基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体

刘嘉情, 钟世华, 李三忠, 丰成友, 戴黎明, 索艳慧, 郭广慧, 牛警徽, 薛梓萌, 黄宇. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体. 西北地质, 56(6): 41-56. doi: 10.12401/j.nwg.2023155
引用本文: 刘嘉情, 钟世华, 李三忠, 丰成友, 戴黎明, 索艳慧, 郭广慧, 牛警徽, 薛梓萌, 黄宇. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体. 西北地质, 56(6): 41-56. doi: 10.12401/j.nwg.2023155
LIU Jiaqing, ZHONG Shihua, LI Sanzhong, FENG Chengyou, DAI Liming, SUO Yanhui, GUO Guanghui, NIU Jinghui, XUE Zimeng, HUANG Yu. 2023. Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions. Northwestern Geology, 56(6): 41-56. doi: 10.12401/j.nwg.2023155
Citation: LIU Jiaqing, ZHONG Shihua, LI Sanzhong, FENG Chengyou, DAI Liming, SUO Yanhui, GUO Guanghui, NIU Jinghui, XUE Zimeng, HUANG Yu. 2023. Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions. Northwestern Geology, 56(6): 41-56. doi: 10.12401/j.nwg.2023155

基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体

  • 基金项目: 国家自然科学青年基金项目(42203066)和山东省自然科学青年基金项目(ZR2020QD027)联合资助。
详细信息
    作者简介: 刘嘉情(1999−),女,硕士研究生,岩石学、矿物学、矿床学专业。E−mail:liujiaqing11292022@163.com
    通讯作者: 钟世华(1989−),男,博士,副教授,从事地质大数据与成矿研究。E−mail:zhongshihua@ouc.edu.cn
  • 中图分类号: P62;P588.1

Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions

More Information
  • 东昆仑祁漫塔格成矿带是中国西北地区重要的铜钼铁铅锌多金属成矿带,发育卡尔却卡、野马泉、维宝、乌兰乌珠儿等许多与花岗岩类有关的斑岩−矽卡岩矿床。随着新一轮找矿突破战略行动的开展,进一步加强对祁漫塔格成矿带花岗岩成矿潜力的研究,已成为推动该地区金属矿产储量增长的重要突破口。为此,笔者在系统收集祁漫塔格成矿带典型斑岩−矽卡岩多金属矿床成矿岩体和贫矿岩体(即非成矿岩体)的全岩主量和微量元素数据基础上,选取28种常见的全岩地球化学特征,借助机器学习算法——随机森林,开展机器学习模型训练,建立能够识别该地区斑岩−矽卡岩多金属矿床成矿岩体和非成矿岩体的新方法。根据模型评价指标,笔者训练得到的随机森林分类模型准确率为0.90,证明该方法能够有效识别成矿岩体和非成矿岩体。该研究为祁漫塔格成矿带斑岩−矽卡岩多金属矿床的找矿勘查提供了新思路,将极大地提高找矿效率、降低找矿经济和人力成本,从而更好的服务新一轮找矿突破战略行动。相关机器学习代码已上传至GitHub,地址为https://github.com/ShihuaZhong/2023-Qimantagh-RF-whole-rock-classifier

  • 加载中
  • 图 1  祁漫塔格成矿带地质图(据Zhong et al.,2021b修改)

    Figure 1. 

    图 2  文中使用的成矿岩体和非成矿岩体的28种全岩特征箱状图

    Figure 2. 

    图 3  随机森林模型原理图

    Figure 3. 

    图 4  训练的随机森林模型对测试集的评价图

    Figure 4. 

    图 5  祁漫塔格地区成矿岩体和非成矿岩体全岩密度图解

    Figure 5. 

    图 6  外部独立验证数据集的分类结果图

    Figure 6. 

    表 1  文中使用的成矿岩体和非成矿岩体数据来源表

    Table 1.  Data sources of mineralized and barren magmatic rocks used in this study

    编号位置矿床类型岩体类型数据量数据来源
    1卡尔却卡矽卡岩铜铅锌矿床成矿岩体19高永宝,2013张雨莲等,2014
    姚磊,2015Zhong et al.,2021b
    斑岩铜矿成矿岩体17李碧乐等,2010李积清等,2016
    Zhong et al.,2018
    2虎头崖矽卡岩铜铅锌矿床成矿岩体55李侃等,2015时超等,2017
    姚磊,2015张晓飞等,2016
    张爱奎等,20122016
    Zhong et al.,2021b
    3鸭子沟矽卡岩铜铅锌矿床成矿岩体8舒树兰等,2014
    4维宝矽卡岩铜铅锌矿床成矿岩体5Zhong et al.,2018
    非成矿岩体3Zhong et al.,2018
    5拉陵灶火斑岩钼矿成矿岩体10陈静等,2013钟世华,2018
    非成矿岩体5Chen et al.,2018
    6小灶火斑岩钼矿成矿岩体4陈静等,2018
    7长山斑岩钼矿成矿岩体3Zhong et al.,2018
    8乌兰乌珠儿斑岩铜矿成矿岩体6谈生祥等,2011
    9野马泉矽卡岩铁矿床成矿岩体68高永宝等,2014刘建楠,2018
    姚磊,2015张爱奎等,2016
    张雷,2013Chen et al.,2018
    Yin et al.,2017Zhong et al.,20182021b
    10尕林格矽卡岩铁矿床成矿岩体48高永宝等,2012张杰等,2018
    11那陵郭勒河矽卡岩铁矿床成矿岩体11薛宁等,2009李玉春等,2013a
    张雷,2013
    12沙丘矽卡岩铁矿床成矿岩体2李玉春等,2013b
    13它温查汗矽卡岩铁矿床成矿岩体10杨涛等,2017
    14玛兴大阪矽卡岩铁矿床成矿岩体4吴祥珂等,2011
    非成矿岩体5Yan et al.,2019
    15于沟子矽卡岩铁矿床成矿岩体4高永宝,2013
    16哈西雅图矽卡岩铁矿床成矿岩体5南卡俄吾等,2014
    非成矿岩体5南卡俄吾等,2015
    17小圆山矽卡岩铁矿床成矿岩体10孔会磊等,20152016
    18肯德可克非成矿岩体5张明玉等,2018
    19冰沟非成矿岩体6刘彬等,2013
    20白干湖非成矿岩体14李国臣等,2012高永宝,2013
    21阿格腾非成矿岩体21徐博,2020
    22阿确礅非成矿岩体22李瑶,2017
    23其木来克非成矿岩体9陈邦学等,2019
    24阿牙克非成矿岩体3郝杰等,2003
    25伊涅克阿干非成矿岩体9陆济璞等,2005
    26希热芒崖非成矿岩体9陆济璞等,2006
    27鸭子泉非成矿岩体5崔美慧等,2011
    28祁漫塔格非成矿岩体124王秉璋,2012马文等,2013
    29巴音郭勒非成矿岩体8王秉璋,2012
    30哈得尔干非成矿岩体23王秉璋,2012
    31扎日玛日那非成矿岩体5姚磊,2015
    32玉苏普阿勒克非成矿岩体12Wang et al.,2014
    下载: 导出CSV

