西大别大悟地区闪长玢岩岩石地球化学特征及其构造意义

曹正琦, 蔡逸涛, 周向辉, 戚文龙, 丁文秀. 2023. 西大别大悟地区闪长玢岩岩石地球化学特征及其构造意义. 西北地质, 56(4): 318-328. doi: 10.12401/j.nwg.2022050
引用本文: 曹正琦, 蔡逸涛, 周向辉, 戚文龙, 丁文秀. 2023. 西大别大悟地区闪长玢岩岩石地球化学特征及其构造意义. 西北地质, 56(4): 318-328. doi: 10.12401/j.nwg.2022050
CAO Zhengqi, CAI Yitao, ZHOU Xianghui, QI Wenlong, DING Wenxiu. 2023. Geochemical Characteristics of Diorite Porphyrite in Dawu Area, Western Dabie and Its Tectonic Significance. Northwestern Geology, 56(4): 318-328. doi: 10.12401/j.nwg.2022050
Citation: CAO Zhengqi, CAI Yitao, ZHOU Xianghui, QI Wenlong, DING Wenxiu. 2023. Geochemical Characteristics of Diorite Porphyrite in Dawu Area, Western Dabie and Its Tectonic Significance. Northwestern Geology, 56(4): 318-328. doi: 10.12401/j.nwg.2022050

西大别大悟地区闪长玢岩岩石地球化学特征及其构造意义

  • 基金项目: 湖北文理学院科研启动经费资助项目(kyqdf2021007),江苏省科技计划项目(SBK2019022373),湖北省教育厅科研计划项目(B2021208),湖北省地质局科研项目(KJ2022-27)联合资助。
详细信息
    作者简介: 曹正琦(1980−)男,博士,副教授,从事构造地质教学和科研工作。E−mail:caozq11797@hbuas.edu.cn
    通讯作者: 蔡逸涛(1982−)男,博士,副教授,从事地球化学教学和科研工作。E−mail:caiyitao@jit.edu.cn
  • 中图分类号: P597

Geochemical Characteristics of Diorite Porphyrite in Dawu Area, Western Dabie and Its Tectonic Significance

More Information
  • 基性岩浆能反映地幔源区性质、成因环境和形成演化过程。通过野外地质调查,结合岩石地球化学分析,探讨区域岩浆源区性质、成因及构造环境。全岩地球化学分析结果显示,闪长玢岩样品SiO2含量为49.97%~55.01%,属中−基性岩系列,MgO含量为4.63%~5.49%,Mg#为60.17~90.19, Nb/Ta值为13.06~18.47, Zr/Hf值为40.09~44.05,暗示该岩浆源区可能源自于富集地幔。LREE/HREE值为9.45~13.97,整体表现为较陡右倾型,且亏损高场强元素(Nb、Ta、Hf、Ti)亏损,富集大离子亲石元素Sr,表明岩浆形成过程中可能受到俯冲板片流体交代作用的影响。闪长玢岩脉穿切花岗斑岩脉,花岗斑岩结晶时代为(130.8±1.8)Ma,闪长玢岩的侵位时间可能为早白垩世。在Zr−Ti构造环境判别图解中,闪长玢岩样品落于板内玄武岩区,结合区域构造背景,笔者认为闪长玢岩应形成于造山后伸展−拉张环境。

  • 加载中
  • 图 1  大别山地区构造简图(据索书田等,1993修改)

    Figure 1. 

    图 2  闪长玢岩野外地质和显微特征图

    Figure 2. 

    图 3  闪长玢岩球粒陨石标准化稀土配分模式(a)和原始地幔标准化微量元素蛛网图(b)

    Figure 3. 

    图 4  闪长玢岩Zr−Y判别图解(据Maitre et al.,1989

    Figure 4. 

    图 5  TiO2−K2O−P2O5判别图解(a)(Pearce,1975); TiO2−Zr(P2O5×10000)判别图解(b)(Winchester et al.,1976);Ti−Zr判别图解(c)(Pearce et al.,1973);Th/Hf−Ta/Hf判别图解(d)(据汪云亮等,2001

    Figure 5. 

