Formation and Demise of Late Carboniferous to Early Permian Carbonate Platforms on the Southern Margin of the Central Asian Orogenic Belt
-
摘要:
碳酸盐岩台地具有重要的古海洋环境指示意义。中亚造山带南缘在晚石炭世—早二叠世出现大规模分布的碳酸盐岩地层,但这些岩石地层单元缺少精确时代约束和系统对比研究,因而制约了进一步古地理和古环境意义的讨论。此次研究报道了阿拉善地块北缘“阿木山组”实测剖面的地层层序,提供了火山岩夹层的锆石U-Pb同位素年龄,精确约束了碳酸盐岩台地的时代和分布。研究表明:研究区恩格尔乌苏断裂带以北的“阿木山组”应修订为“格根敖包组”,以碎屑岩为主,时代为晚石炭世卡西莫夫期—早二叠世阿瑟尔期(<296.1 Ma)。该断裂带以南的阿木山组的碳酸盐岩台地以连续出露、富含䗴类化石的灰岩为标志,时代为晚石炭世格舍尔期—早二叠世阿瑟尔期(303.2~295.3 Ma)。笔者根据研究区与甘肃北山、内蒙古中部等地区的高精度地层对比提出,中亚造山带南缘的碳酸盐岩台地是全球晚石炭世海侵和古亚洲洋南缘亚热带气候的产物,早—中二叠世的裂谷作用是这些碳酸盐台地消亡的主要原因。
Abstract:Carbonate platforms have significant implications for the ancient marine environment. During the Late Carboniferous to Early Permian, continuous deposited carbonate strata were widely distributed on the southern margin of the Central Asian Orogenic Belt. However, these rock units lack precise age constraints and systematic correlation, thus limiting further discussions on their paleogeographic and paleoenvironmental significance. This study reports the stratigraphic sequence of the "Amushan Formation" measured sections on the northern margin of the Alxa Block and provides zircon U-Pb isotope ages from volcanic intercalations, precisely constraining the age and distribution of the carbonate platforms. The results indicate that the "Amushan Formation" north of the Engerwusu Fault Zone should be revised to the "Gegenaobao Formation," which is dominated by clastic rocks and dates to the Kasimovian to Asselian (<296.1 Ma). South of the fault zone, the carbonate platform of the Amushan Formation is characterized by continuously deposited and fusulinid-rich limestone with ages from the Gzhelian to Asselian (303.2~295.3 Ma). Based on high-resolution stratigraphic correlations with areas such as Beishan in Gansu and central Inner Mongolia, this study proposes that the carbonate platforms at the southern margin of the Central Asian Orogenic Belt were a product of global Late Carboniferous transgression and the subtropical climate of the southern margin of the Paleo-Asian Ocean. The rifting during the Early to Middle Permian was the primary reason for the demise of these carbonate platforms.
-
Key words:
- Alxa Block /
- carbonate platform /
- isotopic chronology /
- Late Carboniferous–Early Permian /
- paleo-ocean
-
-
图 1 中亚造山带构造位置图(a)、研究区上石炭统—下二叠统代表剖面分布图(b)及阿拉善地块北缘地质简图(c)(据Niu, et al., 2021,郑和荣等,2010和卢进才等,2012修编)
Figure 1.