    表 2  文中汇编的成矿岩体和非成矿岩体的全岩地球化学特征表

    Table 2.  Whole–rock geochemical characterization of mineralized and barren magmatic rocks compiled in this study

    元素特征成矿岩体非成矿岩体
    含量平均值含量平均值
    SiO249.6~78.170.247.5~78.068.1
    Al2O310.5~18.313.32.6~18.413.6
    Fe2O30.5~12.63.20.9~13.44.1
    MgO0.1~1.10.60.1~1.10.6
    CaO0.3~10.02.50.2~13.42.7
    Na2O0.7~4.93.00.7~6.23.0
    K2O0.7~7.74.00.3~7.83.9
    Ba36.0~2420.0502.513.0~2086.0588.0
    Rb21.0~580.0193.76.5~566.0166.3
    Nb3.1~59.013.90.5~89.716.6
    La6.1~148.034.25.1~170.039.8
    Ce20.9~196.066.211.1~362.080.0
    Pr1.6~33.97.51.5~41.89.7
    Nd6.0~108.026.45.9~148.035.5
    Sm1.5~14.84.91.4~22.67.2
    Eu0~2.30.80.1~6.81.2
    Gd1.2~14.34.41.3~20.66.6
    Tb0.2~3.20.70.2~3.51.1
    Dy1.1~23.04.00.7~24.56.1
    Ho0.2~5.10.80.2~5.21.2
    Er0.7~15.22.40.5~15.03.4
    Tm0.1~2.60.40.1~2.30.5
    Yb0.7~17.62.60.5~17.03.3
    Lu0.1~2.90.40.1~2.40.5
    Sr12.4~743.0206.51.1~927.0226.7
    Y6.8~164.824.23.7~157.032.4
    Sr/Y0.1~64.911.10.1~75.811.0
    La/Yb0.9~46.515.60.9~75.215.3
      注:主量元素含量为%;微量元素含量为10−6
    下载: 导出CSV

    表 3  随机森林模型分类结果表

    Table 3.  Classification results of Random Forest model

    模型岩体类型总体准确率准确率AUC
    随机森林成矿岩体0.900.840.93
    非成矿岩体0.94
    下载: 导出CSV
  • [1]

    陈邦学, 徐胜利, 杨有生, 等. 东昆仑西段其木来克一带晚二叠世侵入岩的成因及其构造意义[J]. 地质通报, 2019, 38(06): 1040-1051

    Chen Bangxue, Xu Shengli, Yang Yousheng, et al. Genesis and tectonic significance of Late Permian Qimulaike intrusive rocks in the west of East Kunlun Mountains, Xinjiang[J]. Geological Bulletin of China, 2019, 38(6): 1040-1051.

    [2]

    陈静, 谢智勇, 李彬, 等. 东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义[J]. 地质与勘探, 2013, 49(5): 813−824.

    CHEN Jing, XIE Zhiyong, LI Bin, et al. Geological and gechemical characteristics of the ore-bearing intrusions from the Lalingzaohuo Mo polymetallic deposit and its metallogenic significance[J]. Geology and Exploration, 2013, 49(5): 813−824.

    [3]

    陈静, 胡继春, 逯永卓, 等. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465−472.

    CHEN Jing, HU Jichun, LU Yongzhuo, et al. Geochronology, Geochemical Characteristics of Molybdenum Ore-bearing Syenogranite from Xiaozhaohuo Area in East Kunlun and Its Geological Significance[J]. Gold Science and Technology, 2018, 26(04): 465−472.

    [4]

    崔美慧, 孟繁聪, 吴祥珂. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J]. 岩石学报, 2011, 27(11): 3365-3379

    CUI Meihui, MENG Fancong, WU Xiangke. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic igneous rocks[J]. Acta Petrologica Sinica, 2011, 27(11): 3365-3379.

    [5]

    董连慧, 刘德权, 唐延龄, 等. 试论新疆成矿体系与时空演化模式[J]. 矿床地质, 2015, 34(06): 1107-1129 doi: 10.16111/j.0258-7106.2015.06.002

    DONG Lianhui, LIU Dequan, TANG Yanling, et al. Five-era metallogenic system of mineral deposits in Xinjiang and its spatial and temporal evolution mode[J]. Mineral Deposits, 2015, 34(06): 1107-1129. doi: 10.16111/j.0258-7106.2015.06.002

    [6]

    丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(04): 10-17 doi: 10.3969/j.issn.1009-6248.2010.04.002

    FENG Chengyou, Li Dongsheng, WU Zhengshou, et al. Major Types Time Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area[J]. Northwestern Geology, 2010, 43(04): 10-17. doi: 10.3969/j.issn.1009-6248.2010.04.002

    [7]

    丰成友, 王雪萍, 舒晓峰, 等. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 2011, 41(06): 1806-1817 doi: 10.13278/j.cnki.jjuese.2011.06.013

    FENG Chengyou, WANG Xueping, SHU Xiaofeng, et al. Isotopic Chronology of the Hutouya Skarn Lead-Zinc Polymetallic Ore District in Qimantage Area of Qinghia Province and It’s Geological Significance[J]. Journal of Jilin University, 2011, 41(06): 1806-1817. doi: 10.13278/j.cnki.jjuese.2011.06.013

    [8]

    丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(02): 665-678

    FENG Chenyou, WANG Song, LI Guochen, et al. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 2012, 28(02): 665-678.

