Formation Age, Tectonic Setting and Geological Significance of The Jurassic Jiulongshan Formation Tuff in Xuanhua Basin, Northwest Hebei
-
摘要:
冀西北宣化盆地九龙山组陆相沉积地层发育,但地层的时代归属缺少化石和同位素测年资料佐证。研究区杨家营−响水铺一带九龙山组中下部发育流纹质凝灰岩夹层,为准确确定宣化盆地九龙山组的时代和形成环境,笔者对流纹质凝灰岩采集了锆石U−Pb同位素测年样品和岩石地球化学分析样品,获得了(161.9±0.8)Ma的206Pb/238U加权平均年龄值(LA−ICP−MS法),为晚侏罗世早期。岩石化学特征表明,流纹质凝灰岩属高Si、高K钙碱性过铝质岩石;稀土元素配分模式曲线为右倾型,轻稀土强烈富集,负Eu异常不明显;富集大离子亲石元素(Rb、K、Th、U),亏损Sr和高场强元素(Nb、Ti)。岩石地球化学特征显示其形成于挤压构造背景。锆石Hf同位素εHf(t)值为−33.79~−2.71,二阶段亏损模式年龄(tDM2)为1179~3323 Ma,表明流纹质凝灰岩岩浆多为古元古代—中元古代加厚的下地壳熔融形成。综合分析认为,宣化盆地九龙山组形成于中侏罗世晚期—晚侏罗世早期的挤压构造背景,该研究成果为研究九龙山组的时代归属、形成环境提供了新资料。
-
关键词:
- 九龙山组 /
- LA−ICP−MS锆石U−Pb定年 /
- Hf同位素 /
- 宣化盆地
Abstract:The continental sedimentary strata of the Jiulongshan Formation in the Xuanhua basin in Northwest Hebei are well developed, but the age of the strata is lacking in evidence from fossils and isotope dating data. In the Yangjiaying−Xiangshuipu area of the study area, rhyolitic tuff interlayers develop in the middle and lower parts of the Jiulongshan Formation. In order to accurately determine the age and formation environment of the Jiulongshan Formation in the Xuanhua Basin, the author collected zircon U−Pb isotope dating samples from the rhyolitic tuff and rock geochemical analysis samples. The 206Pb/238U weighted average age (LA−ICP−MS method) of (161.9±0.8) Ma was obtained, which is the early Late Jurassic. The petrochemical characteristics show that the rhyolitic tuff is a high−silicon, high−potassium calc−alkaline peraluminous rock; the distribution pattern curve of rare earth elements is right−dipping, with strong enrichment of light rare earths and no obvious negative Eu anomaly; the enrichment of large ions is lithophilic elements (Rb, K, Th, U), depleted Sr and high field strength elements (Nb, Ti). The geochemical characteristics of the rocks show that it was formed in a compressional tectonic setting. The zircon Hf isotope εHf(t) value is between −33.79~−2.71, and the second−stage depletion model age (tDM2) is between 1179~3323 Ma, indicating that the rhyolitic tuff magma is mostly Paleoproterozoic−Mesoproterozoic thickened lower crust Melted to form. According to comprehensive analysis, the Jiulongshan Formation in Xuanhua basin was formed in the late Middle Jurassic−early Late Jurassic compressional structural setting. The research results provide new data for the study of the age attribution and formation environment of the Jiulongshan Formation.
-
Key words:
- Jiulongshan formation /
- LA−ICP−MS zircon U−Pb dating /
- Hf isotope /
- Xuanhua basin
-
-
图 6 宣化盆地九龙山组流纹质凝灰岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)(标准值化值据Sun et al.,1989;b标准化值据Boynton et al.,1984)
Figure 6.
图 9 宣化盆地九龙山组流纹质凝灰岩锆石Hf同位素特征图(a据Yang et al.,2006;b据吴福元等,2007)
Figure 9.
图 11 宣化盆地九龙山组流纹质凝灰岩(Y+Nb)–Rb判别图解和Y–Nb判别图(据Pearce et al.,1984)
Figure 11.
