Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance
-
摘要:
西秦岭郎木寺地区发育了大量的火山岩,是探讨秦岭造山带印支期岩浆作用的重要窗口。目前,关于郎木寺组火山岩的形成时代尚未有很好的约束。据此,笔者对郎木寺组角闪安山岩开展了详细的LA−ICP−MS锆石U−Pb年代学研究。CL图像显示,郎木寺组角闪安山岩的锆石结构表现出典型的岩浆成因特征。锆石U−Pb定年结果显示,角闪安山岩具略有差异的两组年龄,加权平均年龄分别为(221.8±1.2)Ma和(210.6±2.1)Ma。因此,郎木寺组角闪安山岩的形成时代为晚三叠世。结合前人已有成果,笔者认为郎木寺组火山岩代表了秦岭印支期造山作用重要的岩浆事件产物,形成于同碰撞挤压的构造环境。
Abstract:Volcanic rocks are wide spread in Langmusi area of western Qinling, which is an important window to study the Indosinian magmatism of the Qinling Orogen. However, the formation age of langmusi volcanic rocks is not well constrained. In this contribution, a detailed study of LA−ICP−MS zircon U−Pb geochronology for the hornblende andesites from Langmusi Formation was conducted. CL images show that the internal structures of zircon from hornblende andesites show typical magmatic origin. Zircon U−Pb dating results demonstrate that the horndiorite andesites have slightly different ages, with weighted average ages of (221.8±1.2) Ma and (210.6±2.1) Ma respectively. Therefore, the horndiorite andesites of langmusi Formation were formed the Late Triassic period. Combining with previous studies, we argue that the volcanic rocks of the Langmusi Formation represent an important magmatic event of the Qinling Indosinian orogeny, which were formed in a syn−collisional tectonic setting.
-
Key words:
- Langmusi formation /
- hornblende andesite /
- zircon U−Pb dating /
- tectonic setting /
- Qinling orogen
-
-
图 3 郎木寺组角闪安山岩稀土元素球粒陨石配分曲线(Boynton et al.,1984)
Figure 3.
表 1 郎木寺组角闪安山岩锆石U–Pb同位素分析结果统计表
Table 1. Zircon U–Pb isotope analysis of jiaoshan andesite in Langmusi formation
分析点 含量(10−6) 同位素比值 年龄(Ma) Pb* Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/235U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/235U 1σ KD-1-1 14 210 344 0.61 0.0505 0.0024 0.2321 0.0100 0.0334 0.0004 216 106 212 8 212 3 KD-1-2 20 348 466 0.75 0.0537 0.0025 0.2441 0.0104 0.0330 0.0004 358 103 222 9 209 3 KD-1-3 14 234 340 0.69 0.0534 0.0024 0.2578 0.0101 0.0350 0.0004 344 97 233 8 222 3 KD-1-4 11 169 256 0.66 0.0495 0.0023 0.2399 0.0100 0.0351 0.0005 174 104 218 8 223 3 KD-1-5 13 182 279 0.65 0.0738 0.0028 0.3513 0.0113 0.0345 0.0004 1036 74 306 8 219 3 KD-1-6 22 282 495 0.57 0.0703 0.0023 0.3350 0.0089 0.0345 0.0004 938 66 293 7 219 2 KD-1-7 15 207 382 0.54 0.0505 0.0023 0.2311 0.0093 0.0332 0.0004 218 101 211 8 211 3 KD-1-8 14 199 327 0.61 0.0646 0.0023 0.3078 0.0093 0.0346 0.0004 762 74 