    [9]

    高永宝. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 西安: 长安大学, 2013

    GAO Yongbao. The Intermediate-acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Moutains[D]. Xi’an: Chang’an University, 2013.

    [10]

    高永宝, 李侃, 钱兵, 等. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束[J]. 大地构造与成矿学, 2018, 42(01): 96-107

    GAO Yongbao, LI Kan, QIAN Bing, et al. The Metallogenic Chronology of Kaerqueka Deposit in Eastern Kunlun: Evidences from Molybdenite Re-Os and Phlogopite Ar-Ar Ages[J]. Geotectonica et Metallogenia, 2018, 42(01): 96-107.

    [11]

    高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647−1665.

    GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China. Acta Petrologica Sinica, 2014, 30(6): 1647−1665.

    [12]

    高永宝, 李文渊, 马晓光, 等. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版), 2012, 48(02): 36-47 doi: 10.13885/j.issn.0455-2059.2012.02.003

    GAO Yongbao, LI Wenyuan, MA Xiaoguang, et al. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern China[J]. Journal of Lanzhou University, 2012, 48(02): 36-47. doi: 10.13885/j.issn.0455-2059.2012.02.003

    [13]

    高永宝, 李文渊, 张照伟. 祁漫塔格白干湖-戛勒赛钨锡矿带石英脉型矿石流体包裹体及氢氧同位素研究[J]. 岩石学报, 2011, 27(06): 1829-1839

    GAO Yongbao, LI Wenyuan, ZHANG Zhaowei. Fluid inclusions and H-O isotopic compositions of quartz-vein ores in the Baiganhu-Jialesai W-Sn mineralization belts, Qimantage, NW China[J]. Acta Petrologica Sinica, 2011, 27(6): 1829-1839.

    [14]

    郝杰, 刘小汉, 桑海清. 新疆东昆仑野牛泉石英闪长岩与英安斑岩的40Ar/39Ar同位素年龄[J]. 地质通报, 2003, (03): 165-169 doi: 10.3969/j.issn.1671-2552.2003.03.004

    HAO Jie, LIU Xiaohan, SANG Haiqing. Hornblende and biotite 40Ar/39Ar ages of the Yeniuquan quartz diorite and dacite-porphyry in thr Esat Kunlun orogenic belt, Xinjiang[J]. Geological Bulletin of China, 2003, (03): 165-169. doi: 10.3969/j.issn.1671-2552.2003.03.004

    [15]

    景宝盛, 单金忠. 新疆东昆仑维宝地区铅锌矿床找矿标志及找矿方向[J]. 地质找矿论丛, 2013, 28(04): 499-507 doi: 10.6053/j.issn.1001-1412.2013.04.001

    JING Baosheng, SHAN Jinzhong. Prospecting criteria and ore prospecting orientation of lead-zinc deposit in Weibao area of East Kunlun region, Xinjiang[J]. Contribution to Geology and Mineral Resources Research, 2013, 28(04): 499-507. doi: 10.6053/j.issn.1001-1412.2013.04.001

    [16]

    孔会磊, 李金超, 黄军, 等. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义[J]. 中国地质, 2015, 42(03): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010

    KONG Huilei, LI Jinchao, HUANG Jun, et al. Zircon U-Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron-polymetallic ore district in East Kunlun Mountains[J]. Geology in China, 2015, 42(3): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010

    [17]

    孔会磊, 李金超, 栗亚芝, 等. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质科技情报, 2016, 35(01): 8-16

    KONG Huilei, LI Jinchao, LI Yazhi, et al. LA-MC-ICP-MS Zircon U-Pb Dating and Its Geological Implications of the Tonalite from Xiaoyuanshan Iron-Polymetallic Ore District in Qimantag Mountain, Qinghai Province[J]. Geological Science and Technology Information, 2016, 35(01): 8-16.

    [18]

    李碧乐, 孙丰月, 于晓飞, 等. 青海东昆仑卡尔却卡地区野拉塞铜矿床成因类型及成矿机制[J]. 岩石学报, 2010, 26(12): 3696-3708

    LI Bile, SUN Fengyue, YU Xiaofei, et al. Genetic type and Mineralizing Mechanism of the Yelasai Copper Deposit in Kaerqueka area Eastern Kunlun Qinghai Province[J]. Acta Petrologica Sinica, 2010, 26(12): 3696-3708.

    [19]

    李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(02): 309-319 doi: 10.3975/cagsb.2020.022501

    LI Changbai, XIAO Keyan, LI Nan, et al. A Comparative Study of Support Vector Machine, Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction[J]. Acta Geoscientica Sinica, 2020, 41(02): 309-319. doi: 10.3975/cagsb.2020.022501

    [20]

    李积清, 陈静, 史青瑞, 等. 东昆仑卡尔却卡矿区似斑状二长花岗岩成因: 锆石U-Pb年龄及Sr-Nd同位素制约[J]. 矿物岩石, 2016, 36(03): 87-95

    LI Jiqing, CHENG Jing, SHI Qingrui, et al. The Genesis of Porphyritic Monzogranitie of the Kaerqueka Deposit it the East Kunlun: Evidence, from Zircon U-Pb Dating and Sr-Nd Isotopic Compositions[J]. Mineral Petrol, 2016, 36(03): 87-95.

