Characteristics of Platinum Group Element in Neoproterozoic Mafic Intrusions in the Northern Margin of the Yangtze and Exploration Implications
-
摘要:
扬子地块北缘的汉南地区是中国最重要的基性–超基性岩体分布区之一。新元古代毕机沟和望江山岩体是汉南地区出露最好、研究程度最高的两个层状基性岩体。毕机沟和望江山岩体被认为是由亏损地幔经历10%~20%部分熔融形成的。远高于原始地幔的Cu/Pd值(Cu/Pd毕机沟值为3.52×104~3.97×105,Cu/Pd望江山值为1.78×104~1.61×106),表明岩体母岩浆在侵入浅部地壳之前就经历了早期硫化物熔离。毕机沟岩体中铱族元素(IPGE)与全岩Ni呈正相关,Cu/Ir与Ni/Pd呈负相关,说明在浅部岩浆房硫化物未饱和时,铂族元素的分配主要受橄榄石控制。望江山岩体中铂族元素与全岩Ni、V、TiO2无相关性,Cu/Ir与Ni/Pd呈正相关,说明望江山岩体中铂族元素受二次熔离硫化物的控制。毕机沟和望江山岩体中矿物不具有定向性,加上望江山岩体中二次熔离出的硫化物中铂族元素依然亏损,说明这些岩体更可能是岩浆单次贯入冷却形成的,而非岩浆通道。因此,浅部可能不具备赋存大型矿床的条件,今后的找矿工作应该聚焦于更深部。
Abstract:Multiple layered mafic intrusions occur along the northern margin of the Yangtze Block, SW China. The Neoproterozoic Bijigou and Wangjiangshan mafic intrusions are two of the best exposed intrusions in the region. The Bijigou and Wangjiangshan mafic intrusions are thought to be generated by 10% to 20% of partial melting of a depleted mantle source. Uniformly high Cu/Pd (3.52×104~3.97×105 for the Bijigou samples and 1.78×104~1.61×106 for the Wangjiangshan samples) indicate that the parental magma of these intrusions experienced prior sulfide segregation before their intrusions into the shallow crust. Positive correlation between IPGE with whole–rock Ni, and negative correlation between Cu/Ir and Ni/Pd illustrate that the distribution of PGE is mainly controlled by the accumulation of olivine under an S–unsaturated condition. In comparison no linearly correlation between PGE and whole–rock Ni, V and TiO2, and positive correlation between Cu/Ir and Ni/Pd illustrate that the PGE in the Wangjiangshan intrusion is controlled by the second-stage sulfide saturation. The general lack of parallel alignment of tabular minerals in the Bijigou and Wangjiangshan intrusions, combined the PGE depletions in the Wangjiangshan second segregated sulfides, indicates that these intrusions probably intruded and cooled under a single episode of magma replenishment, rather than a dynamic magma conduit system. Therefore the shallow part may not have the conditions to host large deposits and future prospecting work should focus on the deeper part.
-
Key words:
- Neoproterozoic /
- mafic intrusion /
- PGE /
- sulfide segregation /
- Yangtze block
-
-
图 1 扬子地块北缘毕机沟和望江山岩体地质图(据Dong et al.,2011;Wang et al.,2016修)
Figure 1.
图 6 毕机沟和望江山岩体Ni/Pd–Cu/Ir相关图(投图区域引自Barnes et al., 1988,2005)
Figure 6.
