Geochemical Characteristic of Heavy Metal in Zhouzhi Area and Analysis of Their Causes Based on Minimum Data Set
-
摘要:
周至县是陕西省乃至全国的猕猴桃主产区之一,为了查明周至地区土壤重金属地球化学特征及其成因,采集了周至地区8个典型农用田中226件土壤样品,分析测试了Cu、Pb、Zn、Cd、Ni、Cr、As、Hg、Sn、Co、Mn、V和Fe含量,通过地球化学数据分析、主成分分析、Norm值计算,构建由Cu、Pb、Zn、Cd、Ni、Cr和As组成的最小数据集对周至地区土壤重金属生态风险进行评价,并分析了其成因。 结果显示,最小数据集7种重金属的单因子污染指数和综合污染指数值均小于1,潜在生态风险指数为30.90,说明研究区土壤重金属于安全级别。通过相关性分析及主成分分析认为,第1主成分包括Cu、Ni、Cr、Co、Mn和V,其含量与地质背景密切相关;第2主成分包括Pb、Zn和Cd,主要受人为活动影响;第3主成分是As、Sn和Hg,可能受土壤组成的影响或者人为活动的影响。
Abstract:Zhouzhi County is an important kiwifruit base in Shanxi Province and even in China. 226 samples were collected from eight typical agriculture land, the contents of Cu, Pb, Zn, Cd, Ni, Cr, As, Hg, Sn, Co, Mn, V and Fe in soils were analyzed. The geochemical characteristic, potential ecological risk and origin of heavy metal elements in Zhouzhi County were investigated through constructing the minimum data set (MDS), based on correlation analysis, principal component analysis and Norm value calculation by using Cu, Pb, Zn, Cd, Ni, Cr and As. The results revealed that the single-factor pollution index was less than 1, and aggregate pollution index was 30.90, indicated the concentrations of heavy metals in soil meet the safety standard. The correlation analysis and the principal components analysis were made to discuss the cause of the heavy metals. It is believed that the first cluster including Cu, Ni, Cr, Co, Mn and V were mainly influenced by geological background; the second cluster including Pb, Zn and Cd were mainly related to human agricultural production; the third cluster including As, Sn and Hg were affected by geological background and human activities.
-
Key words:
- geochemistry /
- heavy metals /
- minimum data set /
- Zhouzhi area.
-
-
表 1 Hakanson潜在生态风险指数法分级标准表
Table 1. Hakanson’s classification criteria for potential ecological hazards
危害程度 Ei取值范围 RI取值范围 轻微 Ei<40 RI<150 中等 40≤Ei<80 150≤RI<300 强 80≤Ei<160 300≤RI<600 很强 160≤Ei<320 RI>600 极强 Ei>320 表 2 主成分特征值分析表
Table 2. Principal component analysis values
因子 初始值特征 提取荷载平方和 旋转荷载平方和 总计 方差百分比 累积(%) 总计 方差百分比 累积(%) 总计 方差百分比 累积(%) 1 5.321 40.931 40.931 5.321 40.931 40.931 5.179 39.838 39.838 2 1.686 12.971 53.902 1.686 12.971 53.902 1.762 13.552 53.390 3 1.375 10.578 64.480 1.375 10.578 64.480 1.442 11.090 64.480 4 0.925 7.117 71.597 5 0.847 6.518 78.115 6 0.748 5.758 83.873 7 0.634 4.877 88.750 8 0.552 4.244 92.994 9 0.433 3.330 96.324 10 0.228 1.757 98.081 11 0.098 0.752 98.832 12 0.079 0.607 99.440 13 0.073 0.560 100.000 表 3 主成分载荷矩阵与MDS确定