    [21]

    李侃, 高永宝, 钱兵, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 2015, 42(03): 630-645 doi: 10.3969/j.issn.1000-3657.2015.03.017

    LI Kan, GAO Yongbao, QIAO Bing, et al. Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun[J]. Geology in China, 2015, 42(3): 630-645. doi: 10.3969/j.issn.1000-3657.2015.03.017

    [22]

    李世金, 孙丰月, 丰成友, 等. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, 2008, 82(07): 949-955 doi: 10.3321/j.issn:0001-5717.2008.07.013

    LI Shijin, SUN Fengyue, FENG Chengyou, et al. Geochronological Study on Yazigou Polymetallic Deposit in Eastern Kunlun Qinhai Province[J]. Acta Geologica Sinica, 2008, 82(07): 949-955. doi: 10.3321/j.issn:0001-5717.2008.07.013

    [23]

    李瑶. 东昆仑祁漫塔格阿确礅地区古生代花岗岩成因及大地构造意义[D]. 北京: 中国地质大学, 2017

    LI Yao. Genesis and Tectonic significance of Paleozoic Granites in Aquedun area, East Kunlun[D]. Beijing: China University of Geosciences, 2017.

    [24]

    李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012, 33(02): 216-226

    LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 33(02): 216-226.

    [25]

    李慧. 基于证据权重法和机器学习的赣南钨矿成矿远景预测[D]. 赣州: 江西理工大学, 2022

    LI Hui. Mineral Prospectivity Mapping of Tungsten Deposits in Southern Jiangxi Province Based on Weights of Evidence and Machine Learning[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    [26]

    李玉春, 李彬, 陈静, 等. 东昆仑拉陵灶火矿区花岗闪长岩Sr-Nd-Pb同位素特征及其地质意义[J]. 矿物岩石, 2013, 33(03): 110-115 doi: 10.3969/j.issn.1001-6872.2013.03.016

    LI Yuchun, LI Bin, CHEN Jing, et al. Sr-Nd-Pb Isotopic Characteristics of Ore-Bearing Granodiorites from Lalingzaohuo Deposit and it’s Geological Significance[J]. Journal of Mineral Petrol, 2013, 33(03): 110-115. doi: 10.3969/j.issn.1001-6872.2013.03.016

    [27]

    李玉春, 张爱奎, 张培青, 等. 青海祁漫塔格沙丘地区侵入岩地质、地球化学特征及找矿意义[J]. 西北地质, 2013, 46(03): 70-82 doi: 10.3969/j.issn.1009-6248.2013.03.005

    LI Yuchun, ZHANG Aikui, ZHANG Peiqing, et al. The Geological and Geochemical Characteristics of the Intrusive Rock and Prospecting Significance in Shaqiu Areas, Qimantage Metallogenic Belt, Qinghai Province[J]. Northwestern Geology, 2013, 46(03): 70-82. doi: 10.3969/j.issn.1009-6248.2013.03.005

    [28]

    刘建楠. 青海野马泉铁锌矿床多期次构造—岩浆热年代学成矿意义[D]. 北京: 中国地质科学院, 2018

    LIU Jiannan. The Metallogenic Significance of Multistage Tectonic Magmatic, the Morchronology of Yemaquan Iron-Zinc Deposit, Qinghai[D]. Beijing: Chinese Academy of Geological Sciences For, 2018.

    [29]

    刘彬, 马昌前, 蒋红安, 等. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 2013, 29(06): 2093-2106

    LIU Bin, MA Changqian, JIANG Hongan, et al. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks[J]. Acta Petrologica Sinica, 2013, 29(6): 2093-2106.

    [30]

    刘晓生, 章治邦. 基于改进网格搜索法的SVM参数优化[J]. 江西理工大学学报, 2019, 40(1): 5−9.

    LIU Xiaosheng, ZHANG Zhibang. Parameter optimization of Support Vector Machine based on improved grid search method[J]. Journal of Jiangxi University of Science and Technology, 2019, 40(1): 5−9.

    [31]

    陆济璞, 李江, 覃小锋, 等. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, 2005, (04): 46-54 doi: 10.3969/j.issn.1009-3850.2005.04.008

    LU Jipu, LI Jiang, TAN Xiaofeng, et al. The Yinieke agan granite mass in Qimantag eastern Kunlun and its tectonic significance[J]. Sedimentary Geology and Tethyan Geology, 2005, (04): 46-54. doi: 10.3969/j.issn.1009-3850.2005.04.008

    [32]

    陆济璞, 戴梅芳, 李江, 等. 东昆仑祁漫塔格希热芒崖晚石炭世花岗岩地球化学特征及其构造背景[J]. 华南地质与矿产, 2006, (04): 1-8

    LU Jipi, DAI Meifang, LI Jiang, et al. Geochemical Characteristics and It’s Tectonis Setting of Xiremangya Lata Carboniferous Granite in the Qimantage Mountains, East Kunlun[J]. South China Geology, 2006, (04): 1-8.