273 7 219 2 KD-1-9 18 314 407 0.77 0.0506 0.0021 0.2456 0.0087 0.0352 0.0004 222 91 223 7 223 3 KD-1-10 14 210 317 0.66 0.0508 0.0022 0.2455 0.0092 0.0350 0.0004 232 95 223 8 222 3 KD-1-11 16 196 365 0.54 0.0506 0.0020 0.2453 0.0082 0.0352 0.0004 220 87 223 7 223 3 KD-1-12 17 234 412 0.57 0.0551 0.0025 0.2615 0.0105 0.0344 0.0005 417 97 236 8 218 3 KD-1-13 13 158 307 0.51 0.0533 0.0021 0.2551 0.0088 0.0347 0.0004 339 87 231 7 220 3 KD-1-14 14 221 332 0.66 0.0503 0.0022 0.2318 0.0091 0.0334 0.0004 210 99 212 8 212 3 KD-1-15 16 262 356 0.74 0.0524 0.0020 0.2537 0.0084 0.0351 0.0004 304 85 230 7 222 3 KD-1-16 17 244 401 0.61 0.0503 0.0022 0.2317 0.0091 0.0334 0.0004 210 99 212 7 212 3 KD-1-17 14 216 393 0.55 0.0530 0.0023 0.2541 0.0100 0.0347 0.0004 330 96 230 8 220 3 KD-1-18 11 157 253 0.62 0.0506 0.0026 0.2458 0.0118 0.0352 0.0005 223 116 223 10 223 3 KD-1-19 21 326 506 0.64 0.0505 0.0021 0.2457 0.0090 0.0353 0.0004 220 93 223 7 223 3 KD-1-20 13 174 305 0.57 0.0506 0.0026 0.2452 0.0113 0.0352 0.0005 221 113 223 9 223 3 KD-1-21 17 330 403 0.82 0.0484 0.0022 0.2201 0.0091 0.0330 0.0004 119 105 202 8 209 3 KD-1-22 16 230 377 0.61 0.0514 0.0022 0.2465 0.0093 0.0348 0.0004 259 95 224 8 220 3 KD-1-23 8 105 191 0.55 0.0583 0.0056 0.2642 0.0244 0.0329 0.0008 541 198 238 20 208 5 KD-1-24 23 307 524 0.59 0.0507 0.0017 0.2453 0.0070 0.0351 0.0004 225 78 223 6 223 2 KD-1-25 16 199 382 0.52 0.0546 0.0027 0.2615 0.0118 0.0347 0.0005 395 107 236 10 220 3 KD-1-26 16 279 374 0.75 0.0502 0.0022 0.2408 0.0096 0.0348 0.0004 206 100 219 8 220 3 KD-1-27 15 161 331 0.49 0.0538 0.0020 0.2593 0.0081 0.0350 0.0004 361 81 234 7 222 2 KD-1-28 19 264 480 0.55 0.0810 0.0034 0.3688 0.0137 0.0330 0.0005 1222 81 319 10 209 3 KD-1-29 17 206 380 0.54 0.0620 0.0025 0.2985 0.0104 0.0349 0.0004 674 84 265 8 221 3 KD-1-30 20 211 395 0.53 0.0554 0.0024 0.2708 0.0102 0.0355 0.0004 427 92 243 8 225 3 表 2 郎木寺组角闪安山岩锆石稀土元素分析结果统计表(10−6)
Table 2. Zircon analysis of rare earth elements in jiaoshan andesite of Langmusi formation(10−6)
分析点 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu δEu (La/Yb)N (La/Sm)N (Gd/Yb)N (Gy/Yb)N Sm/Yb Eu/Yb Tb/Yb KD-1-1 127.26 112.30 72.21 62.74 46.54 8.31 65.45 90.64 130.43 195.58 278.01 375.29 548.00 686.61 0.15 0.23 2.73 0.12 0.24 0.08 0.02 0.17 KD-1-2 1505.82 1226.62 893.26 737.94 425.75 46.72 301.80 280.21 316.73 406.71 520.66 651.76 894.88 1068.50 0.13 1.68 3.54 0.34 0.35 0.48 0.05 0.31 KD-1-3 0.86 15.92 2.35 5.05 