表 1 宣化盆地九龙山组流纹质凝灰岩主量元素(%)、微量元素(10−6)测试分析结果表
Table 1. Analysis results of major elements (%) and trace elements (10−6) of rhyolite tuff in Jiulongshan Formation in the Xuanhua Basin
样品号 PM15-15YQ2 PM15-16YQ2 PM15-23YQ2 PM42-7GP1 样品号 PM15-15YQ2 PM15-16YQ2 PM15-23YQ2 PM42-7GP1 SiO2 72.59 73.43 73.57 72.81 In 0.03 0.03 0.03 0.03 TiO2 0.25 0.29 0.24 0.15 W 0.90 1.01 0.70 0.65 Al2O3 13.28 13.25 13.49 13.91 Bi 0.13 0.13 0.13 0.21 Fe2O3 1.26 1.87 1.66 1.01 Cs 1.26 1.29 1.71 1.23 FeO 0.75 0.30 0.27 1.05 Ba 672.04 762.17 732.98 1166.14 MnO 0.08 0.08 0.05 0.07 La 31.74 35.65 34.34 49.38 MgO 0.87 0.82 0.58 0.23 Ce 60.14 68.20 64.50 85.29 CaO 1.58 0.97 0.68 0.55 Pr 6.57 7.53 7.00 8.09 Na2O 4.34 4.10 3.48 4.79 Nd 22.27 25.82 22.94 27.74 K2O 2.69 3.04 4.21 4.42 Sm 3.60 4.02 3.52 3.67 P2O5 0.07 0.09 0.06 0.04 Eu 0.83 0.98 0.80 1.14 灼失量 1.99 1.55 1.51 0.68 Gd 3.32 3.73 3.12 3.39 Total 99.84 99.83 99.85 99.83 Tb 0.48 0.48 0.43 0.42 A/NK 1.32 1.32 1.31 1.10 Dy 2.53 2.64 2.24 2.12 A/CNK 1.04 1.15 1.19 1.02 Ho 0.46 0.48 0.42 0.41 Li 21.48 25.58 17.01 17.42 Er 1.45 1.42 1.36 1.25 Be 1.48 1.61 1.97 1.91 Tm 0.24 0.24 0.24 0.22 Sc 5.83 6.11 7.60 2.60 Yb 1.35 1.36 1.38 1.42 V 27.04 29.43 25.94 18.54 Lu 0.28 0.26 0.27 0.23 Cr 10.11 13.12 7.24 5.15 Tl 0.36 0.41 0.56 0.93 Co 3.81 3.89 3.25 2.00 Pb 14.78 12.42 12.33 22.48 Ni 3.55 4.29 4.52 4.00 Th 6.52 6.49 7.18 11.59 Cu 6.54 7.86 7.11 8.51 U 1.46 1.47 1.97 2.40 Zn 43.23 49.33 42.18 34.56 Zr 116.03 128.87 125.81 138.01 Ga 14.87 14.66 15.79 13.35 Hf 2.98 3.03 2.86 4.27 Rb 71.20 77.36 107.06 117.92 ∑REE 135.25 152.82 142.55 184.76 Sr 333.33 336.03 341.94 177.91 LREE 125.14 142.20 133.09 175.31 Y 116.03 128.87 125.81 138.01 HREE 10.10 10.62 9.46 9.45 Nb 16.99 17.02 15.85 11.80 LREE/HREE 12.39 13.39 14.07 18.54 Ta 15.73 16.19 18.47 13.58 La/Yb 16.85 18.77 17.80 25.01 Mo 0.88 0.81 0.94 1.16 δEu 0.73 0.77 0.74 0.98 Cd 0.40 0.55 0.62 0.51 δCe 1.02 1.02 1.02 1.05 表 2 宣化盆地九龙山组流纹质凝灰岩LA–ICP–MS锆石U–Th–Pb定年测试结果表
Table 2. LA–ICP–MS zircon U–Th–Pb dating results of the rhyolite tuff in the Jiulongshan Formation in the Xuanhua basin