    [33]

    马文, 丁玉进, 李社宏, 等. 祁漫塔格中部元古代高钾(变质)侵入岩体的发现及其地质意义[J]. 西北地质, 2013, 46(01): 32-39 doi: 10.3969/j.issn.1009-6248.2013.01.004

    MA Wen, DING Yujin, LI Shehong, et al. The Discovery and Geological Significance of Proterozoic Intrusive Rock with High-K in the Central of Qimantge Area[J]. Northwestern Geology, 2013, 46(01): 32-39. doi: 10.3969/j.issn.1009-6248.2013.01.004

    [34]

    毛景文, 周振华, 丰成友等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(06): 1437-1471 doi: 10.3969/j.issn.1000-3657.2012.06.001

    MAO Jingwen, ZHOU Zhenhua, FENG Chengyou, et al. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 2012, 39(06): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001

    [35]

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 49(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 49(03): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    [36]

    南卡俄吾, 贾群子, 唐玲, 等. 青海东昆仑哈西亚图矿区花岗闪长岩锆石U-Pb年龄与岩石地球化学特征[J]. 中国地质, 2015, 42(03): 702-712 doi: 10.3969/j.issn.1000-3657.2015.03.022

    NAMHKA N, JIA Qunzi, TANG Ling, et al. Zircon U-Pb age and geochemical characteristics of granodiorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geology in China, 2015, 42(3): 702-712. doi: 10.3969/j.issn.1000-3657.2015.03.022

    [37]

    南卡俄吾, 贾群子, 李文渊, 等. 青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征[J]. 地质通报, 2014, 33(06): 841-849 doi: 10.3969/j.issn.1671-2552.2014.06.007

    NAMHKA N, JIA Qunzi, LI Wenyuan, et al. LA-ICP-MS zircon U-Pb age and geochemical characteristics of quartz diorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geological Bulletin of China, 2014, 33(6): 841-849. doi: 10.3969/j.issn.1671-2552.2014.06.007

    [38]

    潘北斗, 李宝, 王福臣, 等. 不同类型矿床(点)空间关联关系定量研究——以中南半岛及临近地区为例[J]. 地质与勘探, 2022, 58(03): 532-544.

    PAN Beidou, LIU Bao, WANG Fuchen, et al. Quantitative study on spatial correlation of different types of deposits(occurrences)—A case study of Indochina Peninsula and adjacent areas[J]. Geology and Exploration, 2022, 58(3): 0532-0544.

    [39]

    潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(01): 16-33 doi: 10.3969/j.issn.1672-6561.2017.01.002

    PAN Tong. Classification of Metallogenic Units in Qinghai, China[J]. Journal of Earth Sciences and Enviroment, 2017, 39(01): 16-33. doi: 10.3969/j.issn.1672-6561.2017.01.002

    [40]

    时超, 李荣社, 何世平, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U-Pb年龄证据[J]. 地质通报, 2017, 36(06): 977-986 doi: 10.3969/j.issn.1671-2552.2017.06.010

    SHI Chao, LI Rongshe, HE Shiping, et al. A study of the ore-forming age of the Hutouya deposit and its geological significance: Geochemistry and U-Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains[J]. Geological Bulletin of China, 2017, 36(6): 977-986. doi: 10.3969/j.issn.1671-2552.2017.06.010

    [41]

    舒树兰, 何书跃, 李彬, 等. 青海东昆仑鸭子沟多金属矿床地质地球化学特征及找矿前景分析[J]. 西北地质, 2014, 47(02): 62-72 doi: 10.3969/j.issn.1009-6248.2014.02.008

    SHU Shulan, HE Shuyue, LI Bin, et al. Geology, Geochemical Characteristics and Prospecting Analysisof Yazigou Polymetallic Deposit, Esat Kunlun, Qinghai Province[J]. Northwestern Geology, 2014, 47(02): 62-72. doi: 10.3969/j.issn.1009-6248.2014.02.008

    [42]

    舒晓峰, 王雪萍, 张雨莲, 等. 青海虎头崖地区多金属矿床成因类型的厘定及找矿方向[J]. 西北地质, 2012, 45(01): 165-173 doi: 10.3969/j.issn.1009-6248.2012.01.022

    SHU Xiaofeng, WANG Xueping, ZHANG Yulian, et al. Determination of Multifarious Genesis and Prospecting of Polymetallic Metallogenic Deposit in Hutouya, Qinghai[J]. Northwestern Geology, 2012, 45(01): 165-173. doi: 10.3969/j.issn.1009-6248.2012.01.022

    [43]

    谈生祥, 郭通珍, 董进生, 等. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 2011, 29(1): 36−43.

    TAN Shengxiang, GUO Tongzhen, DONG Jinsheng, et al. Geological characteristics and significance of the peraluminous granite in late silurian epoch in Wulanwuzhuer region of Qinghai[J]. Journal of Qinghai University(Natural Science), 2011, 29(1): 36−43.

    [44]

    田承盛, 丰成友, 李军红, 等. 青海它温查汉铁多金属矿床~(40)Ar-~(39)Ar年代学研究及意义[J]矿床地质, 2013, 32(01): 169-176 doi: 10.3969/j.issn.0258-7106.2013.01.012

    TIAN Chengsheng, FENG Chengyou, LI Junhong, et al. 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in Qimantag Mountain of Qinghai Province and its geological implications[J]. Mineral Deposits, 2013, 32(01): 169-176. doi: 10.3969/j.issn.0258-7106.2013.01.012

    [45]

    田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28−45.

    TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28−45.

    [46]

    王秉璋. 祁漫塔格地质走廊域古生代—中生代火成岩岩石构造组合研究[D]. 北京: 中国地质大学(北京), 2012

    WANG Bingzhang. The study and investigation on the assembly and coupling Petrotectonic assemblage during Paleozoic-Mesozoic period at Qimantag geological corridor domain[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [47]

    温博文, 董文瀚, 解武杰, 等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10): 154−157.

    WEN Bowen, DONG Wenhan, XIE Wujie, et al. Parameter optimization method for random forest based on improved grid search algorithm[J]. Computer Engineering and Applications, 2018, 54(10): 154-157.

    [48]

    徐博. 藏北安多地区中侏罗统布曲组碳酸盐岩微相分析[D]. 成都: 成都理工大学, 2020

    XU Bo. Carbonate Microfacies Analysis and Evolutions of the Middle Jurassic Buqu Formation in the Amdo area, northern Tibet[D]. Chendu: Chendu University of Technology, 2020.