表 1 毕机沟岩体、望江山岩体样品主量(%)、微量元素(10−6)与稀土元素(10−6)组成分析结果表
Table 1. Major (%), trace element (10−6) and REE concentrations (10−6) analyses of the Bijigou and Wangjiangshan samples
样品号 WJS502 WJS503 WJS510 WJS516 WJS517 WJS519 WJS606 WJS612 WJS614 BJG502 BJG503 BJG507 BJG514 BJG516 BJG522 岩性 橄榄
辉长岩辉长
苏长岩橄榄
辉长苏
长岩橄榄
苏长岩橄榄
苏长岩橄榄
苏长岩磁铁
辉长岩辉长
苏长岩辉长
岩磁铁
含橄辉
长岩磁铁
辉长岩橄榄
辉长岩辉长
岩磁铁
辉长岩磁铁
辉长苏
长岩SiO2 48.0 51.0 45.1 45.0 45.0 46.3 42.9 51.1 48.4 41.9 42.8 44.3 35.8 43.0 41.7 TiO2 0.33 1.06 1.12 0.31 0.50 1.27 2.98 1.14 1.14 2.41 2.24 0.57 4.55 4.52 3.57 Al2O3 20.9 18.3 16.9 18.2 13.5 18.5 14.5 16.0 16.8 15.2 13.8 17.3 14.2 15.5 14.7 TFe2O3 6.32 8.57 12.7 9.63 12.7 10.9 17.1 9.81 10.9 18.9 17.3 14.1 27.0 16.7 17.1 MnO 0.10 0.16 0.16 0.12 0.16 0.14 0.27 0.17 0.16 0.18 0.22 0.17 0.26 0.20 0.26 MgO 7.39 7.31 9.33 13.7 18.3 8.93 5.92 6.18 8.28 5.91 6.84 10.5 4.42 6.05 6.23 CaO 13.9 10.2 12.5 9.49 7.42 10.5 10.9 8.72 10.2 11.4 12.8 8.55 9.10 11.1 11.3 Na2O 2.06 2.95 1.76 1.77 1.59 2.60 2.92 3.38 2.98 2.28 2.09 2.06 2.09 2.38 2.44 K2O 0.16 0.22 0.05 0.16 0.27 0.19 0.44 1.65 0.31 0.12 0.10 0.11 0.13 0.09 0.11 P2O5 0.05 0.16 0.20 0.06 0.10 0.18 1.08 0.19 0.14 0.05 1.09 0.05 0.33 0.07 2.00 LOI 0.38 0.23 0.21 1.07 0.73 0.16 0.87 1.32 0.34 0.99 0.36 2.01 1.41 -0.07 -0.30 Total 99.51 99.61 99.94 99.53 99.98 99.55 99.83 99.62 99.62 99.32 99.55 99.64 99.24 99.53 99.24 Li 3.81 4.21 2.75 5.14 5.67 4.71 6.90 14.0 8.96 4.78 2.91 3.18 6.11 3.24 5.76 Be 0.32 0.37 0.27 0.28 0.35 0.47 1.11 0.92 0.59 0.21 0.23 0.17 0.20 0.20 0.25 Sc 28.9 27.6 33.1 11.6 15.1 26.3 42.2 31.8 32.5 44.8 56.8 12.4 39.2 49.2 43.1 V 88.9 86.0 282 70.8 88.5 191 361 166 197 729 472 177 716 406 330 Cr 419 195 233 503 467 198 22.6 192 264 5.41 5.37 46.6 6.70 5.77 8.35 Co 47.2 37.4 67.2 74.9 95.9 66.4 52.0 39.8 57.2 83.3 56.0 86.1 56.7 50.0 46.3 Ni 125 65.3 162 338 466 197 21.4 52.8 91.6 5.59 5.38 58.5 2.60 18.5 4.43 Cu 53.1 8.67 83.4 42.4 23.8 44.0 63.1 45.1 62.2 20.2 20.5 38.6 20.2 28.2 13.5 Zn 39.1 55.6 85.0 62.2 83.5 71.8 157 87.0 78.0 98.9 109 79.7 180 89.2 116 Ga 16.2 16.5 16.8 12.7 11.0 16.2 21.5 18.2 16.9 20.3 18.8 15.2 24.5 17.6 19.3 Ge 1.07 1.20 1.25 0.95 1.09 1.24 1.62 1.50 1.43 1.41 1.59 1.08 1.39 1.39 1.49 Rb 2.37 2.06 0.53 2.28 4.80 2.32 2.17 30.0 3.12 1.85 1.58 1.31 2.34 0.78 0.97 Sr 557 638 528 374 281 312 423 237 270 425 422 364 513 457 542 Y 9.45 12.2 13.1 5.66 9.49 20.6 64.4 41.0 26.1 8.48 21.7 3.38 8.08 7.60 26.0 Zr 25.1 37.2 16.5 21.7 43.0 64.2 177 257 107 12.3 15.7 6.55 9.72 20.4 15.8 Nb 0.91 2.20 0.50 1.00 2.20 2.58 19.6 7.19 3.35 0.44 0.60 0.28 0.49 1.34 1.43 Cs 