样号 Pb(10−6) U(10−6) Th(10−6) Th/U 同位素比值 年龄(Ma) 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 比值 2σ 比值 2σ 比值 2σ 比值 2σ 比值 2σ 比值 2σ 1 15.9 428.0 510.0 0.84 0.1740 0.0100 0.0257 0.0007 0.0505 0.0027 163.4 4.2 162.6 8.6 200.0 120.0 2 8.3 172.5 260.7 0.66 0.1720 0.0110 0.0255 0.0004 0.0485 0.0032 162 2.7 160.2 9.6 110.0 140.0 3 8.6 126.8 280.0 0.45 0.1760 0.0130 0.0254 0.0005 0.0499 0.0037 162 3.1 164.0 11.0 130.0 150.0 4 5.5 117.6 177.0 0.66 0.1810 0.0110 0.0255 0.0005 0.0515 0.0030 162.3 3 169.5 9.7 220.0 120.0 5 10.0 167.9 336.2 0.50 0.1774 0.0082 0.0257 0.0004 0.0502 0.0024 163.4 2.2 165.1 7.0 162.0 100.0 6 3.4 77.7 107.8 0.72 0.1730 0.0140 0.0255 0.0005 0.0496 0.0041 162.5 3 161.0 12.0 80.0 160.0 7 14.7 269.5 483.6 0.56 0.1702 0.0072 0.0252 0.0003 0.0487 0.0022 160.3 2.1 159.2 6.3 109.0 93.0 8 13.7 337.0 455.4 0.74 0.1719 0.0088 0.0252 0.0005 0.0506 0.0027 160.8 2.7 160.7 7.6 190.0 110.0 9 16.4 282.5 558.0 0.51 0.1769 0.0076 0.0253 0.0005 0.0510 0.0021 161.1 3.2 164.8 6.5 210.0 89.0 10 16.8 319.7 542.7 0.59 0.1747 0.0060 0.0255 0.0003 0.0496 0.0018 162.5 2.1 163.1 5.2 153.0 74.0 11 13.2 329.6 452.7 0.73 0.1671 0.0090 0.0252 0.0005 0.0495 0.0028 160.6 3.2 156.6 7.9 150.0 120.0 12 9.2 155.9 305.9 0.51 0.1830 0.0160 0.0256 0.0006 0.0517 0.0045 163.1 3.4 170.0 13.0 230.0 180.0 表 3 宣化盆地九龙山组流纹质凝灰岩锆石Hf同位素测试分析结果表
Table 3. Zircon Hf isotope analysis results of the rhyolitic tuff in the Jiulongshan Formation in the Xuanhua Basin
测点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(t) 2σ tDM1(Ma) tDM2(Ma) Lu/Hf
1 163.4 0.037086 0.001460 0.282453 0.907103 −7.84 0.91 1143 1703 −0.96 2 162.0 0.021016 0.000875 0.282506 0.871696 −5.94 0.87 1051 1582 −0.97 3 162.0 0.027908 0.001202 0.282496 0.903081 −6.32 0.90 1074 1606 −0.96 4 162.3 0.041201 0.001614 0.282494 0.988113 −6.45 0.99 1090 1614 −0.95 5 163.4 0.041546 0.001632 0.282529 0.768552 −5.20 0.77 1041 1536 −0.95 6 162.5 0.038554 0.001474 0.281720 0.962652 −33.79 0.96 2174 3323 −0.96 7 160.3 0.021689 0.000839 0.282494 0.914987 −6.40 0.92 1067 1610 −0.97 8 160.8 0.023269 0.000906 0.282437 0.952907 −8.40 0.95 1148 1736 −0.97 9 161.1 0.031761 0.001333 0.282532 0.848201 −5.11 0.85 1028 1529 −0.96 10 160.6 0.020550 0.000812 0.282465 0.770649 −7.41 0.77 1107 1674 −0.98 11 163.1 0.057856 0.002243 0.282601 1.036609 −2.71 1.04 953 1379 −0.93 表 4 宣化盆地附近地区中晚侏罗世九龙山–髫髻山期同位素年龄数据表
Table 4. Middle and Late Jurassic Jiulongshan–Tiaojishan period isotopic age data in the area near the Xuanhua basin
