金川岩浆镍钴硫化物矿床深部找矿勘查技术研究

张照伟, 谭文娟, 杜辉, 黑欢, 贺永康. 2023. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究. 西北地质, 56(6): 242-253. doi: 10.12401/j.nwg.2023168
引用本文: 张照伟, 谭文娟, 杜辉, 黑欢, 贺永康. 2023. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究. 西北地质, 56(6): 242-253. doi: 10.12401/j.nwg.2023168
ZHANG Zhaowei, TAN Wenjuan, DU Hui, HEI Huan, HE Yongkang. 2023. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China. Northwestern Geology, 56(6): 242-253. doi: 10.12401/j.nwg.2023168
Citation: ZHANG Zhaowei, TAN Wenjuan, DU Hui, HEI Huan, HE Yongkang. 2023. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China. Northwestern Geology, 56(6): 242-253. doi: 10.12401/j.nwg.2023168

金川岩浆镍钴硫化物矿床深部找矿勘查技术研究

  • 基金项目: 第二次青藏高原综合科学考察研究“稀贵金属(金、镍、钴、铬铁矿、铂族元素)科学考察与远景评估”(2019QZKK0801)、陕西省创新能力支撑计划–创新人才推进计划“岩浆作用成矿与找矿创新团队”(2020TD-030)及中国地质调查局项目“西北地区昆仑–秦岭等成矿区带重点调查区锂镍等战略性矿产调查评价”(DD20230048)联合资助。
详细信息
    作者简介: 张照伟(1976−),男,博士,研究员,博士生导师,从事岩浆铜镍钴硫化物矿床研究。E–mail:zhaoweiz@126.com
    通讯作者: 谭文娟(1980−),女,高级工程师,从事区域成矿规律研究与资源潜力评价。E–mail:781683087@qq.com
  • 中图分类号: P588.1;P597

Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China

More Information
  • 岩浆镍钴硫化物矿床是中国镍钴资源的主要来源,金川矿床在其占有绝对位置。但随着新兴产业的快速发展和低碳时代的来临,中国镍钴资源供给对外依赖程度不断攀升,镍钴战略性矿产资源安全受到严重威胁,深部找矿是实现镍钴资源增储上产的唯一途径。笔者在金川岩浆镍钴硫化物矿床的成矿地质特征、矿体分布规律系统研究的基础上,利用重磁电等地球物理异常信息与含矿岩体耦合关系,搭建地质–地球物理三维模型和深部找矿勘查技术有效性组合,梳理总结综合找矿标志及岩体含矿性评价指标,精确快速定位隐伏矿体可能的赋存空间,支撑服务金川岩浆镍钴硫化物矿床深部找矿实践,不断提升中国镍钴资源自我保障能力。

  • 加载中
  • 图 1  金川铜镍矿床大地构造位置(a)及龙首山隆起带区域地质简图(b)(据王亚磊等,2023修改)

    Figure 1. 

    图 2  金川矿床矿区地质简图(a)及矿床纵投影图(b)(据王亚磊等,2023修改)

    Figure 2. 

    图 3  金川岩浆型铜镍矿床成矿模式图(据李文渊,2022b修改)

    Figure 3. 

    图 4  金川镍钴矿床Ⅲ矿区地质简图(据甘肃省地质矿产局第六地质队,1984修改)

    Figure 4. 

    图 5  Ⅲ矿区ZK404钻孔中典型岩石类型、矿石类型及各矿石类型之间接触关系图

    Figure 5. 

    图 6  Ⅲ矿区ZK404钻孔柱状图及伟晶状二辉橄榄岩空间矿物组成及粒度的变化特征

    Figure 6. 

    图 7  金川矿床Ⅳ矿区纵投影图(据甘肃省地质矿产局第六地质队,1984修改)

    Figure 7. 

    图 8  金川矿区及外围剩余重力异常图

    Figure 8. 

    图 9  金川含矿超基性岩体分布与剩余重力异常图

    Figure 9. 

    图 10  金川含矿超基性岩体分布与剩余化极磁力异常图

    Figure 10. 

    图 11  重力数据三维反演结果切片图

    Figure 11. 

    图 12  磁力数据三维反演结果切片图

    Figure 12. 

    图 13  金川矿区超基性岩体三维地质建模图

    Figure 13. 

  • [1]

    陈华勇. 对我国矿床学未来发展方向的思考[J]. 地学前缘, 2020, 27 (2): 99-105 doi: 10.13745/j.esf.sf.2020.3.10

    CHEN Huayong. Meditations on the future development of ore deposit science in China[J]. Earth Science Frontiers, 2020, 27 (2): 99-105. doi: 10.13745/j.esf.sf.2020.3.10

    [2]

    陈列锰, 宋谢炎, Leonid V. Danyushevsky. 金川铜镍矿床金属硫化物中铂族元素赋存状态及成因[J]. 矿物学报, 2015, 35 (S1): 109 doi: 10.16461/j.cnki.1000-4734.2015.s1.080

    CHEN Liemeng, SONG Xieyan, Leonid V. Danyushevsky. Occurrence and genesis of PGEs during metal sulfide in Jinchuan magmatic Ni-Cu sulfide deposit[J]. Acta Mineralogica Sinica, 2015, 35 (S1): 109. doi: 10.16461/j.cnki.1000-4734.2015.s1.080

    [3]

    甘肃省地质矿产局第六地质队. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社, 1984: 1−229.