0.09 0.08 0.15 0.17 0.15 0.06 0.08 0.66 0.12 0.27 0.17 0.62 0.69 0.35 0.35 Ba 88.6 120 55.6 69.6 93.4 124 220 907 126 47.0 50.9 45.4 43.1 45.1 59.4 La 4.08 3.81 4.07 3.21 5.31 4.83 30.0 15.3 6.68 1.56 6.07 1.30 1.92 1.46 8.38 Ce 9.38 9.21 10.7 7.06 12.0 13.0 75.6 38.1 16.9 4.02 16.4 2.87 4.92 3.69 23.5 Pr 1.31 1.33 1.67 0.93 1.58 2.03 10.7 5.18 2.47 0.65 2.59 0.39 0.79 0.59 3.63 Nd 6.24 6.67 8.79 4.20 7.04 10.5 50.2 23.9 12.1 3.73 14.1 1.89 4.56 3.43 20.1 Sm 1.61 1.80 2.34 0.99 1.64 2.99 12.0 6.06 3.50 1.21 3.87 0.49 1.36 1.11 5.32 Eu 0.83 1.25 1.04 0.53 0.60 1.26 3.27 1.79 1.37 0.68 1.43 0.40 0.89 0.70 2.17 Gd 1.78 2.13 2.60 1.06 1.75 3.43 12.4 6.51 4.08 1.48 4.42 0.57 1.67 1.39 5.99 Tb 0.28 0.35 0.42 0.17 0.28 0.59 1.94 1.09 0.71 0.26 0.69 0.09 0.27 0.23 0.89 Dy 1.78 2.19 2.53 1.05 1.72 3.62 11.7 6.98 4.55 1.62 4.07 0.61 1.59 1.48 5.06 Ho 0.37 0.45 0.51 0.22 0.36 0.76 2.31 1.46 0.94 0.33 0.81 0.13 0.32 0.30 0.98 Er 1.02 1.30 1.39 0.62 1.04 2.12 6.40 4.28 2.68 0.93 2.18 0.37 0.86 0.83 2.46 Tm 0.14 0.18 0.18 0.09 0.15 0.31 0.89 0.64 0.39 0.13 0.28 0.05 0.11 0.11 0.30 Yb 0.90 1.21 1.15 0.58 0.97 1.93 5.50 4.30 2.54 0.81 1.68 0.35 0.67 0.72 1.74 Lu 0.13 0.18 0.16 0.09 0.15 0.29 0.80 0.65 0.37 0.12 0.24 0.05 0.10 0.10 0.24 Hf 0.71 0.92 0.59 0.54 1.07 1.65 4.45 5.28 2.68 0.43 0.56 0.19 0.35 0.59 0.49 Ta 0.08 0.18 0.08 0.07 0.15 0.21 0.92 0.33 0.21 0.07 0.08 0.05 0.05 0.15 0.15 Pb 1.19 1.09 0.58 2.35 1.96 1.14 2.35 4.83 3.98 0.78 1.01 2.51 0.66 0.62 0.71 Th 0.22 0.18 0.05 0.19 0.53 0.19 0.47 1.02 0.47 0.06 0.23 0.09 0.06 0.05 0.21 U 0.04 0.05 0.01 0.04 0.12 0.05 0.14 0.32 0.12 0.02 0.06 0.03 0.02 0.02 0.06 表 2 毕机沟岩体、望江山岩体样品铂族元素组成表(10−9)
Table 2. Platinum group element concentrations of the Bijigou and Wangjiangshan samples (10−9)
样品号 岩性 Ir Ru Pt Pd ΣPGE WJS502 橄榄辉长岩 0.010 0.040 0.088 0.186 0.325 WJS503 辉长苏长岩 0.019 0.071 0.424 0.486 1.000 WJS510 橄榄辉长苏长岩 0.025 0.078 0.762 0.292 1.158 WJS516 橄榄苏长岩 0.012 0.043 0.459 0.265 0.779 WJS517 橄榄苏长岩 0.012 0.044 0.263 1.193 1.513 WJS519 橄榄苏长岩 0.039 0.137 0.459 1.981 2.616 WJS606 磁铁辉长岩 0.003 0.057 0.070 0.081 0.211 WJS612 辉长苏长岩 0.005 0.062 0.029 0.028 0.125 WJS614 辉长岩 0.003 0.033 0.027 0.092 0.155 BJG502 磁铁含橄辉长岩 0.005 0.039 0.080 0.179 0.304 BJG503 磁铁辉长岩 0.022 0.034 0.298 0.148 0.503 BJG507 橄榄辉长岩 0.089 0.149 1.208 1.097 2.544 BJG514 辉长岩 0.005 0.056 0.071 0.113 0.246 BJG516 磁铁辉长岩 0.027 0.046 0.211 0.071 0.354 BJG522 磁铁辉长苏长岩 0.005 0.032 0.050 0.066 0.153 -
[1] 成来顺. 陕西毕机沟钒钛磁铁矿床铂族元素地球化学特征及其意义[J]. 矿产与地质, 2017, 31(6): 1072-1076 doi: 10.3969/j.issn.1001-5663.2017.06.009