23.14 6.72 64.14 104.28 152.83 231.63 332.21 444.31 629.65 764.57 0.17 0.00 0.04 0.10 0.24 0.04 0.01 0.17 KD-1-4 0.09 12.99 1.31 3.58 16.21 5.62 50.27 82.09 122.95 187.10 266.71 355.69 523.00 636.61 0.20 0.00 0.01 0.10 0.24 0.03 0.01 0.16 KD-1-5 28.73 32.73 13.94 11.97 22.61 9.21 47.40 75.67 114.06 169.96 243.50 329.41 484.65 596.85 0.28 0.06 1.27 0.10 0.24 0.05 0.02 0.16 KD-1-6 331.14 283.81 196.53 159.91 98.82 11.03 90.07 106.15 146.93 213.78 306.77 407.84 574.71 730.71 0.12 0.58 3.35 0.16 0.26 0.17 0.02 0.18 KD-1-7 37.89 46.42 23.80 20.62 22.94 6.33 45.94 76.20 119.96 190.28 277.82 376.47 575.18 703.94 0.19 0.07 1.65 0.08 0.21 0.04 0.01 0.13 KD-1-8 1.96 13.84 1.95 3.47 16.93 5.07 39.95 71.20 110.91 171.73 248.04 340.00 493.65 604.72 0.19 0.00 0.12 0.08 0.22 0.03 0.01 0.14 KD-1-9 0.12 17.86 2.12 8.24 41.63 10.59 109.98 164.44 236.06 355.65 497.04 636.08 880.06 1080.31 0.16 0.00 0.00 0.12 0.27 0.05 0.01 0.19 KD-1-10 0.11 14.72 0.96 3.49 17.71 4.84 48.37 76.47 116.30 181.10 263.14 350.20 511.41 613.39 0.17 0.00 0.01 0.09 0.23 0.03 0.01 0.15 KD-1-11 0.44 15.83 0.92 1.86 11.11 4.21 37.23 63.90 104.17 168.55 240.85 341.96 497.18 613.39 0.21 0.00 0.04 0.07 0.21 0.02 0.01 0.13 KD-1-12 6.01 22.19 4.03 5.74 15.56 4.55 44.23 75.40 117.68 178.62 263.32 358.43 522.41 627.17 0.17 0.01 0.39 0.08 0.23 0.03 0.01 0.14 KD-1-13 0.44 12.94 0.83 1.58 7.78 3.09 32.17 52.46 87.87 138.34 204.71 282.75 423.65 509.84 0.20 0.00 0.06 0.08 0.21 0.02 0.01 0.12 KD-1-14 0.23 16.16 1.47 3.75 18.56 6.55 54.55 83.69 125.83 193.99 269.91 367.06 544.24 631.50 0.21 0.00 0.01 0.10 0.23 0.03 0.01 0.15 KD-1-15 0.24 16.49 2.85 7.84 34.18 10.14 84.82 134.22 197.17 293.29 404.29 550.98 752.82 897.24 0.19 0.00 0.01 0.11 0.26 0.05 0.01 0.18 KD-1-16 0.15 17.86 1.00 2.66 16.67 4.69 44.96 78.07 119.17 180.74 271.72 366.67 524.35 644.09 0.17 0.00 0.01 0.09 0.23 0.03 0.01 0.15 KD-1-17 0.11 14.17 0.43 2.66 19.02 5.91 46.57 79.68 117.64 187.81 265.68 369.02 561.41 661.81 0.20 0.00 0.01 0.08 0.21 0.03 0.01 0.14 KD-1-18 0.11 14.04 1.15 3.23 13.59 4.43 41.31 67.59 103.90 154.77 233.41 309.80 454.47 552.76 0.19 0.00 0.01 0.09 0.23 0.03 0.01 0.15 KD-1-19 1.00 21.72 2.01 4.97 22.48 5.81 60.19 101.07 153.50 225.80 322.24 442.75 639.41 752.76 0.16 0.00 0.04 0.09 0.24 0.04 0.01 0.16 KD-1-20 0.13 15.96 0.59 1.78 10.07 3.97 35.67 60.94 92.20 148.94 213.78 295.29 437.59 529.53 0.21 0.00 0.01 0.08 0.21 0.02 0.01 0.14 KD-1-21 0.59 18.68 7.03 16.15 53.73 17.66 133.92 200.27 