.3321/j.issn:0379-1726.2005.04.004
马晓东, 孙斌, 宋英昕, 等. 胶东埠上金矿区煌斑岩与金矿的关系[J]. 地质与资源, 2016, 25(4): 327-335 doi: 10.3969/j.issn.1671-1947.2016.04.004
MA Xiaodong, SUN Bin, SONG Yingxin, et al. Research on the Relationship between the Lamprophyre and Gold Minerlization in Bushang Gold Deposit, Eastern Shandong Province[J]. Geology and Resources, 2016, 25(4): 327-335. doi: 10.3969/j.issn.1671-1947.2016.04.004
邱检生, 徐夕生, 罗清华. 鲁西富钾火山岩和煌斑岩的40Ar--39Ar定年及源区示踪[J]. 科学通报, 2001, 46(18): 1500-1508. doi: 10.3321/j.issn:0023-074X.2001.18.002
申玉科, 邓军, 徐叶兵. 煌斑岩在玲珑金矿田形成过程中的地质意义[J]. 地质与勘探, 2005, 41(3): 45-49
SHEN Yuke, DENG Jun, XU Yebin. Geological Significance of Lamprophyre during Gold Mineralization in the Linglong Ore Field[J]. Geology and Prospecting, 2005, 41(3): 45-49.
张宏福, 周新华, 范蔚茗, 等. 华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理[J]. 岩石学报, 2005, 21(4): 1271-1280 doi: 10.3321/j.issn:1000-0569.2005.04.024
ZHANG Hongfu, ZHOU Xinhua, FAN Weiming, et al. Nature, Composition, Enrichment Processes and its Mechanism of the Mesozoic Lithospheric Mantle Beneath the Southeastern North China Craton[J]. Acta Petrologica Sinica, 2005, 21(4): 1271-1280. doi: 10.3321/j.issn:1000-0569.2005.04.024
张英帅, 顾雪祥, 章永梅等. 山东蓬莱石家金矿原生晕地球化学特征及深部找矿预测[J]. 现代地质, 2021, 35(1): 258-269
ZHANG Yinshuai, Gu Xuexiang, ZHANG Yongmei et al. Geochemical Characteristics of Primary Halo and Deep Prospecting Prediction of Shijia Gold Deposit in Penglai, Shandong Province[J]. Geoscience, 2021, 35(1): 258-269.
赵子福, 戴立群, 郑永飞. 大陆俯冲带壳幔相互作用的碰撞后镁铁质岩浆岩记录[J]. 科学通报, 2013, 58(23): 2310-2315 doi: 10.1360/972013-622
ZHAO Zifu, DAI Liqun, ZHENG Yongfei. Postcollisional Mafic Magmatism Records the Crust-Mantle Interaction of Continental Subduction-Zone[J]. Chinese Science Bulletin, 2013, 58(23): 2310-2315. doi: 10.1360/972013-622
郑永飞, 徐峥, 赵子福, 等. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学: 地球科学, 2018, 48(4): 379-414
ZHENG Yongfei, XU Zheng, ZHAO Zifu, et al. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 2018, 48(4): 379-414.
Cai Y C, Fan H R, Santosh M, et al. Evolution of the Lithospheric Mantle Beneath the Southeastern North China Craton: Constraints from Mafic Dikes in the Jiaobei Terrain[J]. Gondwana Research, 2013, 24: 601-621. doi: 10.1016/j.gr.2012.11.013
Chappell B W, Bryant C J, Wyborn D. Peraluminous I-type Granites[J]. Lithos, 2012, 153(15): 142-153.
Chappell B W, White A J R. I-and S-type Granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720
Chappell B W, White A J R. Two Contrasting Granite Types[J]. Pacific Geology, 1974, 8: 173-174.
Chen Y X, Song S G, Niu Y L, et al. Melting of Continental Crust During Subduction Initiation: A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone[J]. Geochimica et Cosmochimica Acta, 2014, 132: 311-336. doi: 10.1016/j.gca.2014.02.011
Collins W, Beams S, White A, et al. Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895
Dai L Q, Zhao Z F, Zheng Y F, et al. Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction[J]. Earth and Planetary Science Letters, 2011, 308: 224-244.