CHENG Laishun. Geochemical characteristics of platinum group elements of Bijigou V-Ti magnetite deposit in Shaanxi Province and its significance[J]. Mineral Resources and Geology, 2017, 31(6): 1072-1076. doi: 10.3969/j.issn.1001-5663.2017.06.009
[2] 董显扬, 李行, 叶良和, 等. 中国超镁铁质岩[M]. 北京: 地质出版社, 1995
DONG Xianyang, LI Hang, YE Lianghe, et al. Ultramafic Rocks in China[M]. Beijing:Geological Publishing House,1995.
[3] 高永伟, 洪俊, 吕鹏瑞, 等. 哈萨克斯坦乌拉尔肯皮赛铬铁矿资源基地地质背景、成矿特征及矿床成因[J]. 西北地质, 2023, 56(1): 142−155.
GAO Yongwei, HONG Jun, LÜ Pengrui, et al. Geological Background, Metallogenic Characteristics and Ore Genesis of the KempirsayChromite Resource Base in the Ural, Kazakhstan[J]. Northwestern Geology, 2023, 56(1): 142−155.
[4] 巩志超, 黄廷弼, 任有祥, 等. 陕南洋县—西乡—南郑一带含铁基性岩体地质矿化特征及今后找矿意见[J]. 西北地质, 1975, (04): 3-18.
[5] 刘晔, 柳小明, 胡兆初, 等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析[J]. 岩石学报, 2007, 23(5): 1203 -1210.
LIU Ye, LIU Xiaoming, HU Zhaochu, et al. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS[J]. Acta Petrologica Sinica, 2007, 23(5): 1203-1210.
[6] 任有祥, 巩志超. 陕南望江山基性岩体的地质矿化特征及成因讨论[J]. 西北地质, 1976(3): 28-36.
[7] 苏犁. 中国中西部几个新元古代镁铁–超镁铁岩体研究及对Rodinia超大陆裂解事件的制约[D]. 西安: 西北大学, 2004
SU Li. Studies of Neoproterozoic mafic and ultramafic in-trusions in western-central China and their constrains on breakup of Rodinia Supercontinent[D]. Xi’an: Northwest University, 2004.
[8] 王丰翔, 李晓明, 栾卓然, 等. 全球铂族金属资源分布、供需及消费格局[J]. 地质通报, 2022, 41(10): 1829−1846.
WANG Fengxiang, LI Xiaoming, LUAN Zhuoran, et al. Global PGEs resource distribution, supply and demand and consumption trends[J]. Geological Bulletin of China, 2022, 41(10): 1829−1846.
[9] 王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J]. 岩矿测试, 2016, 35(02): 145-151 doi: 10.15898/j.cnki.11-2131/td.2016.02.006
WANG Jianqi, LIU Xiaoming. Proficiency Testing of the XRF Method for Measuring 10 Major Elements in Different Rock Types[J]. Rock and Mineral Analysis, 2016, 35(2): 145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006
[10] 王岩, 王梦玺, 焦建刚. 扬子地块北缘新元古代望江山层状岩体矿物成分和铂族元素特征: 对岩浆演化过程和构造环境的制约[J]. 地质力学学报, 2019, 25(2): 267-285 doi: 10.12090/j.issn.1006-6616.2019.25.02.026
WANG Yan, WANG Mengxi, JIAO Jiangang. Mineral composition and platinum-group elements of the Neoproterozoic Wangjiangshan layered intrusion in the northern margin of the Yangtze Block: implications for the processes of magma evolution and tectonic setting[J]. Journal of Geomechanics, 2019, 25 (2): 267-285. doi: 10.12090/j.issn.1006-6616.2019.25.02.026
[11] 吴新斌, 吴凡, 毛友亮, 等. 汉南杂岩高桥沟花岗斑岩体岩石地球化学特征及侵位机制时代归属探讨[J]. 西北地质, 2023, 56(4): 329−335.