Table 3. Principal component load matrix and the determination of the minimum data set
元素 PC1 PC2 PC3 分组 Norm值 MDS Cu 0.938 0.016 −0.092 1 2.14 进入 Pb 0.135 0.782 0.398 2 1.18 进入 Zn 0.467 0.559 0.182 2 1.31 进入 Cd 0.144 0.846 −0.175 2 1.22 进入 Ni 0.892 −0.138 0.062 1 2.04 进入 Cr 0.854 −0.018 −0.056 1 1.94 进入 As 0.323 −0.409 0.520 3 1.11 进入 Hg −0.024 0.126 0.536 3 0.67 Sn 0.166 −0.129 0.704 4 0.94 Co 0.756 0.000 −0.155 1 1.73 Mn 0.645 −0.024 0.071 1 1.47 V 0.714 −0.039 −0.229 1 1.65 Fe 0.385 −0.329 −0.050 0.98 表 4 土壤重金属含量描述性统计表
Table 4. Descriptive statistics of heavy metals of soil
元素 平均值 最小值 最大值 标准偏差 变异系数 P(K-S) 关中地区
土壤背景*关中地区
土壤基准值**GB15618-2018 超标率 Cu 39.53 13.90 59.50 8.17 20.66 0.085 28.57 26.7 200 0 Pb 27.61 15.70 57.50 5.03 18.23 0.15 27.78 24.8 120 0 Zn 89.24 51.50 363.00 14.05 15.75 0.12 78.65 73.5 250 8% Cd 0.23 0.10 0.77 0.07 29.64 0.13 0.094 0.097 0.3 17% Ni 39.93 17.50 103.00 6.11 15.30 0.05(0.064) 32.14 33.13 100 0.5% Cr 89.69 36.70 218.00 12.92 14.40 0.08 75.68 74.2 200 1.3% As 10.89 5.55 23.00 2.16 19.86 0.03(0.054) 12.97 13.1 30 0 Hg 0.08 0.01 1.06 0.07 88.85 0.23 0.049 0.065 2.4 - Sn 3.35 2.14 12.50 0.69 20.74 0.16 3.10 3.07 - - Co 17.41 7.66 24.60 3.09 17.73 0.06 13.55 13.55 - - Mn 835.06 479.00 1309.00 113.49 13.59 0.029(0.061) 695.39 688.5 - - V 112.29 27.60 154.00 18.55 16.52 0.07 84.29 86.9 - - Fe 4.10 2.02 5.11 0.48 11.81 0.046(0.072) 4.86 4.86 - - 注:Fe含量单位是%;其他元素含量为10–6;变异系数Cv=(标准偏差/平均值)×100%;括号内为取对数后的K–S检验值;*和**表示数据均引自任蕊(2013)。 表 5 土壤污染指数表
Table 5. The index of soil pollution
采样区 单因子指数 综合污染指数 样品数 Cu Pb Zn Cd Ni Cr As S1 23 0.20 0.23 0.36 0.76 0.39 0.45 0.37 0.77 S2 29 0.21 0.15 0.43 0.65 0.34 0.51 0.47 0.73 S3 27 0.28 0.05 0.54 0.78 0.38 0.53 0.49 0.79 S4 29 0.24 0.10 0.53 0.74 0.33 0.465 0.72 0.74 S5 29 0.34 0.05 0.42 0.68 0.38 0.48 0.37 0.76 S6 33 0.37 0.08 0.67 0.69 0.32 0.56 0.34 0.76 S7 28 0.44 0.10 0.61 0.71 0.32 0.42 0.41 0.72 S8 28 0.21 0.05 0.38 0.65 0.38 0.56 0.37 0.77 平均值 / 0.29 0.10 0.50 0.71 0.35 0.50 0.44 0.75 潜在生态危害指数Ei 1.45 0.50 0.50 21.3 1.75 1.00 4.40 RI=30.90 注:潜在生态危害指数Ei采用《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)风险筛选值(6.5<pH≤7.5)。 表 6 土壤重金属相关性分析
Table 6. Correlation of heavy metals of soil