    [49]

    许长坤, 刘世宝, 赵子基, 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012, 86(10): 1621-1678 doi: 10.3969/j.issn.0001-5717.2012.10.006

    XU Changkun, LIU Shibao, ZHAO Ziji, et al. Metallogenic Law and Prospect Direction of Iron Deposits in the East Kunlun Metallogenic Belt in Qinghai[J]. Acta Geologica Sinca, 2012, 86(10): 1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006

    [50]

    许骏, 邓小华, 祝新友. 祁漫塔格成矿带地质特征和成矿时空分布规律[J]. 新疆地质, 2021, 39(04): 671-678 doi: 10.3969/j.issn.1000-8845.2021.04.025

    XU Jun, DENG Xiaohua, ZHU Xingyou. Geological Characteristics and Spatio-Temporal Distribution of Mineralization in the Qimantage metallogenic Belt[J]. Xinjiang Geology, 2021, 39(04): 671-678. doi: 10.3969/j.issn.1000-8845.2021.04.025

    [51]

    许志琴, 杨经绥, 李化启, 等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(06): 1697-1709

    XU Zhiqin, YANG Jingsui, LI Huaqi, et al. Indosinian collision-orogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica, 2012, 28(06): 1697-1709.

    [52]

    薛宁, 安勇胜, 李五福, 等. 青海野马泉地区正长花岗岩的基本特征及成因[J]. 青海大学学报(自然科学版), 2009, 27(02): 18-22 doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003

    XU Ning, AN Yongsheng, LI Wufu, et al. Characteristic and genesis of normal granite in the Yemaquan of Qinghai[J]. Journal of Qinghai University, 2009, 27(02): 18-22. doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003

    [53]

    杨兴科, 韩珂, 范阅, 等. 东昆仑祁漫塔格矿带典型矿田构造背景与岩浆-热力构造特征[J]. 大地构造与成矿学, 2016, 40(02): 201-212 doi: 10.16539/j.ddgzyckx.2016.02.002

    YANG Xingke, HAN Ke, FAN Yue, et al. Tectonic Background and Magma-thermodynamic Structural Features of Typical Orefields in Qimantage Ore Belt, Eastern Kunlun[J]. Geotectonica et Metallogenia, 2016, 40(02): 201-212. doi: 10.16539/j.ddgzyckx.2016.02.002

    [54]

    姚磊. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 北京: 中国地质大学(北京), 2015.

    YAO Lei. Petrogenesis of the Triassic granitoids and skarn mineralization in the Qimantag area, Qinghai Province, and their geodynamic setting[D]. Beijing: China University of Geosciences (Beijing), 2015.

    [55]

    杨涛, 李智明, 张乐, 等. 东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J]. 高校地质学报, 2017, 23(03): 452-464 doi: 10.16108/j.issn1006-7493.2017026

    YANG Tao, LI Zhiming, ZHANG Le, et al. Geological and Geochemical Characteristics of the Tawenchahanxi Granites in East Kunlun and Its Tectonic Significance[J]. Geological Journal of China Universities, 2017, 23(03): 452-464. doi: 10.16108/j.issn1006-7493.2017026

    [56]

    于淼, 丰成友, 刘洪川, 等. 青海尕林格矽卡岩铁矿富Cl角闪石矿物地球化学特征与其成矿意义[J]. 岩石矿物学杂志, 2015, 34(05): 721-740 doi: 10.3969/j.issn.1000-6524.2015.05.010

    YU Miao, FENG Chengyou, LIU Hongchuan, et al. The Significance of Mineralization and Geochemistry of the Cl_rich Amphiboles from the Galinge Skarn Iron Deposit in Qinghai Province[J]. Acta Petrologica et Mineralogica, 2015, 34(05): 721-740. doi: 10.3969/j.issn.1000-6524.2015.05.010

    [57]

    袁颖, 于少将, 王晨晖, 等. 基于网格搜索法优化支持向量机的围岩稳定性分类模型[J]. 地质与勘探, 2019, 55(2): 608−613.

    YUAN Ying, YU Shaojiang, WANG Chenhui, et al. Evaluation model for surrounding rock stability based on support vector machine optimized by grid search method[J]. Geology and Exploration, 2019, 55(2): 608−613.

    [58]

    王子烨. 基于测度学习的喜马拉雅淡色花岗岩岩体识别[D]. 武汉: 中国地质大学, 2020

    WANG Ziye. Mapping of Himalaya Leucogranites Based on Metric Learning[D]. HU BEI: China University of Geosciences, 2020.

    [59]

    吴祥珂, 孟繁聪, 许虹, 等. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J]. 岩石学报, 2011, 27(11): 3380-3394

    WU Xiangke, MENG Fancong, XU Hong, et al. Zircon U-Pb dating, geochemistry and Nd-Hf isotopic compositions of the Maxingdaban Late Triassic granitic pluton from Qimantag in the eastern Kunlun[J]. Acta Petrologica Sinica, 2011, 27(11): 3380-3394.

    [60]

    赵一鸣, 丰成友, 李大新, 等. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J]. 矿床地质, 2013, 32(01): 1-19 doi: 10.3969/j.issn.0258-7106.2013.01.001

    ZHAO Yiming, FENG Chengyou, LI Daxing. Metallogenic setting and mineralization-alteration characteristics of major skarn Fe-polymetallic deposits in Qimantag area western Qinghai Province[J]. Mineral Deposits, 2013, 32(01): 1-19. doi: 10.3969/j.issn.0258-7106.2013.01.001

    [61]

    张爱奎, 莫宣学, 袁万明, 等. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 2016, 36(02): 157-173 doi: 10.16461/j.cnki.1000-4734.2016.02.001

    ZHANG Aikui, MO Xuanxue, YUAN Wangming, et al. Petrogensis and Tectonic Setting of Yemaquan Triassic Granite from the West of the Eastern Kunlun Mountain Range, China[J]. Acta Mineralogica Sinca, 2016, 36(02): 157-173. doi: 10.16461/j.cnki.1000-4734.2016.02.001

    [62]

    张爱奎. 青海野马泉地区晚古生代—早中生代岩浆作用与成矿研究[D]. 北京: 中国地质大学(北京), 2012

    ZHANG Aikui. Studies on late Paleozoic-early Mesozoic magmatism and mineralization in Yemaquan area, Qinghai province[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [63]

    张雷. 东昆仑野马泉地区三叠纪构造岩浆作用与成矿关系[D]. 北京: 中国地质大学(北京), 2013.