WU Xinbin, WU Fan, MAO Youliang, et al. Petrological Characteristics and Emplacement Mechanism of the Gaoqiaogou Granitic Porphyry in the Hannan Complex: A Geochemistry Approach[J]. Northwestern Geology, 2023, 56(4): 329−335.
[12] 杨合群. 陕西毕机沟一带岩浆型钒钛磁铁矿[J]. 西北地质, 2021, 54(2): 110-110
YANG Hequn. Magmatic vanadium-titanium magnetite in Bijigou area, Shaanxi Province[J]. Northwest Geoscience, 2021, 54(2): 110-110.
[13] 杨合群, 苏犁, 宋述光, 等. 论陕西毕机沟钒钛磁铁矿床成因[J]. 地质与勘探, 2013, 40: 1036-1045
YANG Hequn, SU Li, SONG Shuguang, et al. On Genesis of the Bijigou V-Ti Magnetite Deposit in Shaanxi Province[J]. Geology and Exploration, 2013, 49 (06): 1036-1045.
[14] 杨星, 潘晓萍, 姚文光, 等. 汉南金水-青泥坑镁铁层状杂岩体与含铂性研究[J]. 西北地质科学, 1993, 14(1): 1–62
YANG Xing, PAN Xiaoping, YAO Wenguang, et al. Mafic layered complex body and its platinum-bearing nature in Jinshui-Qingnikeng Hanlan[J]. Northwest Geoscience, 1993, 14(1): 1-62.
[15] 张国伟, 于在平, 董云鹏, 等. 秦岭区前寒武纪构造格巧与演化问题探讨[J]. 岩石学报, 2000, 16: 11–21
ZHANG Guowei, YU Zaiping, DONG Yunpeng, et al. On Precambrian frame-work and evolution of the Qinling belt[J]. Acta Petrologica Sinica, 2000, 16(2): 11-21.
[16] 张国伟, 张宗清, 董云鹏. 秦略造山带主要构造岩石地层单元的构造性质及其火地构造意义[J]. 岩石学报, 1995, 11: 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002
ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of Main Tectono-Lithostratigraphic Units of the Qingling Orogen: Implications of the Tectonoic Evolution[J]. Acta Petrologica Sinica, 1995, 11(2): 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002
[17] 张宗清, 张国伟, 唐索寒, 等. 汉南侵入杂岩年龄及其快速冷凝原因[J]. 科学通报, 2000, 45: 2567–2572 doi: 10.3321/j.issn:0023-074X.2000.23.021
ZHANG Zongqing, ZHANG Guowei, TANG Suohan, et al. Geochronology of the Hannan intrusive complex to adjoin the Qinling orogen and its rapid cooling reason[J]. Chinese Science Bulletin, 2000, 45(23): 2567-2572. doi: 10.3321/j.issn:0023-074X.2000.23.021
[18] 赵莉, 张招崇, 王福生, 等. 一个开放的岩浆房系统: 攀西新街镁铁-超镁铁质层状岩体[J]. 岩石学报, 2006, 22(6): 1565-1578 doi: 10.3321/j.issn:1000-0569.2006.06.014
ZHAO Li, ZHANG Zhaochong, WANG Fusheng, et al. Open–system magma chamber: An example from the Xinjie mafic–ultramafic layered intrusion in Panxi region, SW China[J]. Acta Petrologica Sinica, 2006, 22: 1565–1578. doi: 10.3321/j.issn:1000-0569.2006.06.014
[19] Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, et al. Fractionation of the noble metals by physical processes[J]. Contributions to Mineralogy and Petrology, 2006, 152: 667–684. doi: 10.1007/s00410-006-0126-z
[20] Barnes S J, Boyd R, Korneliussen A, et al. The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway[J]. Springer Netherlands, 1988, 87: 113–143.