重金属元素 相关系数 Cu Pb Zn Cd Ni Cr As Hg Sn Co Mn V Fe Cu 1 Pb 0.063 1 Zn 0.396** 0.325** 1 Cd 0.153** 0.356** 0.367** 1 Ni 0.778** 0.060 0.349** −0.032 1 Cr 0.745** 0.031 0.407** 0.092** 0.886** 1 As 0.210** 0.065* 0.054 −0.201** 0.360** 0.207** 1 Hg 0.017 0.143** 0.062 0.011 −0.009 −0.050 0.045 1 Sn 0.109** 0.092** 0.133** −0.131** 0.164** 0.102** 0.235** 0.152** 1 Co 0.898** 0.126** 0.321** 0.139** 0.749** 0.696** 0.189** −0.070* 0.056 1 Mn 0.777** 0.124** 0.349** 0.124** 0.698** 0.616** 0.357** −0.012 0.160** 0.758** 1 V 0.902** −0.017 0.289** 0.089** 0.738** 0.718** 0.095** −0.069* 0.064 0.883** 0.747** 1 Fe 0.316** −0.072* 0.007 −0.059 0.290** 0.275** 0.176** −0.004 0.047 0.341** 0.299** 0.286** 1 注:**. 在 0.01 级别(双尾),相关性显著;*. 在 0.05 级别(双尾),相关性显著。 -
阿吉古丽•马木提, 麦麦提吐尔逊•艾则孜, 艾尼瓦尔•买买提, 等. 开都河下游绿洲农田土壤微量元素污染及潜在健康风险评价[J]. 农业环境科学学报, 2018, 37(10): 2142-2149 doi: 10.11654/jaes.2018-0055
AJIGUL Mamut, MAMATTURSUN Eziz, ANWAR Mohammad, et al. Assessment of trace element pollution of farmland soils in the oases along the lower reaches of the Kaidu River and its potential health risks[J]. Journal of Agro-Environment Science, 2018, 37(10): 2142-2149. doi: 10.11654/jaes.2018-0055
鲍丽然, 龚媛媛, 严明书, 等. 渝西经济区土壤地球化基准值与背景值及元素分布特征[J]. 地球与环境, 2015, 1, 31-40
BAO Liran, GONG Yuanyuan, YAN Mingshu, et al. Element Geochemical Baseline and Distributions in Soil in Chongqing West Economic Zone, China[J]. Earth and Environment, 2015, 1, 31-40.
陈江奖, 林守雄, 欧阳通, 等. 厦门湖里工业区土壤重金属污染特征及淋溶特征分析[J]. 厦门大学学报, 2007, 46(3): 376-381
CHEN Jiangjiang, LIN Shouxiong, OUYANG Tong, et al. The Contaminated Properties and Potential Leachability of Heavy Metals in Soils from Huli Industrial Estate in Xiamen City[J]. Journal of Xiamen University, 2007, 46(3): 376-381.
陈京都, 戴其根, 许学宏, 等. 江苏省典型农田土壤及小麦中重金属含量与评价[J]. 生态学报, 2012, 11, 787-3496
CHEN Jingdu, DAI Qigen, XU Xuehong, et al. Heavy metal contents and evaluation of farmland soil and wheat in typical area of Jiangsu Province[J]. Acta Ecologica Sinica, 2012, 11, 787-3496.
陈继平, 钞中东, 任蕊, 等. 陕西关中富硒土壤区农作物重金属含量及安全性评价[J]. 西北地质, 2021, 54(2): 274-281
CHEN Jiping, CHAO Zhongdong, REN Rui, et al. Correlation and safety Evaluation of Crop Heavy Metal Content in Shanxi Guanzhong Selenium-enriched Areas[J]. Northwestern Geology, 2021, 54(2): 274-281.
陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012, 39(2): 302-310 doi: 10.3969/j.issn.1000-3657.2012.02.004
CHEN Xingren, CHEN Furong, JIA Shijun, et al. Soil geochemical baseline and background in Yangtze River - Huaihe River basin of Anhui Province[J]. Geology in China, 2012, 39(2): 302-310. doi: 10.3969/j.issn.1000-3657.2012.02.004
邓文博, 李旭祥. 关中地区土壤重金属空间分布及其污染评价[J]. 地球环境学报, 2015, 6(4): 220-223
DENG Wenbo, LI Xuxiang. Spatial distribution and pollution assessment of heavy metals in soil from Guanzhong area[J]. Journal of Earth Environment, 2015, 6(4): 220-223.