292.01 408.83 556.31 716.86 995.29 1157.87 0.21 0.00 0.01 0.13 0.29 0.05 0.02 0.20 KD-1-22 0.12 18.01 0.89 2.87 14.71 4.38 47.93 75.13 117.99 180.57 260.66 354.51 525.53 629.53 0.16 0.00 0.01 0.09 0.22 0.03 0.01 0.14 KD-1-23 18.35 22.47 10.07 7.37 6.73 4.29 24.33 42.22 62.36 100.35 151.96 209.02 306.06 377.95 0.34 0.06 2.73 0.08 0.20 0.02 0.01 0.14 KD-1-24 0.17 20.78 1.37 3.73 20.07 5.05 54.50 90.11 135.28 214.66 306.16 422.35 622.06 720.08 0.15 0.00 0.01 0.09 0.22 0.03 0.01 0.14 KD-1-25 365.86 290.28 202.84 173.79 96.01 13.28 81.75 90.91 121.42 168.37 245.98 343.14 485.18 582.68 0.75 0.75 3.81 0.17 0.25 0.20 0.03 0.19 KD-1-26 0.20 17.71 3.94 10.81 39.35 13.24 104.96 155.88 228.62 329.51 455.47 601.96 840.65 965.35 0.00 0.00 0.01 0.12 0.27 0.05 0.02 0.19 KD-1-27 20.89 30.25 13.65 10.79 14.05 4.12 36.01 57.59 83.11 135.69 206.59 290.20 425.71 516.54 0.05 0.05 1.49 0.08 0.20 0.03 0.01 0.14 KD-1-28 0.39 20.05 0.81 2.55 17.78 4.71 48.13 84.22 132.05 204.95 304.71 437.25 614.47 681.50 0.00 0.00 0.02 0.08 0.21 0.03 0.01 0.14 KD-1-29 156.54 135.82 87.89 73.23 45.03 6.48 53.63 76.47 110.28 168.02 241.21 338.43 501.06 583.86 0.31 0.31 3.48 0.11 0.22 0.09 0.01 0.15 KD-1-30 4.21 18.66 2.38 3.62 11.24 3.60 36.74 62.09 100.20 160.78 237.40 330.59 489.88 601.97 0.01 0.01 0.37 0.07 0.20 0.02 0.01 0.13 -
[1] 丁德建. 若尔盖岩浆活动与铀成矿[D]. 成都: 成都理工大学, 2014
DING Dejian. Magmatic activities in Ruoergai and uranium mineralization[D]. Chengdu: Chengdu University of Technollgy, 2014.
[2] 弓虎军, 朱赖民, 孙博亚, 等. 南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 岩石学报, 2009a, 25(2): 248-264
GONG Hujun, ZHU Laimin, SUN Boya, et al. Zircon U-Pb ages and Hf isotope characteristic and their geological significance of the Shahewan, Caoping and Zhashui granitic plutons in the South Qinling orogen[J]. Acta Petrologica Sinica, 2009a, 25(2): 248-264.
[3] 弓虎军, 朱赖民, 孙博亚, 等. 南秦岭地体东江口花岗岩及其基性包体的锆石U-Pb年龄和Hf同位素组成[J]. 岩石学报, 2009b, (11): 337-350
GONG Hujun, ZHU Laimin, SUN Boya, et al. Zircon U-Pb ages and Hf isotope composition of the Dongjiangkou granitic pluton and its mafic enclaves in the South Qinling terrain[J]. Acta Petrologica Sinica, 2009b, (11): 337-350.
[4] 郭现轻, 闫臻, 王宗起, 等. 西秦岭谢坑矽卡岩型铜金矿床地质特征与矿区岩浆岩年代学研究[J]. 岩石学报, 2011, 27(12): 3811-3822
GUO Xianjing, YAN Zhen, WANG Zongqi, et al. Geological characteristic and associated magmatic ages of the Xiekeng skan-type Cu-Au deposit in the West Qinling terrane[J]. Acta Petrologica Sinica, 2011, 27(12): 3811-3822.