    表 1  闪长玢岩主量元素、微量元素、稀土元素分析结果表

    Table 1.  Analysis results of major elements, trace elements and rare earth elements of diorite porphyrite

    样号D2073/1D2073/2D2073/3D2073/4D2073/5D4078/4BZK21-02BZK21-03BZK21-04
    岩性闪长玢岩
    Na2O1.823.783.862.123.571.924.414.63.21
    MgO5.384.814.635.164.785.492.242.73.39
    Al2O314.0414.4714.6514.1114.5214.0115.1815.2317.05
    SiO249.9754.6455.0152.2352.0650.0452.1253.2456.12
    P2O50.520.790.80.580.610.540.350.590.51
    K2O4.393.413.693.493.524.263.12.934.73
    CaO5.934.75.064.654.916.173.334.721.86
    TiO21.231.151.141.091.121.220.820.840.87
    MnO0.150.10.10.110.130.160.320.380.17
    Fe2O32.280.930.930.910.962.379.316.647.45
    FeO5.40.790.790.810.85.254.223.95.24
    H2O+3.140.280.160.190.253.28
    CO25.254.28
    LOST7.834.683.624.573.917.558.277.564.53
    Th6.7212.112.0912.0512.115.982119.9625
    Nb13.9420.7320.1220.6920.4112.2514.613.6317.1
    Ta1.071.141.141.121.150.810.920.891.1
    Sr625.321102.021112.551107.051109.42670.4213254.17363
    Zr218.8262.66258.98259.13260.32223.3241229.39280
    Hf5.095.965.935.955.915.5765.817.17
    Eu1.962.532.522.552.572.151.651.521.83
    Yb1.461.321.271.311.291.692.232.122.5
    La45.6881.4381.6181.4781.5853.0944.927.1945.4
    Ce91.52151.97153.01152.03152.8697.7190.956.9895.2
    Pr11.7216.3916.3116.4716.5313.3710.56.8511
    Nd45.7159.2759.7659.3559.6151.3239.627.0542.2
    Sm7.579.549.319.429.518.577.25.987.6
    Eu1.962.532.522.552.532.151.651.521.83
    Gd5.896.66.926.836.976.815.285.035.98
    Tb0.820.790.780.790.770.960.760.720.82
    Dy3.873.883.873.863.894.44.213.864.69
    Ho0.70.650.660.640.660.820.830.730.87
    Er1.691.711.711.751.732.012.292.132.51
    Tm0.240.230.220.250.220.280.340.30.38
    Yb1.461.321.271.311.291.692.232.122.5
    Lu0.220.190.20.180.210.270.350.320.4
    Y17.319.4819.0219.4319.2920.7924.722.4526.9
    总和236.35355.98357.17356.33357.65264.24235.74163.23248.28
    LREE/HREE9.4513.6213.9713.6413.798.756.344.486.06
    (La/Yb)N21.0921.1841.5943.3241.9342.6413.578.6512.24
    δEu0.870.840.910.930.920.930.810.870.89
     注:主量元素含量%,稀土与微量元素含量10−6
    下载: 导出CSV
  • [1]

    曹正琦. 湖北大悟地区晚中生代脉岩及控矿构造研究[D]. 武汉: 中国地质大学, 2016, 1−147

    CAO Zhengqi. Study on Late Mesozoic dike rocks and ore-controlling structures in Dawu area, Hubei Province [D]. Wuhan: China University of Geosciences, 2016, 1-147.

    [2]

    范裕, 周涛发, 袁峰等. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J]. 岩石学报, 2010, 26(9): 2715-2728

    FAN Yu, ZHOU Taofa, YUAN Feng, et al. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances[J]. Acta Petrologica Sinica, 2010, 26(9): 2715-2728.

    [3]

    葛宁洁, 侯振辉, 李惠民, 等. 大别造山带岳西沙村镁铁超镁铁岩体的锆石U-Pb年龄[J]. 科学通报, 1999, 44(19): 2110-2114 doi: 10.3321/j.issn:0023-074X.1999.19.020

    GE Ningjie, HOU Zhenghui, LI Huiming, et al. Zircon U-Pb age of mafic ultramafic granites in Yuexisha village, Dabie orogenic belt [J]. Chinese Science Bulletin, 1999, 44 (19): 2110-2114. doi: 10.3321/j.issn:0023-074X.1999.19.020

    [4]

    黄丹峰, 罗照华, 卢欣祥. 大别山北缘金刚台火山岩SHRIMP锆石U- P b年龄及构造意[J]. 地学前缘, 2010, 17(1): 1-9

    HUANG Danfeng, LUO Zhaohua, LU Xinxiang. Zircon U-Pb Dating of the Linglong Volcanic Deposit in the Northern Dabie Mountains [J]. Earth Science Frontiers, 2010, 17 (1): 1-9.