序号 层位 采样地点 测试对象 年龄(Ma) 测试方法 资料来源 1 髫髻山组(下部) 北京十三陵 安山岩 161.1±1.9 Ar–Ar(plateau) Davis et al.,2001 2 髫髻山组(底部) 北京十三陵 凝灰岩 157.2±1.2 U–Pb(LA–ICP–MS) 于海飞等,2016 3 髫髻山组(底部) 北京西山 粗安岩 156.6±3.1 U–Pb(SHRIMP) 赵越等,2004 4 髫髻山组(底部) 承德盆地 凝灰岩 160.7±0.8 Ar–Ar(plateau) Davis et al.,2001 5 髫髻山组(底部) 承德盆地 凝灰岩 160.7±0.8 Ar–Ar(plateau) Davis et al.,2001 6 髫髻山组(底部) 承德盆地 安山岩 159.7±1.3 Ar–Ar(plateau) Cope,2003 7 九龙山组(下部) 承德盆地 凝灰岩 163.4±1.1 U–Pb(LA–ICP–MS) 陈海燕等,2014 8 九龙山组(下部) 宣化盆地 粗面岩 167.0 U–Pb(LA–ICP–MS) 王卫国等,2017 9 九龙山组(下部) 宣化盆地 凝灰岩 161.9±0.8 U–Pb(LA–ICP–MS) 本文 -
[1] 白春东, 李金和, 李杰, 等. 河北省沙岭子、宣化县、深井镇、涿鹿县1∶5万区域地质调查[R]. 廊坊: 河北省区域地质调查院, 2022, 1–424.
[2] 陈海燕, 张运强, 张计东, 等. 冀北承德盆地侏罗系九龙山组凝灰岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 地质通报, 2014, 33(7): 966-973
CHEN Haiyan, ZHANG Yunqiang, ZHANG Jidong, et al. LA-ICP-MS zircon U-Pb age and geochemical characteristics of tuff of Jiulongshan Formation from Chengde Basin, Northern Hebei[J]. Geological Bulletin of China, 2014, 33(7): 966-973.
[3] 邓晋福, 刘翠, 冯艳芳, 等. 关于火成岩常用图解的正确使用: 讨论与建议[J]. 地质论评, 2015, 61(4): 717-734
DENG Jinfu, LIU Cui, FENG Yanfang, et al. On the Correct Application in the Common Igneous PetrologicalDiagrams: Discussion and Suggestion[J]. Geological Review, 2015, 61(4): 717-734.
[4] 董树文, 张岳桥, 陈宣华, 等. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报, 2008, 29(3): 306-317
DONG Shuwen, ZHANG Yueqiao, CHEN Xuanhua, et al. The Formation and Deformational Characteristics of East Asia Multi-Direction Convergent Tectonic Systemin Late Jurassic[J]. Acta Geologica Sinica, 2008, 29(3): 306-317.
[5] 董树文, 张岳桥, 李海龙, 等. “燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年[J]. 中国科学: 地球科学, 2019, 49(6): 913-938
DONG Shuwen, ZHANG Yueqiao, LI Hailong, et al. The Yanshan orogeny and late Mesozoic multiplate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny” [J]. Science China Earth Sciences, 2019, 49(6): 913-938.
[6] 高剑峰, 陆建军, 赖鸣远, 等. 岩石样品中微量元素的高分辨率等离子质谱分析[J]. 南京大学学报(自然科学版), 2003, 39(6): 844-850
GAO Jianfeng, LU Jianjun, LAI Mingyuan, et al. Analysis of Trace Elements in Rock Samples Using HR-ICP-MS[J]. Journal of Nanjing University(Natural Sciences), 2003, 39(6): 844-850.
[7] 郭金城, 张振利, 张计东, 等. 1∶250 000张家口市幅区域地质调查报告[R]. 廊坊: 河北省地质调查院, 2008, 1–365.
[8] 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513
GENG Jianzhen, LI Huaikun, ZHANG Jian, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10): 1508-1513.
[9] 张晔卿, 张振利, 刘增校, 等. 中国区域地质志·河北志[M]. 北京: 地质出版社, 2017, 1–1272
ZHANG Yeqing, ZHANG Zhenli, LIU Zengxiao, et al. Regional Geology of China·Hebei Chronicles [M]. Beijing: Geological Press, 2017, 1–1272.