[5] 黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2013, 29(11): 3968-3980
HUANG Xiongfei, MO Xuanxue, YU Xuehui, et al. Zircon U-Pb chronology, geochemistry of the Late Triassic acid volcanic rocks in Tanchang area, West Qinling and their geological significance[J]. Acta Petrologica Sinica, 2013, 29(11): 3968-3980.
[6] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 33(3): 161-174 doi: 10.3969/j.issn.1672-4135.2009.03.001
LI Changmin. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons[J]. Geological Survey and Research, 2009, 33(3): 161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001
[7] 李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(01): 30-40. DOI: 10.19751/j. cnki. 61-1149/p. 2021.01. 003. LI Jiqing, ZHANG Xinli, WANG Tao, et al. LA-ICP-MS Zircon U-Pb dating and petrogeochemical characteristics of granite-porphyry in Zhanhongshan area, East Kunlun[J]. Northwestern Geology, 2021, 54(01): 30-40. DOI:10.19751/j.cnki.61-1149/p.2021.01.003.
[8] 李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27.
LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology, 2023, 56(2): 10−27.
[9] 李三忠, 张国伟, 李亚林, 等. 勉县地区勉略带内麻粒岩的发现及构造意义[J]. 岩石学报, 2000, (02): 220-226 doi: 10.3321/j.issn:1000-0569.2000.02.011
LI Sanzhong, ZHANG Guowei, LI Yalin, et al. Discovery of granulite in the Mianxian-Lueyang sature zone, Mianxian area and its tectonic significance[J]. Acta Petrologica Sinica, 2000, (02): 220-226. doi: 10.3321/j.issn:1000-0569.2000.02.011
[10] 李曙光, 孙卫东, 张国伟, 等. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭合时代的证据[J]. 中国科学(D辑: 地球科学), 1996, (03): 223-230
LI Shuguang, SUN Weidong, ZHANG Guowei, et al. Chronology and geochemistry of metamorphic volcanic rocks in Heigou Gorge, Mianlue Structural Belt, South Qinling Mountains: Evidence for a Paleozoic oceanic basin and its closing age[J]. Scientia Sinica(Terrae), 1996, (03): 223-230.
[11] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274-282.
[12] 李阳. 秦岭造山带晚三叠世东江口岩体的侵位机制及其构造意义[D]. 西安: 西北大学, 2017
LI Yang. Emplacement Mechanism and its Tectonic Implication of the Dongjiangkou Pluton, Qinling Orogen[D]. Xi’an: Northwest University, 2017.
[13] 梁文天. 秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程[D]. 西安: 西北大学, 2009
LIANG Wentian. Characteristics and evolution process of intracontinental structure in the transition zone of Qinling orogenic belt[D]. Xi’an: Northwest University, 2009.
[14] 梁文天, 靳春胜, PRAYATH Nantasin, 等. 秦岭造山带晚三叠世糜署岭岩体的岩石磁学及磁组构可靠性约束[J]. 地球物理学报, 2015, 58(03): 953-970
LIANG Wentian, JIN Chunsheng, PRAYATH Nantasin, et al. Magnetic mineralogy and the reliability of AMS in the Late Triassic Mishuling pluton, Qinling orogen[J]. Chinese Journal of Geophysics, 2015, 58(03): 953-970.
[15] 柳小明, 高山, 第五春荣, 等. 单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J]. 科学通报, 2007, 52(2): 228-235 doi: 10.3321/j.issn:0023-074X.2007.02.017
LIU Xiaoming, GAO Shan, DIWU Chunrong, et al. Simultaneous determination of LA-ICP-MSU-Pb age and trace elements of single grain zircon in situ microzone by 20 μm specular beam[J]. Chinese Science Bulletin, 2007, 52(2): 228-235. doi: 10.3321/j.issn:0023-074X.2007.02.017
[16] 卢欣祥, 董有, 常秋玲, 等. 秦岭早中生代沙河湾奥长环斑花岗岩及动力学意义[J]. 中国科学(D 辑), 1996, 26(3): 244-248
LU Xinxiang, DONG You, CHANG Qiuling, et al. The Indosinian Shahewan Aochang ring porphyry granite of Qinling Mountains and its kinetic significance[J]. Scientia Sinica(Terrae), 1996, 26(3): 244-248.