    [5]

    刘清泉, 邵拥军, 张智慧, 等. 大别山姚冲花岗岩锆石U-Pb年龄、Hf同位素及地质意义[J]. 中国有色金属学报, 2015, 25 (2): 479-491 doi: 10.19476/j.ysxb.1004.0609.2015.02.027

    LIU Qingquan, SHAO Yongjun, ZHANG Zhihui, et al. Zircon U-Pb Age, Hf Isotope and Geochronology Significance of the Yaochong Granite in the Dazhuangzi Gold Deposit, Shandong Province [J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (2): 479-491. doi: 10.19476/j.ysxb.1004.0609.2015.02.027

    [6]

    刘福来, 薛怀民, 许志琴, 等. 大别超高压变质带的进变质, 超高压和退变质时代的准确限定: 以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例[J]. 岩石学报, 2006, 22(7): 1761-1778 doi: 10.3969/j.issn.1000-0569.2006.07.002

    LIU Fulai, XUE Huaiming, XU Zhiqing, et al. Precise restriction of progressive metamorphic, ultra-high pressure and retrograde metamorphic ages in the Dabie UHP metamorphic belt: A case study of SHRIMP zircon U-Pb dating of eclogites in Shuanghe marble [J]. Acta Petrologica Sinica, 2006, 22(7): 1761-1778. doi: 10.3969/j.issn.1000-0569.2006.07.002

    [7]

    刘军, 息朝庄, 黄波, 等. 柴达木西北缘大通沟南山北闪长岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2022, 55(2): 93−105.

    LIU Jun, XI Chaozhuang, HUANG Bo, et al. Geochronology, Geochemistry and Geological Significance of Thediorite in Datonggou Nanshanbei, Northwestern Qaidam Basin[J]. Northwestern Geology, 2022, 55(2): 93−105.

    [8]

    李曙光, 洪吉安, 李惠民, 等. 大别山辉石岩—辉长岩体的锆石U-Pb年龄及其地质意义[J]. 高校地质学报, 1999, (3): 351-355

    LI Shuguang, HONG Jiean, LI Huiming, et al. Zircon U-Pb age of pyroxenite-gabbro pluton in Dabie mountain and its geological significance[J]. Geological Journal of China Universities, 1999, (3): 351-355.

    [9]

    李曙光, 李秋立, 侯振辉, 等. 大别山超高压变质岩的冷却史及折返机制[J]. 岩石学报, 2005, 21(04): 91-98

    LI Shuguang, LI Qiuli, HOU Zhenghui, et al. Cooling-history and reentrant mechanism of ultra-high pressure metamorphic rocks in Dabie Mountains [J]. Acta Petrologica Sinica, 2005,21 (04): 91-98.

    [10]

    马昌前, 杨坤光, 明厚利, 等. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学: 地球科学, 2003, 33(9): 811-827.

    [11]

    穆可斌, 裴先治, 李瑞保, 等. 南秦岭白龙江群中花岗岩脉群年代学、地球化学特征及地质意义[J]. 西北地质, 2019, 52(3): 111-135. doi: 10.19751/j. cnki. 61-1149/p. 2019.03. 010

    MU Kebin, PEI Xianzhi, LI Ruibao, et al. Geochronology, Geochemistry and Geological Significance of the Granite Veins in the Bailongjiang Group, South Qinling[J]. Northwestern Geology, 2019, 52(3): 111-135. doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    [12]

    彭松柏, 刘松峰, 林木森, 等. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据[J]. 地球科学, 2016, 41(6): 931-947

    PENG Songbo, LIU Songfeng, LIN Mushen, et al. Early Paleozoic subduction in the Cathaysia (Ⅱ): New evidence for Dashuang high magnesium and magnesitic andesite [J]. Earth Science, 2016, 41 (6): 931-947.