    [4]

    侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651−3652.

    HOU Zengqian, CHEN Jun, ZHAI Mingguo. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651−3652.

    [5]

    焦建刚, 高栋, 张国鹏, 等. 甘肃永昌北海子镁铁—超镁铁质岩体岩石学、地球化学及年代学研究[J]. 地学前缘, 2017, 24(2): 130-139

    JIAO Jiangang, GAO Dong, ZHANG Guopeng, et al. Petrology, geochemistry and chronology of Beihaizi mafic-ultramafic intrusions in Yongchang, Gansu Province[J]. Earth Science Frontiers, 2017, 24(2): 130-139.

    [6]

    李文渊. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 2022, 28(5): 793-820 doi: 10.12090/j.issn.1006-6616.20222810

    LI Wenyuan. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper -nickel -cobalt sulfide deposits in China [J]. Journal of Geomechanics, 2022, 28(5): 793-820. doi: 10.12090/j.issn.1006-6616.20222810

    [7]

    李文渊, 董福辰, 王永和, 等. 西北地区矿产资源潜力评价[M]. 武汉: 中国地质大学出版社, 2022b: 147−150

    [8]

    潘力, 何青林, 陈康, 等. 利用重磁资料解译川西地区深层断裂构造及预测火山岩顶界面深度[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 240−248.

    PAN Li, HE Qinglin, CHEN Kang, et al. Application of gravity and magnetic data to the interpretation of deep fault structures and prediction of volcanic rock top interface depth in the western Sichuan Basin, China [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(2): 240−248.

    [9]

    宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 38(4): 699-710 doi: 10.16111/j.0258-7106.2019.04.002

    SONG Xieyan. Current research status and important issues of magmatic sulfide deposits[J]. Mineral Deposits, 2019, 38(4): 699-710. doi: 10.16111/j.0258-7106.2019.04.002

    [10]

    汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995: 1−209

    [11]

    王辰, 刘建朝, 王浩然, 等. 甘肃金川二矿区岩体橄榄石组构特征研究[J]. 西北地质, 2018, 51(1): 13-22 doi: 10.3969/j.issn.1009-6248.2018.01.002

    WANG Chen, LIU Jianchao, WANG Haoran, et al. Fabric Characteristics of the Olivine from No. 2 Mining Area in the Jinchuan Deposit, Gansu Province[J]. Northwestern Geology, 2018, 51(1): 13-22. doi: 10.3969/j.issn.1009-6248.2018.01.002

    [12]

    王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750 doi: 10.16111/j.0258-7106.2019.04.005

    WANG Hui, FENG Chengyou, ZHANG Mingyu. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 2019, 38(4): 739-750. doi: 10.16111/j.0258-7106.2019.04.005

    [13]

    王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65: 3825–3838 doi: 10.1360/TB-2020-0202

    Wang Y, Zhong H, Cao Y H, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review (in Chinese) [J]. Chin Sci Bull, 2020, 65: 3825–3838. doi: 10.1360/TB-2020-0202

    [14]

    王岩, 王登红, 孙涛, 等. 中国镍矿成矿规律的量化研究与找矿方向探讨[J]. 地质学报, 2020, 94(1): 217-240 doi: 10.19762/j.cnki.dizhixuebao.2020107

    WANG Yan, WANG Denghong, SUN Tao, et al. A quantitative study of metallogenic regularity of nickel deposits in China and their prospecting outlook [J]. Acta Geologica Sinica, 2020, 94(1): 217-240. doi: 10.19762/j.cnki.dizhixuebao.2020107

    [15]

    王亚磊, 李文渊, 张照伟, 等. 金川铜镍硫化物矿床成矿物质深部预富集过程探讨[J]. 西北地质, 2012, 45(4): 321-333 doi: 10.3969/j.issn.1009-6248.2012.04.028

    WANG Yalei, LI Wenyuan, ZHANG Zhaowei, et al. The Preconcentration Process of Metal Mineral in the Deep Mgama Chamber of Jinchuan Ni-Cu Suphide Deposit[J]. Northwestern Geology, 2012, 45(4): 321-333. doi: 10.3969/j.issn.1009-6248.2012.04.028

    [16]

    王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 56(2): 133-150 doi: 10.12401/j.nwg.2023023

    WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology, 2023, 56(2): 133-150. doi: 10.12401/j.nwg.2023023

    [17]

    翟裕生. 矿床学思维方法探讨[J]. 地学前缘, 2020, 27(2): 1-12 doi: 10.13745/j.esf.sf.2020.3.6

    ZHAI Yusheng. On the method of thinking in studying mineral deposits[J]. Earth Science Frontiers, 2020, 27(2): 1-12. doi: 10.13745/j.esf.sf.2020.3.6

    [18]

    张伟波, 叶锦华, 陈秀法, 等. 全球钴矿资源分布与找矿潜力[J]. 资源与产业, 2018, 20(4): 56-61.