姜龙群, 侯贵廷, 黄淇, 等. 基于因子分析和最小数据集的土壤养分评价—以房山平原为例[J]. 土壤通报, 2018, 49(5): 1034-1040
JIANG Longqun, HOU Guiting, HUANG Qi, et al. Evaluation of Soil Fertility Quality with a Minimum Data Set and Factor Analysis in the Fangshan Plain of Beijing[J]. Chinese Journal of Soil Science, 2018, 49(5): 1034-1040.
来雪慧, 刘子婧, 闫彩, 等. 太原市郊区农田土壤重金属的形态特征及其风险分析[J]. 山东农业大学学报, 2020, 51(2): 242-248
LAI Xuehui, LIU Zijing, YAN Cai, et al. Morphological Characteristics and Risk Analysis of Heavy Metals in Farmland Soil in the Suburb of Taiyuan[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(2): 242-248.
李晓彤, 岳田利, 胡仲秋, 等. 陕西省猕猴桃园土壤重金属含量及污染风险评价[J]. 西北农林科技大学, 2015, 43(2): 173-176
LI Xiaotong, YUE Tianli, HU Zhongqiu, et al. Concentrations of soil heavy metals in kiwi fruit orchards in Shaanxi and risk evaluation [J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(2): 173-176.
路永莉, 周建斌, 海龙, 等. 基于猕猴桃树体养分携出量确定果园合理施肥量—以周至县俞家河流域为例[J]. 农业环境科学学报, 2021, 40(8): 1765-1772 doi: 10.11654/jaes.2021-0206
LU Yongli, ZHOU Jianbin, HAI Long, et al. Determination of optimal fertilizer quantities based on nutrient removal in kiwi vines: A case study of Yujiahe catchment, in Zhouzhi County[J]. Journal of Agro-Environment Science, 2021, 40(8): 1765-1772. doi: 10.11654/jaes.2021-0206
罗启清, 王少鹏, 王英辉, 等. 南宁市市郊农业土壤中重金属元素含量的多元统计分析[J]. 安全与环境工程, 2018, 25(2): 81-87 doi: 10.13578/j.cnki.issn.1671-1556.2018.02.014
LUO Qiqing, WANG Shaopeng, WANG Yinghui, et al. Multivariate Statistical Analysis of Heavy Metal Concentration in Suburb Agricultural Soils of Nanning City[J]. Safety and Environmental Engineering, 2018, 25(2): 81-87. doi: 10.13578/j.cnki.issn.1671-1556.2018.02.014
庞绪贵, 宋娟娟, 代杰瑞, 等. 日照市土壤地球化学元素分布规律及成因探讨[J]. 山东国土资源, 2018, 34(4): 43-49 doi: 10.3969/j.issn.1672-6979.2018.04.008
PANG Xugui, SONG Juanjuan, DAI Jierui, et al. Study on the Distribution Law and the Origin of Soil Geochemical Elements in Rizhao City[J]. Shandong Land and Resources, 2018, 34(4): 43-49. doi: 10.3969/j.issn.1672-6979.2018.04.008
庞绪贵, 王晓梅, 代杰瑞, 等. 济南市大气降尘地球化学特征及污染端元研究[J]. 中国地质, 2014, 1(1): 258-293 doi: 10.3969/j.issn.1000-3657.2014.01.023
PANG Xugui, WANG Xiaomei, DAI Jierui, et al. Geochemical characteristics and pollution sources identification of the atmospheric dust-fall in Jinan city[J]. Geology in China, 2014, 1(1): 258-293. doi: 10.3969/j.issn.1000-3657.2014.01.023
庞妍, 同延安, 梁连友, 等. 矿区农田土壤重金属分布特征与污染风险研究[J]. 农业机械学报, 2014, 45(11): 165-171 doi: 10.6041/j.issn.1000-1298.2014.11.026
PANG Yan, TONG Yan’an, LIANG Lianyou, et al. Distribution of Farmland Heavy Metals and Pollution Assessment in Mining Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 165-171. doi: 10.6041/j.issn.1000-1298.2014.11.026
任蕊, 王会锋, 卢婷, 等. 关中平原土壤地球化学基准值与背景值研究[J]. 西北大学学报, 2013, 43(5): 742-748
REN Rui, WANG Huifeng, LU Ting, et al. Study on the soil geochemical reference values and background values in Guanzhong Plain[J]. Journal of Northwest University, 2013, 43(5): 742-748.