[17] 秦江锋. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西安: 西北大学, 2010
QIN Jiangfeng. Genetic mechanism and deep dynamic background of Late Triassic granitoids in Qinling orogenic belt[D]. Xi’an: Northwest University, 2010.
[18] 冉亚洲. 秦岭晚三叠世花岗岩侵位温压条件及地质意义[D]. 西安: 西北大学, 2018
RAN Yazhou. The Emplacement Temperature and Pressure Conditions of Late Triassic Granites in Qinling Orogen and their Geological Significance[D]. Xi’an: Northwest University, 2018.
[19] 四川省地矿局川西北地质队. 贡巴、扎尕那等1: 5万八副联测区调报告[M]. 北京: 地质出版社, 1992
Sichuan Bureau of Geology and Mineral Resources northwest Sichuan geological team. Gomba, Zhaagana and other 1: 58, 000 side test area report[M]. Beijing: Geological Publishing House, 1992.
[20] 孙延贵, 张国伟, 郑健康, 等. 柴达木地块东南缘岩浆弧(带)形成的动力学背景[J]. 华南地质与矿产, 2001,17 (04): 16-21
SUN Yangui, ZHANG Guowei, ZHENG Jiangang, et al. Analysis of Nynamic Bcakgrounds of Magmatic Arc in the Southeastern Margin of Qaidam Massif[J]. South China Geology, 2001, (04): 16-21.
[21] 孙卫东, 李曙光, Chen Yadong, 等. 南秦岭花岗岩锆石U-Pb定年及其地质意义[J].地球化学, 2000, 29(3):209−216.
SUN Weidong, LI Shuguang, Chen Yadong, et al. Zircon U-Ph dating of granitoids from South Qinling, Central China and their geological significance[J]. Geochimica, 2000, 29(3): 209−216.
[22] 陶威, 梁文天, 张国伟. 南秦岭晚三叠世胭脂坝岩体的磁组构特征及意义[J]. 吉林大学学报(地球科学版), 2014, 44(05): 1575-1586
TAO Wei, LIANG Wentian, ZHANG Guowei. Magnetic Fabric Features and Its Significance of the Late Triassic Yanzhiba Pluton, South Qinling[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(05): 1575-1586.
[23] 田绒. 西秦岭解板沟一带晚三叠世火山作用特征研究[D]. 北京: 中国地质大学(北京), 2020
TIAN Rong. The Geological Characteristics of Late Triassic Volcanism in Haibangou, West Qinling[D]. Beijing: China University of Geoscience (Beijing), 2020.
[24] 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62.
WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48−62.
[25] 王晓霞, 王涛, 卢欣祥, 等. 北秦岭老君山和秦岭梁环斑结构花岗岩及构造环境——一种可能的造山带型环斑花岗岩[J]. 岩石学报, 2003, 19(04): 650-660 doi: 10.3321/j.issn:1000-0569.2003.04.006
WANG Xiaoxia, WANG Tao, LU Xinxiang, et al. Laojunshan and Qinlingliang rapakivi-textured granitoids in North Qinling and their tectonic setting: A possible orogenic-type rapakivi granitoids[J]. Acta Petrologica Sinica, 2003, 19(04): 650-660. doi: 10.3321/j.issn:1000-0569.2003.04.006
[26] 王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J]. 岩石学报, 2011, 27(6): 1573-1593
WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 27(6): 1573-1593.
[27] 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.
WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 586−600.