    ZHANG Lei. Studies on Triassic Tectonic Magmatosm and Relationship with Mineralization in Yemaquan Area, East Kunlun[D]. Beijing: China University of Geosciences (Beijing), 2013.

    [64]

    张明玉, 丰成友, 王辉, 等. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J]. 岩石矿物学杂志, 2018, 37(2): 197−210.

    ZHANG Mingyu, FENG Chengyou, WANG Hui, et al. Petrogenesis and tectonic implications of the Late Triassic syenogranite in Qimantag area, East Kunlun Mountains[J]. Acta Petrologica et Mineralgica, 2018, 37(2): 197-210.

    [65]

    张杰, 康晓波, 鲁慧, 等. 哀牢山中段地质灾害空间分布规律研究——以元江县为例[J]. 工程地质学报, 2018, 26(03): 720-731

    ZHANG Jie, KANG Xiaobo, LU Hui, et al. Study on spatial distribution of geological disasters in middle part of Ailao mountain: A case of Yuanjiang County[J]. Journal of Engineering Geology, 2018, 26(3): 720-731.

    [66]

    张晓飞, 李智明, 贾群子, 等. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(03): 749-765

    ZHANG Xiaofei, LI Zhiming, JIA Qunzi, et al. Geochronology, Geochemistry and Geological Significance of Granite Porphyry in Hutouya Polymetallic Deposit, Qimantage Area, Qinghai Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(03): 749-765.

    [67]

    张晓飞, 宋忠宝, 李智明, 等. 北祁连浪力克矿区闪长玢岩地质地球化学特征及其地质意义[J]. 西北地质, 2012, 45(S1): 113−116.

    [68]

    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39.

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.

    [69]

    张雨莲, 贾群子, 宋忠宝, 等. 青海省卡尔却卡铜多金属矿床A区斑岩型和B区矽卡岩型成矿岩体特征对比[J]. 西北地质, 2014, 47(04): 114-122 doi: 10.3969/j.issn.1009-6248.2014.04.012

    ZHANG Yulian, JIA Qunzi, SONG Zhongbao, et al. Contrastive Study on Features of Ore-forming Rock Mass between Area-A Porphyry Type and Area-B Skarn Type in Ka’erqueka Copper Molubdenum Deposit in Qinghai Province[J]. Northwestern Geology, 2014, 47(04): 114-122. doi: 10.3969/j.issn.1009-6248.2014.04.012

    [70]

    钟世华. 新疆维宝铜铅锌矿床成因研究[D]. 北京: 中国地质科学院, 2018

    ZHONG Shihua. Genesis of the Weibao Cu-Pb-Zn deposit in Xinjiang, China[D]. Beijing: Chinese Aacademy of Geological Sciences, 2018.

    [71]

    钟世华, 丰成友, 李大新, 等. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 2017, 91(05): 1066-1082 doi: 10.3969/j.issn.0001-5717.2017.05.008

    ZHONG Shihua, FENG Chengyou, LI Daxing, et al. Mineralogical Characteristics of the Weixi Ore Block in the Weibao Skarn-type Copper-Lead-Zinc Deposit, Xinjiang[J]. Acta Geologica Sinica, 2017, 91(05): 1066-1082. doi: 10.3969/j.issn.0001-5717.2017.05.008

    [72]

    庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56(1): 63−80.

    ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology, 2023, 56(1): 63−80.

    [73]

    Ballard J R, Palin M J, Campbell I H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347-364. doi: 10.1007/s00410-002-0402-5

    [74]

    Bergen K J, Johnson P A, Hoop M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323. doi: 10.1126/science.aau0323

    [75]

    Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5−32.

    [76]

    Chen J, Wang B Z, Lu H F, et al. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 2018, 60(4): 479-495. doi: 10.1080/00206814.2017.1346487

    [77]

    Chiaradia M, Ulianov A, Kouzmanov A, et al. Why large porphyry Cu deposits like high Sr/Y magmas?[J]. Scientific Reports, 2012, 2: 685-686. doi: 10.1038/srep00685

    [78]

    Chawla N V. Data mining for imbalanced datasets: An overview[J]. Data mining and knowledge discovery handbook, 2009, 875−886.

    [79]

    Du J, Audetat A. Early sulfide saturation is not detrimental to porphyry Cu-Au formation[J]. Geology, 2020, 48(5): 519-524. doi: 10.1130/G47169.1

    [80]

    Guo X Z, Zhou T F, Jia Q Z, et al. Highly differentiated felsic granites linked to Mo mineralization in the East Kunlun Orogenic Belt, NW China: Constrains from geochemistry, and Sr-Nd-Hf isotopes of the Duolongqiarou porphyry Mo deposit[J]. Ore Geology Reviews, 2022, 145: 104891. doi: 10.1016/j.oregeorev.2022.104891

    [81]

    Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits[J]. Philippines. Economic Geology, 1998, 93(4): 373-404. doi: 10.2113/gsecongeo.93.4.373

    [82]

    Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Special Issue Review, 2015, 349: 255-260.

    [83]

    Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: a review, gests international transactions on computer science and engineering[J]. Synthetic Oversampling Instances Using Clustering, 2006, 30(1): 25-36.

    [84]

    Leng C B, Cooke D R, Hou Z Q, et al. Quantifying Exhumation at the Giant Pulang Porphyry Cu-Au Deposit Using U-Pb-He Dating[J]. Economic Geology, 2018, 113(5): 1077-1092. doi: 10.5382/econgeo.2018.4582

    [85]

    Lin X, Chang H, Wang K, et al. Machine Learning for Source Identification of Dust on the Chinese Loess Plateau[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088950.