[10] 季强, 陈文, 王五力, 等. 中国辽西中生代热河生物群[M]. 北京: 地质出版社, 2004, 1–375
JI Qiang, CHEN Wen, WANG Wuli, et al. Mesozoic Jehol Biota in Western Liaoning, China[M]. Beijing: Geological Publishing House, 2004, 1–375.
[11] 李声之, 王继兴, 王喜富,等. 河北省岩石地层[M]. 武汉: 中国地质大学出版社, 1996, 1–146
LI Shengzhi, WANG Jixing, WANG Xifu, et al. Rock Formations in Hebei Province[M]. Wuhan: China University of Geosciences Press, 1996, 1-146.
[12] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
[13] 李伍平, 章大港, 路凤香, 等. 北京西山髫髻山组火山岩的地球化学特征与岩浆起源[J]. 岩石矿物学杂志, 2001, 20(2): 123-133
LI Wuping, ZHANG Dagang, LU Fengxiang, et al. Geochemical Features and Origin of Volcanic Rocks of Tiaojishan Formation in Western Hills of Beijing[J]. Acta Petrologica Et Mineralogica, 2001, 20(2): 123-133.
[14] 林成发. 华北燕山褶皱-逆冲带西段侏罗纪沉积盆地演化及区域构造意义[D]. 北京: 中国地质大学, 2019, 1–203
LIN Chengfa. Jurassic tectono-sedimentary evolution history of the Western Yanshan fold-thrust Belt, North China, and its tectonic implication[D]. Beijing: China University of Geosciences (Beijing), 2019, 1-203.
[15] 柳永清, 刘燕学, 姬书安, 等. 内蒙古宁城和辽西凌源热水汤地区道虎沟生物群与相关地层SHRIMP锆石U-Pb定年及有关问题的讨论[J]. 科学通报, 2006, 51(19): 2273-2282 doi: 10.1360/csb2006-51-19-2273
LIU Yongqing, LIU Yanxue, JI Shuan, et al. SHRIMP zircon U-Pb dating of Daohugou biota and related strata in Ningcheng, Inner Mongolia, and Rehuitang, Lingyuan, Western Liaoning and related issues[J]. Chinese Science Bulletin, 2006, 51(19): 2273-2282. doi: 10.1360/csb2006-51-19-2273
[16] 刘晓文, 胡健民, 赵越, 等. 冀北地区早、中侏罗世地层划分及其区域对比[J]. 地质通报, 2005, 24(9): 872-878
LIU Xiaowen, HU Jianmin, ZHAO Yue, et al. Stratigraphic division and correlation of the Early-Middle Jurassic in Northern Hebei China[J]. Geological Bulletin of China, 2005, 24(9): 872-878.
[17] 刘少峰, 李忠, 张金芳. 燕山地区中生代盆地演化及构造体制[J]. 中国科学辑: D辑: 地球科学, 2004, 34(S1): 19-31
LIU Shaofeng, LI Zhong, ZHANG Jinfang. Mesozoic Basin Evolution and Tectonic System in Yanshan Area[J]. Science in China Ser. D Earth Sciences, 2004, 34(S1): 19-31.
[18] 刘少峰, 林成发, 刘晓波, 等. 冀北张家口地区同构造沉积过程及其与褶皱-逆冲作用耦合[J]. 中国科学: 地球科学, 2018, 48(6): 705-731
LIU Shaofeng, LIN Chengfa, LIU Xiaobo, et al. Syn-tectonic sedimentation and its linkage to fold-thrusting in the region of Zhangjiakou, North Hebei, China[J]. Science China Earth Sciences, 2018, 48(6): 705-731.
[19] 刘健, 赵越, 柳小明. 冀北承德盆地髫髻山组火山岩的时代[J]. 岩石学报, 2006, 22(11): 2617-2630
LIU Jian, ZHAO Yue, LIU Xiaoming. Age ofthe Tiaojishan Formation volcanics in the Chengde Basin, Northern Hebei Province[J]. Acta Petrologica Sinica, 2006, 22(11): 2617-2630.