[21] Barnes S J, Lightfoot P C. Formation of magmatic nickel–sulfide ore deposits and processes affecting their copper and platinum–group element contents[J]. Economic Geology 100th Anniversary Volume: 2005, 179–213.
[22] Barnes S J, Maier W D, Ashwal L D. Platinum–group element distribution in the main zone and upper zone of the Bushveld Complex, South Africa[J]. Chemical Geology, 2004, 208: 293–317. doi: 10.1016/j.chemgeo.2004.04.018
[23] Barnes S J, Maier W D. Platinum–group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex[J]. Journal of Petrology, 2002, 43: 103–128. doi: 10.1093/petrology/43.1.103
[24] Barnes S J, Naldrett A, Gorton M. The origin of the fractionation of platinum–group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53: 303–323. doi: 10.1016/0009-2541(85)90076-2
[25] Barnes S J, Picard C. The behaviour of platinum–group elements during partial melting, crystal fractionation, and sulphide segregation: An example from the Cape Smith Fold Belt, northern Quebec[J]. Geochimica Et Cosmochimica Acta, 1993, 57: 79–87. doi: 10.1016/0016-7037(93)90470-H
[26] Brenan J M, Finnigan C F, Mcdonough W F, et al. Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron[J]. Chemical Geology, 2012, 302: 16–32.
[27] Brenan J M, Mcdonough W F, Ash R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237: 855–872. doi: 10.1016/j.jpgl.2005.06.051
[28] Brenan J M, Mcdonough W F, Dalpe C. Experimental constraints on the partitioning of rhenium and some platinum–group elements between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2003, 212: 135–150. doi: 10.1016/S0012-821X(03)00234-6
[29] Campbell I H, Naldrett A J, Barnes S J. A model for the origin of the platinum–rich sulfide horizons in the Bushveld and Stillwater Complexes[J]. Journal of Petrology, 1983, 24: 133–165. doi: 10.1093/petrology/24.2.133
[30] Capobianco C J, Hervig R L, Drake M J. Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt[J]. Chemical Geology, 1994, 113: 23–43. doi: 10.1016/0009-2541(94)90003-5
[31] Chu Z Y, Yan Y, Chen Z, et al. Comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples[J]. Geostandards and Geoanalytical Research, 2015, 39: 151-169. doi: 10.1111/j.1751-908X.2014.00283.x
[32] Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 2011, 189: 66–90. doi: 10.1016/j.precamres.2011.05.002
[33] Good D J, Crocket J H. Genesis of the Marathon Cu–platinum–group element deposit, Port Coldwell alkalic complex, Ontario; a Midcontinent rift–related magmatic sulfide deposit[J]. Economic Geology, 1994, 89: 131–149. doi: 10.2113/gsecongeo.89.1.131
[34] Govindaraju K. 1994 complication of working values and sample description for 383 geostandards[J]. Geostandards Newsletter, 1994, 18: 1–158. doi: 10.1111/j.1751-908X.1994.tb00502.x
[35] Li C S, Naldrett A J. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine with sulfide and silicate liquids[J]. Lithos, 1999, 47: 1–31. doi: 10.1016/S0024-4937(99)00005-5
[36] Li H B, Zhang Z C, Li Y S, et al. Petrogenesis and metallogenesis of the Xinjie layered mafic–ultramafic intrusion, China: Modeling of recharge, assimilation and fractional crystallization[J]. Journal of Asian Earth Sciences, 2015, 113: 1056–1067. doi: 10.1016/j.jseaes.2015.02.030
[37] Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break–up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122: 111–140. doi: 10.1016/S0301-9268(02)00222-X
[38] Lorand J P, Luguet A, Alard O. Platinum–group element systematics and petrogenetic processing of the continental upper mantle: A review[J]. Lithos, 2013, 164–167: 2–21.
[39] Maier W D, Barnes S J, Gartz V, et al. Pt–Pd reefs in magnetitites of the Stella layered intrusion, South Africa: A world of new exploration opportunities for platinum group elements[J]. Geology, 2003, 31: 885–888.