Dai L Q, Zheng Y F, Zhao Z F. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks[J]. Lithos, 2016, 240-243: 327-336. doi: 10.1016/j.lithos.2015.11.014
Deng J, Liu X F, Wang Q F, et al. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking—Lithospheric Extension in the North China Craton, Eastern Asia[J]. Geological Society of America Bulletin, 2017, 129(11-12): 1379-1407. doi: 10.1130/B31609.1
Deng J, Liu X F, Wang Q F, et al. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686. doi: 10.1016/j.oregeorev.2014.04.018
Deng J, Yang L Q, Groves D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Sciences Reviews, 2020, 208: 103274. doi: 10.1016/j.earscirev.2020.103274
Duggen S, Hoernle K, VAN DEN BOGAARD P, et al. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology, 2005, 46(6): 1155-1201. doi: 10.1093/petrology/egi013
Eby G N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis[J]. Lithos, 1990, 26(1): 115-134.
Feng L Q, Gu X X, Zhang Y M, et al. Geology and Geochronology of the Shijia Gold Deposit, Jiaodong Peninsula, China[J]. Ore Geology Reviews, 2020, 120: 103432. doi: 10.1016/j.oregeorev.2020.103432
Foley S F, Barth M G, Jenner G A. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 933-938. doi: 10.1016/S0016-7037(99)00355-5
Foley S F, Jackson S E, Fryer B J, et al. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lamprophyre from Newfoundland by LAM-ICP-MS[J]. Geochimica et Cosmochimica Acta, 1996, 60(4): 629-638. doi: 10.1016/0016-7037(95)00422-X
Furman T, Graham D. Erosion of Lithospheric Mantle Beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province[J]. Developments in Geotectonics, 1999, 24: 237-262.
Guo F, Fan W M, Wang Y J, et al. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes Beneath Continental Collisional Belt[J]. Lithos, 2004, 78: 291-305. doi: 10.1016/j.lithos.2004.05.001
Hofmann A W. Chemical Differentiation of the Earth: the Relationship between Mantle, Continental Crust, and Oceanic Crust[J]. Earth and Planetary Science Letters, 1988, 90: 297-314. doi: 10.1016/0012-821X(88)90132-X
Ionov D A, Griffin W L, O’reilly S Y. Volatilebearing Minerals and Lithophile Trace Elements in the Upper Mantle[J]. Chemical Geology, 1997, 141(3-4): 153-184. doi: 10.1016/S0009-2541(97)00061-2
Janousek V, Finger F, Roberts M, et al. Deciphering the Petrogenesis of Deeply Buried Graites: Whole-Rock Geochemical Constraints on the Origin of Largely Underpleted Granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 2004, 95(1-2): 141-159. doi: 10.1017/S0263593300000985
Klemme S, O’neill H S C. The Near-Solidus Transition from Garnet lherzolite to Spinel lherzolite[J]. Contributions to Mineralogy and Petrology, 2000, 138: 237-248. doi: 10.1007/s004100050560
Li H J, Wang Q F, Groves D I, et al. Alteration of Eocene lamprophyres in the Zhenyuan orogenic gold deposit, Yunnan Province, China: composition and evolution of ore fluids[J]. Ore Geology Reviews, 2019, 107: 1068-1083. doi: 10.1016/j.oregeorev.2019.03.032
Li J W, Bi S J, Selby D, et al. Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton[J]. Earth and Planetary Science Letters, 2012, 349-350: 26-37. doi: 10.1016/j.jpgl.2012.06.058
Li L, Li S R, Santosh M, et al. Dyke swarms and their role in the genesis of world-class gold deposits: Insights from the Jiaodong Peninsula, China[J]. Journal of Asian Earth Sciences, 2016, 130: 2-22. doi: 10.1016/j.jseaes.2016.06.015
Li Q, Santosh M, Li SR, et al. Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cretaceous dykes in the central North China Craton: implications for magma genesis and gold metallogeny[J]. Ore Geology Reviews, 2015, 67: 57-77. doi: 10.1016/j.oregeorev.2014.11.015
Li X Y, Li S Z, Suo Y H, et al. Early Cretaceous Diabases, Lamprophyres and Andesites-dacites in Western Shandong, North China Craton: Implications for Local Delamination and Paleo-Pacific Slab Rollback[J]. Journal of Asian Earth Sciences, 2018, 426-444.