[20] 米家榕. 冀北辽西早、中侏㑩世植物古生态学及聚煤环境[M]. 北京: 地质出版社, 1996, 1−169
MI Jiarong. Early and Middle Jurassic Plant Paleoecology and Coal Accumulation Environment in Northern Hebei and Western Liaoning[M]. Beijing: Geological Publishing House, 1996, 1−169.
[21] 孙立新, 赵凤清, 王惠初, 等. 燕山地区土城子组划分、时代与盆地性质探讨[J]. 地质学报, 2007, 81(4): 445-453
SUN Lixin, ZHAO Fengqing, WANG Huichu, et al. Correlationship of Tuchengzi Formation and Implications of the Basin Tectonic Evolution in the Intracontinental Yanshan Orogenic Belt[J]. Acta Geologica Sinica, 2007, 81(4): 445-453.
[22] 王卫国, 郝连成, 韩明洋, 等. 河北省西洋河幅等5幅1∶5万区域地质调查[R]. 廊坊: 中国人民武装警察部队黄金第七支队, 2017, 1−457.
[23] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220
WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220.
[24] 武法东, 陈永进, 侯宇安, 等. 滦平盆地沉积—构造演化及高精度层序地层特征[J]. 地球科学—中国地质大学学报, 2004, 29(5): 625-630
WU Fadong, CHEN Yongjin, HOU Yuan, et al. Characteristics of Sedimentary-Tectonic Evolution and High-Resolution Sequence Stratigraphy in Luanping Basin[J]. Earth Science—Journal of China University of Geosciences, 2004, 29(5): 625-630.
[25] 于海飞, 张志诚, 帅歌伟, 等. 北京十三陵—西山髫髻山组火山岩年龄及其地质意义[J]. 地质论评, 2016, 62(4): 807-826
YU Haifei, ZHANG Zhicheng, SHUAI Gewei, et al. SHRIMP and LA-ICP-MS U-Pb Ages and Geological Significance of the Volcanic Rocks in the Tiaojishan Formation in Ming Tombs Area-Western Hills, Beijing[J]. Geological Review, 2016, 62(4): 807-826.
[26] 袁洪林, 柳小明, 刘勇胜, 等. 北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究[J]. 中国科学D辑: 地球科学, 2005, 35(9): 821—836
JIAO Honglin, LIU Xiaoming, LIU Yongsheng, et al. U-Pb zircon geochronology and geochemistry of Late Mesozoic volcanic rocks in Western Hills, Beijing[J]. Science in China Ser. D Earth Sciences, 2005, 35(9): 821—836.
[27] 赵越, 张拴宏, 徐刚, 等. 燕山板内变形带侏罗纪主要构造事件[J]. 地质通报, 2004, 23(9): 854-863
ZHAO Yue, ZHANG Shuanhong, XU Gang, et al. The Jurassic major tectonic events of the Yanshan intraplate deformation Belt[J]. Geological Bulletin of China, 2004, 23(9): 854-863.
[28] 朱更新, 孙立新, 杨有世, 等. 1∶250 000承德市幅区域地质调查报告[R]. 廊坊: 河北省地质调查院, 2000, 1-469.
[29] 张路锁, 杨森丛, 范和平, 等. 冀北侏罗纪地层划分与《中国地层表》的对应关系[J]. 地质论评, 2016, 62(4): 840-848
ZHANG Lusuo, YANG Sencong, FAN Heping, et al. The Corresponding Relation Between Jurassic Stratigraphic Classification of North Hebei and the Stratigraphic Chart of China[J]. Geological Review, 2016, 62(4): 840-848.
[30] 张长厚, 李程明, 邓洪菱, 等. 燕山-太行山北段中生代收缩变形与华北克拉通破坏[J]. 中国科学: 地球科学, 2011, 41(5): 593-617
ZHANG Changhou, LI Chengming, DENG Hongling, et al. Mesozoic contraction deformation in the Yanshan and Northern Taihang mountains and its implications to the destruction of the North China[J]. Science China Earth Sciences, 2011, 41(5): 593-617.