[28] 谢晋强. 北大巴山推覆构造形成时代及其复合演化[D]. 西安: 西北大学, 2014
XIE Jinqiang. Formation age and composite evolution of nappe structure in Daba Mountain[D]. Xi’an: Northwest University, 2014.
[29] 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.
XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.
[30] 闫臻, 王宗起, 李继亮, 等. 西秦岭楔的构造属性及其增生造山过程[J]. 岩石学报, 2012, 28(06): 1808-1828
YAN Zhen, WANG Zongqi, LI Jiliang, et al. Tectonic settings and accretionary orogenesis of the West Qinling [J]. Acta Petrologica Sinica, 2012, 28(06): 1808-1828.
[31] 袁洪林, 吴福元, 高山, 等. 东北地区新生带侵入岩体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14): 1511-1520 doi: 10.3321/j.issn:0023-074X.2003.14.008
YUAN Honglin, WU Fuyuan, GAO Shan, et al. Zircon laser probe U-Pb dating and REE composition analysis of Cenozoic intrusions in Northeast China[J]. Chinese Science Bulletin, 2003, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
[32] 曾宜君, 黄思静, 熊昌利, 等. 川西色达早侏罗世郎木寺组火山岩特征及构造意义[J]. 成都理工大学学报(自然科学版), 2009, 36(1): 78-86
ZENG Yijun, HUANG Sijing, XIONG Changli, et al. Characteristics and tectonic significance of the Lower Jurassic Langmusi Formation volcanic rocks in Seda, West Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2009, 36(1): 78-86.
[33] 张成立, 张国伟, 晏云翔, 等. 南秦岭勉略带北光头山花岗岩体群的成因及其构造意义[J]. 岩石学报, 2005, 21(3): 711-720
ZHANG Chengli, ZHANG Guowei, YAN Yunxiang, et al. Genesis and tectonic significance of the Guowanshan granitic body group in Mianxiaobei, South Qinling Mountains[J]. Acta Petrologica Sinica, 2005, 21(3): 711-720.
[34] 张成立, 王晓霞, 王涛, 等. 东秦岭沙河湾岩体成因——来自锆石U-Pb定年及其Hf同位素的证据[J].西北大学学报(自然科学版), 2009, 39(3): 453−465.
ZHANG Chengli, WANG Xiaoxia, WANG Tao, et al. Origin of Shahewan granite intrusion in Eastern Qinling: evidences from zircon U-Pb dating and Hf isotopes[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(3): 453-465.
[35] 张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(3): 304-316
ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origen and Tectonic Setting of the Early Mesozoic Granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 14(3): 304-316.
[36] 张静, 陈衍景, 舒桂明, 等. 陕西西南部秦岭梁花岗岩体的矿物成分和相关问题讨论[J]. 中国科学(D辑), 2002, 32(2): 113-120
ZHANG Jing, CHEN Yanjing, SHU Guiming, et al. Study on mineral composition and related problems of Qinling Liang granitic body in southwestern Shaanxi Province[J]. Scientia Sinica(Terrae), 2002, 32(2): 113-120.
[37] 张国伟, 孟庆任, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学, 1995, (09): 994-1003
ZHANG Guowei, MENG Qingren, LAI Shaocong. Structure and structure of Qinling orogenic belt[J]. Scientia Sinica, 1995, (09): 994-1003.
[38] 张国伟. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001
ZHANG Guowei. Qinling orogenic belt and continental dynamics[M]. Beijing: Sciences Press, 2001.
[39] 张宗清. 南秦岭变质地层同位素年代学[M]. 北京: 地质出版社, 2002
ZHANG Zongqing. Isotopic chronology of metamorphic strata in the South Qinling Mountains[M]. Beijing: Geology Press, 2002.
[40] 周斌, 汪方跃, 孙勇, 等. 秦岭沙河湾造山带型环斑花岗岩地球化学及构造属性讨论[J]. 岩石学报, 2008, 24(6): 1261-1272.