    [13]

    戚学祥, 旷宏伟, 陈培良, 等. 长江中下游燕山期侵入岩地球化学特征及其地质意义[J]. 资源调查与环境, 2002, 23(1): 8

    QI Xuexiang, KUANG Hongwei, CHEN Peiliang, et al. Geochemical characteristics and geological significance of Yanshanian intrusive rocks in the middle and lower reaches of the Yangtze River [J]. Resources Survey and Environment, 2002, 23(1): 8.

    [14]

    任志, 周涛发, 袁峰, 等. 安徽沙坪沟钥矿区中酸性侵入岩期次研究—年代学及岩石化学约束[J]. 岩石学报, 2014, 30 (4): 1097-1116

    REN Zhi, ZHOU Taofa, YUAN Feng, et al. Geochronology and Geochemical Constraints of the Xilaokou Gold Deposit, Shandong Province [J]. Acta Petrologica Sinica, 2014, 30 (4): 1097-1116.

    [15]

    索书田, 桑隆康, 韩郁箐, 等. 大别山前寒武纪变质地体岩石学与构造学[M].武汉: 中国地质大学出版社, 1993

    SUO Shutian, SANG Longkang, HAN Yuqing, et al. Petrology and Tectonics of Precambrian Metamorphic Terrane in Dabie Mountains[M].Wuhan: China University of Geosciences Press, 1993.

    [16]

    孙书勤, 汪云亮, 张成江. 玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J]. 地质论评, 2003, (01): 40-47 doi: 10.3321/j.issn:0371-5736.2003.01.006

    SUN Shuqing, WANG Yunliang, ZHANG Chengjiang. Discrimination of Th, Nb, Zr in tectonic setting of basaltic rocks [J]. Geological Review, 2003, (01): 40-47. doi: 10.3321/j.issn:0371-5736.2003.01.006

    [17]

    汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413-421

    WANG Yunliang, ZHANG Chengjiang, XIU Shuzi. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 2001, 17(3): 413-421.

    [18]

    王世明, 马昌前, 王琳燕, 等. 大别山早白垩世基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及成因[J]. 地球科学(中国地质大学学报), 2010, (04): 572-584

    WANG Shiming, MA Changqian, WANG Lingyan, et al. SHRIMP zircon U-Pb dating and geochemical characteristics of the Early Cretaceous basic dike rocks in the Dabie Mountains, Shandong Province [J]. Journal of China University of Geosciences, 2010, (04): 572-584.

    [19]

    汪晶, 吴明安, 李小东, 等. 庐枞盆地早白垩世闪长玢岩锆石U-Pb年龄、地球化学特征及其成矿指示意义[J]. Acta Geologica Sinica, 2014, 88(4): 547-561

    WANG Jing, WU Mingan, LI Xiaodong, et al. Zircon U-Pb Dating, Geochemical Characteristics of Early-Cretaceous Diorite-Porphyrites in Luzhong Basin and Their Implications for Mineralization[J]. Acta Geologica Sinica, 2014, 88(4): 547-561.

    [20]

    吴开彬, 邓新, 杨坤光. 北大别白垩纪花岗岩多期侵位与造山带演化的关系[J]. 地球科学, 2013, (S1): 43-52

    WU Kaining, DENG Xin, YANG Kunguang. Relationship between multi-stage emplacement of Cretaceous granites and evolution of orogenic belt in Beibei [J]. Earth Science, 2013, (S1): 43-52.

    [21]

    吴元保, 陈道公, E. DELOULE, 等. 北大别片麻岩的锆石U-Pb年龄离子探针测定及其地质意义[J]. 地质论评, 2001, 47(3): 239-244 doi: 10.3321/j.issn:0371-5736.2001.03.004

    WU Yuanbao, CHEN Ddaogong, E. Deloule, et al. Zircon U-Pb Dating and Ion Probe Determination of Gneiss in Dazhuangzi Gold Deposit, Shandong Province and Its Geological Significance [J]. Geological Review, 2001, 47(3): 239-244. doi: 10.3321/j.issn:0371-5736.2001.03.004

    [22]

    袁峰, 周涛发, 范裕, 等. 庐枞盆地中生代火山岩的起源、演化及形成背景[J]. 岩石学报, 2008, 24(8): ;1691-1702

    YUAN Feng, ZHOU Taofa, FAN Yu, et al. Source, Evolution and Tectonic Setting of Mesozoic Volcanic Rocks in Luzong Basin, Anhui Province[J]. Acta Petrologica Sinica, 2008, 24(8);1691-1702.