[40] Meisel T, Moser J. Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP–MS in 11 geological reference materials[J]. Chemical Geology, 2004, 208: 319–338. doi: 10.1016/j.chemgeo.2004.04.019
[41] Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal–rich intergranular components in the upper mantle[J]. Geochimica et Cosmochimica Acta, 1981, 45: 2425–2433, 2435–2442.
[42] Naldrett A J, Gasparrini E C, Barnes S J et al. The Upper Critical Zone of the Bushveld Complex and the origin of Merensky–type ores[J]. Economic Geology, 1986, 81: 1105–1117. doi: 10.2113/gsecongeo.81.5.1105
[43] Naldrett A J. From the mantle to the bank: the life of a Ni–Cu–(PGE) sulfide deposit[J]. South African Journal of Geology, 2010, 113: 1–32. doi: 10.2113/gssajg.113.1-1
[44] Pagé P, Barnes S J, Béard J H, et al. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation[J]. Chemical Geology, 2012, 302–303: 3–15.
[45] Pang Kwannang, Li C S, Zhou M F, et al. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China[J]. Lithos, 2009, 110: 199–214. doi: 10.1016/j.lithos.2009.01.007
[46] Pang Kwannang, Zhou M F, Qi L, et al. Flood basalt–related Fe–Ti oxide deposits in the Emeishan large igneous province, SW China[J]. Lithos, 2010, 119: 123–136. doi: 10.1016/j.lithos.2010.06.003
[47] Park J W, Campbell I H, Eggins S M. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: evidence from the Ambae volcano, Vanuatu[J]. Geochimica et Cosmochimica Acta, 2012, 78: 28–50. doi: 10.1016/j.gca.2011.11.018
[48] Peach C L, Mathez E A, Keays R R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting[J]. Geochim Cosmochim Acta, 1990, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S
[49] Peach C L, Mathez E A, Keays R R. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium andpalladium[J]. Chemical Geology, 1994, (117): 361-377.
[50] Qi L, Zhou M F. Platinum–group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology, 2008, 248: 83–103. doi: 10.1016/j.chemgeo.2007.11.004
[51] Righter K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr–bearing spinel, olivine, pyroxene and silicate melts[J]. Geochimica Et Cosmochimica Acta, 2004, 68: 867–880. doi: 10.1016/j.gca.2003.07.005
[52] Sá J H S, Barnes S J, Prichard H M, et al. The Distribution of Base Metals and Platinum–Group Elements in Magnetititeand Its Host Rocks in the Rio Jacare Intrusion, Northeastern Brazil[J]. Economic Geology, 2005, 100: 333–348.
[53] Taylor S R, Mclennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
[54] Vogel D C. The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada[J]. The University of Melbourne, 1996, 163.
[55] Wang M X, Oliver N, Christina W. The flaw in the crustal ‘zircon archive’: mixed Hf isotope signatures record progressive contamination of late–stage liquid in mafic–ultramafic layered intrusions[J]. Journal of Petrology, 2016, 57: 27–52. doi: 10.1093/petrology/egv072
[56] Zhang X Q, Zhang H F, Zou H B. Rift–related Neoproterozoic tholeiitic layered mafic intrusions at northern Yangtze Block, South China: Mineral chemistry evidence[J]. Lithos, 2020, 356–357: 105376.
[57] Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113: 369–392. doi: 10.1016/j.lithos.2009.04.023
[58] Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222–223: 13–54.
[59] Zhao J H, Zhou M F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 2009, 107: 152–168. doi: 10.1016/j.lithos.2008.09.017
[60] Zhong H, Qi L, Hu R Z, et al. Rhenium–osmium isotope and platinum–group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization[J]. Geochimica Et Cosmochimica Acta, 2011, 75: 1621–1641. doi: 10.1016/j.gca.2011.01.009
[61] Zhong H, Tao Y, Prevec S A, et al. Trace–element and Sr–Nd isotopic geochemistry of the PGE–bearing Xinjie layered intrusion in SW China[J]. Chemical Geology, 2004, 203: 237–252. doi: 10.1016/j.chemgeo.2003.10.008
[62] Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc–related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia[J]. The Journal of Geology, 2002, 110: 611–618. doi: 10.1086/341762
[63] Zhou M F, Robinson P T, Lesher C M, et al. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China[J]. Journal of Petrology, 2005, 46: 2253–2280. doi: 10.1093/petrology/egi054
-