表 1 中亚造山带南缘晚石炭世—早二叠世火山岩夹层LA-ICP-MS锆石U-Pb年龄数据统计表
Table 1. LA-ICP-MS zircon U-Pb age of Late Carboniferan-Early Permian volcanic intercalations in the southern margin of the Central Asian orogenic belt
测点
编号含量 (10–6) 232Th/238U 同位素比值 同位素年龄 (Ma) 谐和度 206Pb 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 11ZSL-TW1 英安岩 珠斯棱剖面 −01 51.0 213.6 266.9 0.80 0.0514 0.0061 0.3127 0.0356 0.0441 0.0014 258 199 276 28 278 8 99 −02 113.0 90.0 122.8 0.73 0.0864 0.0075 2.7734 0.2265 0.2327 0.0077 1347 107 1348 61 1349 40 100 −03 38.0 124.6 199.9 0.62 0.0525 0.0088 0.3344 0.0540 0.0462 0.0019 309 283 293 41 291 12 101 −04 147.9 716.9 795.4 0.90 0.0534 0.0049 0.3480 0.0301 0.0472 0.0012 348 149 303 23 297 8 102 −05 116.4 335.0 593.1 0.56 0.0557 0.0070 0.3358 0.0410 0.0438 0.0013 439 286 294 31 276 8 107 −06 37.4 175.4 233.3 0.75 0.0529 0.0189 0.3411 0.1193 0.0468 0.0039 325 504 298 90 295 24 101 −07 59.8 188.5 292.7 0.64 0.0476 0.0096 0.2982 0.0589 0.0454 0.0017 82 354 265 46 286 11 93 −08 33.3 124.4 176.9 0.70 0.0585 0.0098 0.3570 0.0578 0.0443 0.0019 547 281 310 43 279 12 111 −09 177.3 73.2 283.7 0.26 0.0693 0.0028 1.4321 0.0439 0.1499 0.0027 908 34 902 18 900 15 100 −10 59.3 187.2 314.9 0.59 0.0583 0.0087 0.3520 0.0505 0.0438 0.0017 541 248 306 38 276 11 111 −11 66.2 211.8 359.7 0.59 0.0505 0.0078 0.3275 0.0489 0.0471 0.0018 218 261 288 37 296 11 97 −12 40.3 167.1 200.1 0.84 0.0502 0.0095 0.3099 0.0566 0.0448 0.0021 205 293 274 44 282 13 97 −13 246.1 82.3 214.3 0.38 0.1061 0.0048 4.4894 0.1655 0.3071 0.0066 1733 37 1729 31 1726 32 100 −14 47.1 108.7 244.8 0.44 0.0533 0.0070 0.3440 0.0433 0.0468 0.0016 341 219 300 33 295 10 102 −15 65.5 251.4 354.6 0.71 0.0536 0.0058 0.3305 0.0342 0.0447 0.0013 356 179 290 26 282 8 103 −16 42.0 136.3 224.5 0.61 0.0520 0.0053 0.3153 0.0305 0.0440 0.0012 287 167 278 24 277 8 100 −17 96.7 311.9 532.9 0.59 0.0526 0.0088 0.4182 0.0675 0.0577 0.0024 310 282 355 48 362 15 98 −18 57.2 262.5 322.6 0.81 0.0511 0.0105 0.3259 0.0652 0.0463 0.0023 247 317 286 50 291 14 98 −19 66.8 293.0 376.8 0.78 0.0529 0.0047 0.3086 0.0258 0.0423 0.0011 324 144 273 20 267 7 102 −20 64.5 97.8 237.4 0.41 0.0550 0.0081 0.4993 0.0707 0.0659 0.0026 411 245 411 48 412 16 100 19264-TW1 玄武岩 264界碑剖面 −01 323.3 10.0 1330.1 0.01 0.0536 0.0012 0.3799 0.0078 0.0514 0.0004 355 50 327 6 323 2 101 −02 67.3 308.6 278.2 1.11 0.0572 0.0037 0.3691 0.0235 0.0468 0.0006 498 147 319 17 295 4 108 −03 90.1 194.9 302.5 0.64 0.0606 0.0024 0.5691 0.0215 0.0681 0.0006 624 86 457 14 425 4 108 −04 53.5 125.9 