    [23]

    赵子福, 郑永飞, 魏春生, 等. 大别山沙村和椒子岩基性-超基性岩锆石Il-Pb定年、元素和碳氧同位素地球化学研究北大别片麻岩的锆石U-Pb年龄离子探针测定及其地质意义[J]. 高校地质学, 2003, 9: 139-162

    ZHAO Zifu, ZHENG Yongfei, WEI Chunsheng, et al. Zircon U-Pb dating, element and carbon and oxygen isotopic geochemistry of shacun hejiaozi basic-ultrabasic rocks in Dabie Mountains and its geological significance [J]. Geology of Universities, 2003, 9: 139-162.

    [24]

    赵子福, 郑永飞, 魏春生, 等. 大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究[J]. 岩石学报, 2004, 20(5): 1151-1174 doi: 10.3321/j.issn:1000-0569.2004.05.012

    ZHAO Zifu, ZHENG Yongfei, WEI Chunsheng, et al. Zircon U-Pb dating and oxygen isotopic geochemistry of the Mesozoic magmatic rocks in the Dabie Mountains, Shandong Province [J]. Acta Petrologica Sinica, 2004, 20(5): 1151-1174. doi: 10.3321/j.issn:1000-0569.2004.05.012

    [25]

    俞胜, 赵斌斌, 贾轩, 等.北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 55(4): 267−279.

    YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry,Geochronology Characteristics and Tectonic Significance of Yitiaoshan Diorite in the Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology, 2022, 55(4): 267−279.

    [26]

    张凯, 王居里, 汪佩佩, 等. 南秦岭太平沟铜(金)矿相关花岗岩体锆石U-Pb年代学及岩石成因[J]. 西北地质, 2020, 53(4): 73-85. doi: 10.19751/j.cnki. 61-1149/p. 2020.04. 007.

    ZHANG Kai, WANG Juli, WANG Peipei, et al. Zircon U-Pb Geochronology and Petrogenesis of Taipinggou Copper (Gold)-related Granites, South Qinling[J]. Northwestern Geology, 2020, 53(4): 73-85. doi: 10.19751/j.cnki.61-1149/p.2020.04.007.

    [27]

    Chen B, Jahn B M, Wei C J. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd-Sr iso-tope evidence[J]. Lithos, 2002, 60: 67-88. doi: 10.1016/S0024-4937(01)00077-9

    [28]

    David A F, Carl S, Mark F, et al. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho–Bitterroot batholith - ScienceDirect.[J]. Tectonophysics, 2001, 342(3-4): 313-350. doi: 10.1016/S0040-1951(01)00169-X

    [29]

    Fernandez A N and Barbarin B. Relative rheology of coeval mafic and felsic magmas: Nature of resulting interaction processes. Shape and mineral fabrics of mafic microgranular enclaves. In: Didier J, Barbarin B (eds. ) [J]. Enclaves and Granite Petrology, Amsterdam-Oxford-New York-Tokyo: Elsevier. 1991, 263−275.

    [30]

    Gibson I L, Kirkpatrick R J, Emmerman R, et al. The trace element composition of the lavas and dikes from a 3-km vertical section through the lava pile of eastern Iceland[J]. Journal of Geoph-ysical Research, 1982, 87: 6532-6546. doi: 10.1029/JB087iB08p06532

    [31]

    Gill J. Orogenic andesites and plate tectonics[M]. Springer-Verlag, 1981.

    [32]

    Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X

    [33]

    Halls H c. The importance and potential of mafic dyke swarms in studies of geodynamic processes[J]. geoscience Canada, 1982, 9(3): 145-154.