    HANG Weibo, YE Jinhua, CHEN Xiufa, et al. Global cobalt resources distribution and exploration potentials[J]. Resources & Industries, 2018, 20(4): 5-61.

    [19]

    张照伟, 钱兵, 王亚磊, 等. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示[J]. 西北地质, 2020, 53(3): 153-168 doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Understanding of metallogenic ore-forming mechanism and its indication of prospecting direction in Xiarihamu magmatic Ni-Co sulfide deposit, eastern Kunlun orogenic belt, Northwestern China[J]. Northwestern Geology, 2020, 53(3): 153-168. doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    [20]

    张照伟, 钱兵, 王亚磊, 等. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力[J]. 西北地质, 2021, 54(1): 82-99 doi: 10.19751/j.cnki.61-1149/p.2021.01.007

    ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Geological characteristics and prospecting potential of magmatic Ni-Cu sulfide deposits in Northwest China [J]. Northwestern Geology, 2021, 54(1): 82-99. doi: 10.19751/j.cnki.61-1149/p.2021.01.007

    [21]

    张照伟, 谭文娟, 王小红, 等. 西北地质调查与战略性矿产找矿勘查[J]. 西北地质, 2022, 55(3): 44-63 doi: 10.19751/j.cnki.61-1149/p.2022.03.004

    ZHANG Zhaowei, TAN Wenjuan, WANG Xiaohong, et al. Geological Survey and Prospecting of Strategic Minerals in Northwest China[J]. Northwestern Geology, 2022, 55(3): 44-63. doi: 10.19751/j.cnki.61-1149/p.2022.03.004

    [22]

    赵俊兴, 李光明, 秦克章, 等. 2019. 富含钴矿床研究进展与问题分析[J]. 科学通报, 64: 2484−2500

    ZHAO Junxing, LI Guangming, QIN Kezhang, et al. A review of the types and ore mechanism of the cobalt deposits (in Chinese) [J]. Chin Sci Bull, 2019, 64: 2484–2500.

    [23]

    Barnes, S. J. , Godel, B. , Gurer, D. , et al. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni-rich magmatic sulfides[J]. Economic Geology, 2013, 108: 1971-1982. doi: 10.2113/econgeo.108.8.1971

    [24]

    Chen L M, Song X Y, Danyushevsky L V, et al. A laser ablation ICP- MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu deposit, NW China[J]. Ore Geology Reviews, 2015, 65: 955–967. doi: 10.1016/j.oregeorev.2014.07.011

    [25]

    Duan J, Li C, Qian Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE ten- ors in the Jinchuan Ni-Cu-PGE deposit, NW China. Miner De- posita, 2016, 51: 557−574.

    [26]

    Li C, Ripley E M. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis and exploration implica- tions[J]. Economic Geology, 2011, 17: 163–180.

    [27]

    Li C S, Ripley E M, Tao Y. Magmatic Ni-Cu and Pt-Pd Sulfide Deposits in China[J]. 2019, Society of Economic Geologists, Inc. SEG Special Publications, 22: 483–508.

    [28]

    Maier W D, Groves D. I. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits[J]. Mineralium Deposita, 2011, 46: 841-857. doi: 10.1007/s00126-011-0339-6

    [29]

    Naldrett A J. Fundamentals of magmatic sulfide deposits[J]. Review Economic Geology, 2011, 17: 1−50.

    [30]

    Schulz K J, DeYoung J H, Seal R R, et al. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply[R]. US Geological Survey Professional Paper Series 1802, 2018, 797.

    [31]

    Sisir K M, William L G. Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time[M]. Candice Janco, Elsevier Inc, 2018: 1−384.

    [32]

    Tang Z L, Song X Y, Su S G. Ni-Cu deposits related to high Mg basaltic magma, Jinchuan, western China. In: Li C, Ripley EM (eds). New developments in magmatic Ni-Cu and PGE deposits[J]. Beijing : Geological Publishing House, 2009: 121−140.

    [33]

    USGS. Mineral commodity summaries[R]. U. S. Geological Survey, 2019: 200.

    [34]

    Yao Z S, Qin K Z, Mungall J E. Tectonic controls on Ni and Cu contents of primary mantle-derived magmas for the formation of magmatic sulfide deposits[J]. Am Miner, 2018, 103: 1545−1567. doi: 10.2138/am-2018-6392

    [35]

    Zhang Z W, Wang Y L, Wang C Y, et al. Mafic-ultramafic magma activity and copper-nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China[J]. China Geology, 2019, 2(4): 467-477.

  • 加载中

(13)

计量
  • 文章访问数:  630
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2023-06-30
修回日期:  2023-08-16
录用日期:  2023-08-24
刊出日期:  2023-12-20

目录