    [86]

    Lv W C, Li Z H, Wu X X, et al. Maximum Entropy Niche–Based Modeling(Maxent) of Potential Geographical Distributions of Lobesia Botrana(Lepidoptera_Tortricidae) in China[J]. Computer and Computing Technologies in Agriculture, 2011, 3: 264-246.

    [87]

    Mao Y J, Qin K Z, Li C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, (200-201): 111-125.

    [88]

    Nathwani C L, Wilkinson J J, George F, et al. Machine learning for geochemical exploration: classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation[J]. Mineralium Deposita, 2022, 57(7): 1143-1166. doi: 10.1007/s00126-021-01086-9

    [89]

    Nathwani C L, Wilkinson J J, Brownscombe W, et al. Mineral Texture Classification Using Deep Convolutional Neural Networks: An Application to Zircons From Porphyry Copper Deposits[J]. JGR Solid Earth, 2023, 128(2).

    [90]

    Petrelli M, Perugini D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data[J]. Contributions to Mineralogy and Petrology, 2016, 171(10).

    [91]

    Pizarro H, Campo E, Bouzaro F, et al. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits[J]. Ore Geology Reviews, 2020, 126: 103771. doi: 10.1016/j.oregeorev.2020.103771

    [92]

    Ren X, Dong Y P, He D F, et al. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications[J]. International Geology Review, 2023,

    [93]

    Rezeau H, Jagoutz O. The importance of H2O in arc magmas for the formation of porphyry Cu deposits. Ore Geology Reviews, 2020, 126, 103744.

    [94]

    Rezeau H, Moritz R, Wotzlaw J F, et al. Zircon Petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting Igneous Processes and Implications for the Exploration of Porphyry Cu-Mo Deposits[J]. Economic Geology, 2019, 114(7): 1365-1388. doi: 10.5382/econgeo.4671

    [95]

    Richards J P. High Sr/Y arc magmas and porphyry Cu deposits: just add water[J]. Economic Geology, 2011, 106(7): 1075-1081. doi: 10.2113/econgeo.106.7.1075

    [96]

    Sun W D, Liang H Y, Ling M X, et al. The link between reduced porphyry copper deposits and oxidized magmas[J]. Geochimica et Cosmochimica Acta, 2013, 103: 263-275. doi: 10.1016/j.gca.2012.10.054

    [97]

    Wang Y, Qiu, K F, Müller A, et al. Machine Learning Prediction of Quartz Forming-Environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8).

    [98]

    Wang C, Liu L, Xiao P X, et al. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China[J]. Lithos, 2014, (202-203): 1-20.

    [99]

    Xia R, Wang C M, Qing M, et al. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 66: 114-131. doi: 10.1016/j.oregeorev.2014.10.024

    [100]

    Xu Q L, Sun Y G, Mao G Z, et al. Petrogenesis of the Ore-Related Intrusions of the Aikengdelesite Mo (-Cu) and Halongxiuma Mo Deposits: Implication for Geodynamic Evolution and Mineralization in the East Kunlun Orogen, Northwest China[J]. Minerals, 13(3): 447.

    [101]

    Yan M J, Sun G S, Sun F Y, et al. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis[J]. Journal of Earth Science, 2019, 30: 335-347. doi: 10.1007/s12583-018-1203-8

    [102]

    Yin S, Ma C Q, Xu J N. Geochronology, geochemical and Sr-Nd-Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration[J]. Lithos, 2017, 294-295: 339-355. doi: 10.1016/j.lithos.2017.10.012

    [103]

    Yu M, Feng C Y, Santosh M, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 2017a. 167: 103-123. doi: 10.1016/j.earscirev.2017.02.008

    [104]

    Yu M, Feng C Y, Mao J W, et al. Multistage Skarn-Related Tourmaline From the Galinge Deposit, QimanTage, Western China: A Fluid Evolution Perspective[J]. The Canadian Mineralogist, 2017b, 55(1): 3-19. doi: 10.3749/canmin.1600043

    [105]

    Zhong S H, Seltmann R, Shen P. Two different types of granitoids in the Suyunhe large porphyry Mo deposit, NW China and their genetic relationships with molybdenum mineralization[J]. Ore Geology Reviews, 2017, 88: 116-139. doi: 10.1016/j.oregeorev.2017.04.012

    [106]

    Zhong S H, Feng C Y, Seltmann R, et al. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals(zircon and apatite)[J]. Mineralium Deposita, 2018, 53(6): 855-870. doi: 10.1007/s00126-017-0787-8

    [107]

    Zhong S H, Li S Z, Feng C Y, et al. Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids[J]. Earth-Science Reviews, 2021a, 103524.

    [108]

    Zhong S H, Feng C Y, Seltmann R, et al. Middle Devonian volcanic rocks in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: Zircon chronology and tectonic implications[J]. Ore Geology Reviews, 2021b, 84: 309-327.

    [109]

    Zhong S H, Li S Z, Liu Y, et al. I-type and S-type granites in the Earth’s earliest continental crust[J]. Communications Earth & Environment, 2023, 4: 61.

    [110]

    Zhou Y, Zhang Z, Yang J, et al. Machine Learning and Singularity Analysis Reveal Zircon Fertility and Magmatic Intensity: Implications for Porphyry Copper Potential[J]. Natural Resources Research, 2022, 31(6): 3061-3078. doi: 10.1007/s11053-022-10122-y

    [111]

    Zou S, Chen X, Brzozowski M J, et al. Application of Machine Learning to Characterizing Magma Fertility in Porphyry Cu Depositsp[J]. Journal of Geophysical Research: Solid Earth, 2022, 27(8).

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1784
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2023-07-25
修回日期:  2023-09-11
录用日期:  2023-09-11
刊出日期:  2023-12-20

目录