206.8 0.61 0.0543 0.0018 0.4825 0.0148 0.0645 0.0006 384 52 400 10 403 4 99 −05 50.9 149.1 260.3 0.57 0.0561 0.0026 0.3703 0.0167 0.0480 0.0006 455 78 320 12 302 4 106 −06 140.9 244.3 509.0 0.48 0.0549 0.0009 0.5107 0.0073 0.0676 0.0004 407 21 419 5 421 3 100 −07 32.4 137.5 182.3 0.75 0.0496 0.0037 0.3197 0.0231 0.0468 0.0008 174 131 282 18 295 5 96 −08 43.2 94.6 204.0 0.46 0.0567 0.0029 0.3677 0.0183 0.0470 0.0005 480 116 318 14 296 3 107 −09 159.8 49.9 665.6 0.07 0.0527 0.0011 0.4299 0.0083 0.0592 0.0004 316 31 363 6 371 3 98 −10 49.8 193.7 251.2 0.77 0.0809 0.0022 0.5370 0.0138 0.0482 0.0005 1218 36 436 9 304 3 143 −11 265.9 353.9 1078.8 0.33 0.0545 0.0010 0.4766 0.0077 0.0635 0.0004 392 24 396 5 397 3 100 −12 10.8 27.9 48.5 0.58 0.0527 0.0047 0.4207 0.0368 0.0579 0.0012 316 161 357 26 363 7 98 −13 116.7 568.8 369.7 1.54 0.0557 0.0015 0.5666 0.0141 0.0738 0.0006 441 41 456 9 459 4 99 −14 79.2 143.9 387.7 0.37 0.0775 0.0027 0.5089 0.0165 0.0476 0.0005 1135 47 418 11 300 3 139 −15 139.4 193.3 516.1 0.37 0.0558 0.0017 0.5142 0.0150 0.0669 0.0005 443 69 421 10 417 3 101 −16 80.6 222.9 357.4 0.62 0.0612 0.0020 0.4227 0.0129 0.0501 0.0005 647 49 358 9 315 3 114 −17 9.3 20.3 50.5 0.40 0.0472 0.0054 0.3097 0.0345 0.0476 0.0012 60 198 274 27 300 7 91 −18 30.3 115.1 130.3 0.88 0.0596 0.0079 0.4223 0.0556 0.0514 0.0009 589 301 358 40 323 6 111 −19 46.5 172.4 248.8 0.69 0.0561 0.0037 0.3599 0.0232 0.0466 0.0005 455 149 312 17 293 3 106 −20 33.2 53.7 101.2 0.53 0.0600 0.0028 0.6652 0.0294 0.0805 0.0010 603 74 518 18 499 6 104 19CGE-TW1 玄武岩 查古尔剖面 −01 19.1 58.4 94.5 0.62 0.0546 0.0039 0.3649 0.0255 0.0485 0.0008 396 129 316 19 305 5 104 −02 55.9 164.0 268.4 0.61 0.0553 0.0019 0.3694 0.0118 0.0485 0.0005 424 55 319 9 305 3 105 −03 18.4 77.3 95.1 0.81 0.0520 0.0031 0.3444 0.0201 0.0481 0.0007 285 109 301 15 303 4 99 −04 20.6 71.5 110.9 0.64 0.0528 0.0032 0.3505 0.0207 0.0482 0.0007 318 109 305 16 303 4 101 −05 16.0 56.1 83.9 0.67 0.0522 0.0033 0.3476 0.0212 0.0483 0.0007 294 115 303 16 304 4 100 −06 25.4 82.8 132.4 0.63 0.0514 0.0026 0.3429 0.0167 0.0484 0.0006 258 90 299 13 305 4 98 −07 29.7 149.1 157.6 0.95 0.0541 0.0026 0.3567 0.0164 0.0478 0.0006 374 82 310 12 301 4 103 −08 28.7 57.0 111.8 0.51 0.0547 0.0027 0.4942 0.0233 0.0655 0.0008 401 84 408 16 409 5 100 −09 12.8 52.2 62.7 0.83 0.0543 0.0047 0.3605 0.0306 0.0482 0.0008 381 198 313 23 303 5 103 −10 19.7 65.6 106.4 0.62 0.0564 0.0030 0.3730 0.0191 0.0480 0.0006 467 90 322 14 302 4 107 −11 54.9 187.5 290.8 0.64 0.0533 0.0020 