ZHOU Bin, WANG Fangyue, SUN Yong, et al. Geochemisty and tectonic affinity of Shahewan Orogenic rapakivi from Qinling[J]. Acta Petrologica Sinica, 2008, 24(6):1261-1272.
[41] 朱日祥, 杨振宇, 马醒华, 等. 中国主要地块显生宙古地磁视极移曲线与地块运动[J]. 中国科学(D辑: 地球科学), 1998(S1): 1-16.
ZHU Rixiang, YANG Zhenyu, MA Xinghua, et al. Paleomagnetic apparent pole shift curves and block motion in Phanerozoic of major blocks in China[J]. Scientia Sinica(Terrae), 1998(S1): 1-16.
[42] Boynton WV. Cosmochemistry of the rare earth elements: meteorite studies[J]. Dev Geochem, 1984, 2: 63-114.
[43] DONG Yunpeng, ZHANG Guowei, FRANZ Neubauer, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011a, 41: 213-237. doi: 10.1016/j.jseaes.2011.03.002
[44] DONG Yunpeng, LIU Xiaoming, ZHANG Guowei, et al. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 2012, 47: 123-142.
[45] DONG Yunpeng, Stantosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J] . Gondwana Research, 2016, 29: 1-40. doi: 10.1016/j.gr.2015.06.009
[46] NIU Yaoling, ZHANG Yu, DUAN Meng, et al. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen[J]. Lithos, 2016, 260: 443-456. doi: 10.1016/j.lithos.2016.04.015
[47] HU Fangyang, LIU Shuwen, DUCEA Mihai, et al. The geochemical evolution of the granitoid rocks in the South Qinling Belt: Insights from the Dongjiangkou and Zhashui intrusions, central China[J]. Lithos, 2017, 278-281: 195-214. doi: 10.1016/j.lithos.2017.01.021
[48] JIANG Yaohui, JIN Guodong, LIAO Shiyong, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision[J]. Lithos, 2010, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014
[49] LI Sanzhong, KUSKY Timothy WANG Lu, et al. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture[J]. Gondwana Research, 2007, 12(1-2): 121-143. doi: 10.1016/j.gr.2006.11.011
[50] Li Yang, Liang Wentian, Zhang Guowei, et al. Tectonic setting of the Late Triassic magmatism in the Qinling Orogen: New constraints from the interplay between granite emplacement and shear zone deformation in the Shagou area[J]. Geological Journal, 2017, 52(S1): 250−271.
[51] LI Yang, LI Sanzhong, LIANG Wentian, et al. Incremental emplacement and syn-tectonic deformation of Late Triassic granites in the Qinling Orogen: Structural and geochronological constraints - ScienceDirect[J]. Gondwana Research, 2019, 72: 194-212. doi: 10.1016/j.gr.2019.04.001
[52] Liang Wentian, Zhang Guowei, Bai Yong, et al. New insights into the emplacement mechanism of the Late Triassic granite plutons in the Qinling orogen: A structural study of the Mishuling pluton[J]. Geological Society of America Bulletin, 2015, 127(11−12): 1583−1603.
[53] Miller CF, Mcdowell SM, Mapes RW. Hot and cold granites Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6): 529. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
[54] Petford N, Cruden AR, Mccaffrey KJ, et al. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 2000, 408(6813): 669-673. doi: 10.1038/35047000
[55] QIN Jiangfeng, LAI Shaocong, LI Yongfei. Multi-stage granitic magmatism during exhumation of subducted continental lithosphere: Evidence from the Wulong pluton, South Qinling[J]. Gondwana Research, 2013, 24(3-4): 1108-1126. doi: 10.1016/j.gr.2013.02.005
[56] Tao Wei, Li Yang, Chen Yingtao, et al. Syn-tectonic emplacement during sinistral transpression : The Late Triassic Gaoqiao pluton in the South Qinling Belt, central China[J]. Geological Journal, 2021, 56(2): 995–1011.
[57] WANG Xiaoxia, WANG Tao, ZHANG Chengli. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151. doi: 10.1016/j.jseaes.2012.11.037
-