王成军, 孙大林, 刘, 等. 铅锌厂周围土壤中重金属空间分布特征[J]. 地球环境学报, 2014, 5(1): 36-41 doi: 10.7515/JEE201401006
WANG Chengjun, SUN Dalin, LIU Yong, et al. patial distribution of the soil heavy metal around the lead-zinc plant[J]. Journal of Earth Environment, 2014, 5(1): 36-41. doi: 10.7515/JEE201401006
王敏, 董佳琦, 白龙龙, 等. 浙江省香榧主产区土壤重金属空间异质性及其生态风险[J]. 环境科学, 2021, 42(12): 5949-5957 doi: 10.13227/j.hjkx.202104238
WANG Min, DONG Jiaqi, BAI Longlong, et al. Spatial Variation and Risk Assessment of Heavy Metals in Soils of Main Torreya grandis Plantation Region in Zhejiang Province[J]. Environmental Science, 2021, 42(12): 5949-5957. doi: 10.13227/j.hjkx.202104238
王庆鹤, 颜雄, 蔡深文, 等. 贵州某垃圾填埋场及其附近农田土壤中重金属形态分析和评价[J]. 环境污染与防治, 2021, 43(6): 741-745
WANG Qinghe, YAN Xiong, CAI Shenwen, et al. Speciation analysis and assessment of heavy metals in soil of landfill and its surrounding agricultural land in Guizhou[J]. Environment Pollution and Control, 2021, 43(6): 741-745.
易文利, 董奇, 杨飞, 等. 宝鸡市不同功能区土壤重金属污染特征、来源及风险评价[J]. 生态环境学报, 2018, 27(11): 2142-2149
YI Wenli, DONG Qi, YANG Fei, et al. Pollution Characteristics, Sources Analysis and Potential Ecological Risk Assessment of Heavy Metals in Different Functional Zones of Baoji City[J]. Ecology and Environmental Sciences, 2018, 27(11): 2142-2149.
张江华, 王葵颖, 徐友宁, 等. 小秦岭太峪水系沉积物重金属污染生态危害评价[J]. 地质通报, 2018, 37(12): 2224-2232 doi: 10.12097/j.issn.1671-2552.2018.12.013
ZHANG Jianghua, WANG Kuiying, XU Youning, et al. Ecological hazard assessment of heavy metal pollution in sediments of Taiyu water system in Xiaoqinling[J]. Geological Bulletin of China, 2018, 37(12): 2224-2232. doi: 10.12097/j.issn.1671-2552.2018.12.013
张江华, 徐友宁, 陈华清, 等. 小秦岭金矿区土壤-小麦重金属累积效应对比研究[J]. 西北地质, 2020, 53(3): 284-294 doi: 10.19751/j.cnki.61-1149/p.2020.03.026
ZHANG Jinghua, XU Youning, CHEN Huaqing, et al. Comparative Study of the Accumulated Effect of Heavy Metals on Soil and Wheat in Xiaoqinliing Gold Mining Area. [J]. Northwestern Geology, 2020, 53(3): 284-294. doi: 10.19751/j.cnki.61-1149/p.2020.03.026
庄玉婷, 冯嘉仪, 储双双, 等. 粤西地区不同林分类型土壤重金属含量及生态风险评价[J]. 华南农业大学学报, 2018, 39(5): 25-31 doi: 10.7671/j.issn.1001-411X.2018.05.004
ZHUANG Yuting, FENG Jiayi, CHU Shuangshuang, et al. Contents and ecology risk assessments of heavy metals in different forest soils in West Guangdong[J]. Journal of South China Agricultural University, 2018, 39(5): 25-31. doi: 10.7671/j.issn.1001-411X.2018.05.004
Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
Imaz M J, Virto I, Bescansa P, et al. Soil quality indicator response to tillage and residue management on semi -arid Mediterranean cropland[J]. Soil & Tillage Research, 2010, 107(1): 17 − 25.
-