    [34]

    Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth Planet. sci. lett, 1998, 161(1-4): 215-230. doi: 10.1016/S0012-821X(98)00152-6

    [35]

    Hacker B R and Wang Q C. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China[J]. Tectonics, 1995, 14: 994-1006. doi: 10.1029/95TC00932

    [36]

    Hofmann P F. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia[J]. Annual Review of Earth and Planetary Sciences, 1988, 16(1): 543-603. doi: 10.1146/annurev.ea.16.050188.002551

    [37]

    Jahn B M, Wu F Y, Lo C H, et al, Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic -Ultramafic intrusion of the northern Dabie complex, central china[J]. Chemical Geology, 1999, 157(1−2): 119−146. doi:10.1016/s0009-2541(98)00197-1.

    [38]

    Leech M L. Arrested orogenic development: eclogitization, delamination, and tectonic collapse[J]. Earth & Planetary Science Letters, 2001, 185(1-2): 149-159.

    [39]

    Maitre RW L, Bateman P, Dudek A, et al. A Classification of Igneous Rocks and Glossary of Terms[M]. Oxford: Blackwell, 1989, 1−193.

    [40]

    Mcculloch M T, Gamble J A, McCulloch, M. T. & Gamble, J. A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358-374[J]. Earth and Planetary Science Letters, 1991, 102(3-4): 358-374. doi: 10.1016/0012-821X(91)90029-H

    [41]

    Mcdonough W F, Sun S S. The composition of the Earth[M]. Chemical Geology, 1995, 120(3−4): 223−253.

    [42]

    Ma C Q, Li Z C, Ehlers C, Yang KC and Wang RI. A post-collisional magmatic pluming system; Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China[J]. Lithos, 1998, 45: 431-456. doi:10. 1016/S0024-4937(98):00043-7

    [43]

    Pearce J A, Peate D W. Tectonic Implication of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285. doi:10.1146/annurev.ea.23.050195.001343.

    [44]

    Pearce T H. The TiO2 - K2O – P diagram : A method of discriminating between oceanic and nonoceanic basalt. [J]. Earth Planet. sci. lett, 1975, 24(3): 419-426. doi: 10.1016/0012-821X(75)90149-1

    [45]

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth & Planetary Science Letters, 1973, 19(2): 290-300.

    [46]

    Poland M p, Fink J H, Tauxe L. Patteens of magma flow in segmented silicic dikes at summer coon volcano, Colorado[J]. AMS and Thin Section Analysis. Earth and Planetary Science Letters, 2004, 219(1-2): 155-169. doi:10.1016/s0012-821x(03)00706-4.

    [47]

    Li S, Xiao Y, Liou D, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chemical Geology, 1993, 109(1-4): 89-111. doi: 10.1016/0009-2541(93)90063-O

    [48]

    Rapp RP and Watson E B. Dehydration melting of meta-basalt at 8-32kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    [49]

    Rudnik R, Gao S. Composition of the continental crust. In: rudnik, R., ed., The crust Treatise on geochemistry [J]. Elservior, Amsterdam, 2003, 3-164,doi:10.1016/B0-08-043751-6/03016-4.

    [50]

    Taylor S R. Mclennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.

    [51]

    Whitney D L, Teyssier C, Fayon A K, et al. Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Nide Massif, Turkey[J]. Tectonophysics, 2003, 376(1-2): 37-60. doi: 10.1016/j.tecto.2003.08.009

    [52]

    Westerman D S, Dini A, Innocenti F, et al. When and where did hybridization occur ?the case of the monte capanne pluton, italy[J]. Atlantic Geology, 2003, 39(2): 147-162,doi:10.4138/1177.

    [53]

    Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7

    [54]

    Xu haijin, Ma Chanqian, Ye Kai. Early Cretaceous granitiod and their implications for Collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry [J]. Chem Geol., 2007, 240(3/4): 238-272.

    [55]

    Zhao Z F, Zheng Y F, Wei C S, et al. Zircon U- Pb Age, Element and C-O isotope geochemistry of Post-collisional Mafic-Ultramafic Rocks from the Dabie Orogen in East-central China[J]. Lithos, 2005, 83(1-2): 1-28. doi: 10.1016/j.lithos.2004.12.014

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1310
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2021-06-20
修回日期:  2022-10-16
刊出日期:  2023-08-20

目录