Liu J G, Cai R H, Pearson D G, et al. Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review[J]. Earth-Science Reviews, 2019, 196: 102873. doi: 10.1016/j.earscirev.2019.05.017
Liu X Y, Tan J, He H Y, et al. Origin of the Tudui–Shawang gold deposit, Jiaodong Peninsula, north China Craton: Constraints from fluid inclusion and H-O-He-Ar-S-Pb isotopic compositions[J]. Ore Geology Reviews, 2021, 133: 104-125.
Ma L, Jiang S Y, Hofmann A W, et al. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton[J]? Geochimica et Cosmochimica Acta, 2014a, 124: 250-271.
Ma L, Jiang S Y, Hofmann A W, et al. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula[J]. Chemical Geology, 2016, 432: 1-15. doi: 10.1016/j.chemgeo.2016.03.027
Ma L, Jiang S Y, Hou M L, et al. Geochemistry of Early Cretaceous Calc-alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton[J]. Gondwana Research, 2014b, 25: 859-872.
Ma W D, Fan H R, Liu X, et al. Geochronological Framework of the Xiadian Gold Deposit in the Jiaodong[J]. Ore Geology Reviews, 2017, 86: 196-211. doi: 10.1016/j.oregeorev.2017.02.016
Maniar P D, Piccli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost E A K. Naming Materials in the Magma/Iigneous Rock System[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
Müller D, Groves D I, 2016. Indirect associations between lamprophyres and gold copper deposits. In: Potassic Igneous Rocks and Associated Gold-Copper Mineralization[J]. Springer, Switzerland, pp: 203-226.
Patiño Douce A E. Experimental Generation of Hybrid Silicic Melts by Reaction of High Al Basalt with Metamorphic Rocks[J]. Journal of Geophysical Research. Part B: Solid Earth, 1995, 100(B8): 15623-15639. doi: 10.1029/94JB03376
Patiño Douce A E. What Do Experiments Tell Us About the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas[J]. Geological Society, London, Special Publications, 1999, 168(1): 55-75.
Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5
Robinson J A C, Wood B J. The Depth of the Spinel to Garnet Transition at the Peridotite Solidus[J]. Earth and Planetary Science Letters, 1998, 164(1-2): 277-284. doi: 10.1016/S0012-821X(98)00213-1
Rock N M S. The Nature and Origin of Lamprophyres: An Overview[M]. In: Fitton J G, Upton B G J. (Eds.), Alkaline Igneous Rocks. Geological Society Special Publications, London, 1987: 191–226.
Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.
Sun S S, Mcdonough W F. Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Composition and Process[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Sylvester, R J. Postcollisional Strongly Peraluminous Granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
Wang X, Wang Z C, Chen H, et al. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction[J]. Lithos, 2020, 368-369: 105593. doi: 10.1016/j.lithos.2020.105593
Whalen J B, Currie K L, Chappell B W. A-type Granites: Geochemical Characteristics, Discriminatuon and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
White A J R, Chappell B W. Granitoid Types and their Distribution in the Lachlan Fold Belt, Southeastern Australia[J]. Geological Society of America Memoir, 1983, 159(12): 21-34.
White A J R, Chappell B W. Some Supracrustal S-type Granites of the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79(2-3): 169-181. doi: 10.1017/S026359330001419X
Yang D B, Xu W L, Pei F P, et al. Spatial Extent of the Influence of the Deeply Subducted South China Block on the Southeastern North China Block: Constraints from Sr-Nd-Pb Isotopes in Mesozoic Mafic Igneous Rocks[J]. Lithos, 2012, 136-139: 246-260. doi: 10.1016/j.lithos.2011.06.004
Yang J F, Zhao L, Kaus B J P, et al. Slab-triggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton[J]. Tectonphysics, 2018, 746: 266-279. doi: 10.1016/j.tecto.2017.04.009
Yang Q Y, Santosh M, Shen J F, et al. Juvenile vs. recycled crust in NE China: Zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula[J]. Gondwana Research, 2014, 25(4): 1445-1468. doi: 10.1016/j.gr.2013.06.003
Zhang H F. Destruction of Ancient Lower Crust Through Magma Underplating Beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths[J]. Gondwana Research, 2012, 21: 281-292. doi: 10.1016/j.gr.2011.05.013