[31] 郑亚东, G A. Davis, 王琮, 等. 燕山带中生代主要构造事件与板块构造背景问题[J]. 地质学报, 2000, 74(4): 289-302
ZHENG Yadong, G A. Davis, WANG Cong, et al. Major Mesozoic tectonic events in the Yanshan Belt and the Plate Tectonic Setting[J]. Acta Geologica Sinica, 2000, 74(4): 289-302.
[32] Alther R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos, 2000, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3
[33] Amelin Y, Halliday AN, Lee DC. Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4205-4225. doi: 10.1016/S0016-7037(00)00493-2
[34] Blichert-Toft J , Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 243-258. doi: 10.1016/S0012-821X(97)00040-X
[35] Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies [M]. Developments in Geochemistry, 1984, 63−114.
[36] Cope T C. Sedimentary evolution of the Yanshan fold-thrust belt, northeast China[D]. Califonia: Stanford University, 2003, 1−230.
[37] Davis G A. , Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[J]. Memoir of the Geological Society of America, 2001, 194: 171-197.
[38] Davis G A. The Late Jurassic “Tuchengzi/Houcheng” Formation of the Yanshan fold-thrust Belt: an analysis[J]. Earth Science Frontiers, 2005, 12(4): 331-345.
[39] Deng J F, Luo Z H, Zhao H L, et al. Trachyte and syenite: Petrogenesis constrained by the petrological phase equilibrium[M]. Collected works of international symposium on geological science by department of geology, Peking University, 1998, 745−757.
[40] Dong S W, Gao R, Yin A, et al. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China [J]. Geology, 2013, 41(6): 671-674. doi: 10.1130/G34161.1
[41] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[42] Griffin W L, Belousova E A, Shee S R. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons [J]. Precambrian Research, 2004, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011
[43] Li J H, Dong S W, Cawood P A, et al. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling [J]. Earth and Planetary Science Letters, 2018, 490: 170-179. doi: 10.1016/j.jpgl.2018.03.008
[44] Li X H, Li Z X, Li W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-type and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 2007, 96(1-2): 186-204. doi: 10.1016/j.lithos.2006.09.018
[45] Liu S F, Su S, Zhang G W. Early Mesozoic basin development in North China: Indications of cratonic deformation[J]. Journal of Asian Earth Science, 2013, 62: 221-236. doi: 10.1016/j.jseaes.2012.09.011
[46] Liu J, Zhao Y, Liu A K, et al. Late Jurassic to Early Cretaceous sedimentary-tectonic development in the Chengde Basin, Yanshan fold-thrust belt, North China Craton[J]. Journal of Asian Earth Science, 2015, 114(Part 4): 611-622.
[47] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[48] Middlemost E A K. Magmas and Magmatic Rocks[M]. London: Longman, 1985, 1−266.
[49] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3–4): 215-224.
[50] Nowell G M, Kempton P D, Noble S R, et al. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle[J]. Chemical Geology, 1998, 149(3-4): 211-233. doi: 10.1016/S0009-2541(98)00036-9
[51] Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q0AA06.
[52] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
[53] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contrib[J]. Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745
[54] Scherer E, Munker C , Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530): 683-687. doi: 10.1126/science.1061372
[55] Sun S S , McDonough W F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins[J]. Geological Society London Specical Publications, 1989, 423: 13-345.
[56] Taylor S R, Mclenann S M. The continental Crust: Its composition and evolution[M]. Blackwell: Oxford Press, 1985, 1-312.
[57] Thompson J M, Meffre S, Danyushevsky L. Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 221-230. doi: 10.1039/C7JA00357A
[58] Vervoort J D, Patcheet P J, Albarede F, et al. Hf-Nd isotopic evolution of the lower crust[J]. Earth and Planerary Science Letters, 2000, 181(1/2): 115-129.
[59] Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China [J]. Earth and Planetary Science Letters, 2006, 246(3-4): 336-352. doi: 10.1016/j.jpgl.2006.04.029
[60] Zhang S H, Zhao Y, Davis G A. , et al. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization[J]. Earth-Science Reviews, 2014, 131: 49-87. doi: 10.1016/j.earscirev.2013.12.004
-