0.3524 0.0123 0.0480 0.0005 341 61 307 9 302 3 102 −12 24.6 130.8 135.1 0.97 0.0493 0.0027 0.3249 0.0174 0.0478 0.0006 162 98 286 13 301 4 95 −13 22.1 63.0 95.2 0.66 0.0499 0.0077 0.3286 0.0508 0.0478 0.0007 190 313 288 39 301 4 96 −14 33.1 140.7 177.6 0.79 0.0548 0.0024 0.3647 0.0155 0.0483 0.0006 404 75 316 12 304 3 104 −15 12.7 40.5 67.4 0.60 0.0558 0.0037 0.3722 0.0237 0.0483 0.0008 445 114 321 18 304 5 106 −16 22.1 76.6 114.0 0.67 0.0469 0.0030 0.3125 0.0195 0.0483 0.0007 44 109 276 15 304 4 91 −17 21.9 71.2 117.6 0.61 0.0555 0.0030 0.3703 0.0191 0.0484 0.0006 430 91 320 14 305 4 105 −18 20.8 66.6 114.2 0.58 0.0501 0.0022 0.3314 0.0139 0.0480 0.0005 199 77 291 11 302 3 96 −19 17.7 63.4 95.3 0.67 0.0538 0.0039 0.3579 0.0255 0.0483 0.0007 362 168 311 19 304 4 102 −20 26.0 117.3 137.5 0.85 0.0563 0.0025 0.3747 0.0161 0.0483 0.0006 465 74 323 12 304 4 106 18SD-TW1 安山岩 陶来剖面 −01 7.9 22.1 35.0 0.63 0.0560 0.0074 0.3709 0.0480 0.0480 0.0015 454 234 320 36 302 9 106 −02 9.8 32.5 43.5 0.75 0.0546 0.0060 0.3617 0.0392 0.0480 0.0013 395 196 313 29 302 8 104 −03 15.6 71.4 72.7 0.98 0.0502 0.0046 0.3188 0.0285 0.0460 0.0010 203 161 281 22 290 6 97 −04 12.4 33.8 56.9 0.59 0.0544 0.0058 0.3510 0.0367 0.0468 0.0011 386 191 305 28 295 7 103 −05 10.4 42.7 47.7 0.90 0.0490 0.0056 0.3161 0.0355 0.0468 0.0012 146 205 279 27 295 7 95 −06 22.2 77.8 100.9 0.77 0.0545 0.0042 0.3559 0.0271 0.0473 0.0009 391 136 309 20 298 6 104 −07 14.5 60.4 66.1 0.91 0.0523 0.0054 0.3418 0.0343 0.0474 0.0011 299 183 299 26 298 7 100 −08 9.8 24.6 45.3 0.54 0.0595 0.0073 0.3834 0.0459 0.0467 0.0014 586 210 330 34 294 9 112 −09 15.2 44.8 70.3 0.64 0.0502 0.0052 0.3246 0.0331 0.0468 0.0011 206 185 285 25 295 7 97 −10 17.7 70.0 80.6 0.87 0.0601 0.0055 0.3956 0.0349 0.0477 0.0011 606 151 338 25 301 7 112 −11 11.6 49.3 53.6 0.92 0.0501 0.0068 0.3264 0.0435 0.0472 0.0014 201 243 287 33 297 8 97 −12 13.3 44.6 61.5 0.72 0.0573 0.0068 0.3743 0.0435 0.0473 0.0013 505 211 323 32 298 8 108 −13 14.4 38.1 68.1 0.56 0.0539 0.0059 0.3454 0.0366 0.0464 0.0012 369 192 301 28 293 7 103 −14 16.7 53.5 79.2 0.67 0.0545 0.0050 0.3466 0.0310 0.0461 0.0010 392 162 302 23 291 6 104 −15 31.9 149.0 147.9 1.01 0.0511 0.0033 0.3342 0.0212 0.0475 0.0008 244 114 293 16 299 5 98 −16 25.4 151.2 120.2 1.26 0.0519 0.0033 0.3351 0.0211 0.0469 0.0008 279 113 293 16 295 5 99 −17 31.7 175.0 157.0 1.11 0.0527 0.0033 0.3262 0.0198 0.0449 0.0008 316 107 287 15 283 5 101 −18 20.3 77.0 95.4 0.81 0.0497 0.0041 0.3237 0.0260 0.0472 0.0009 181 144 285 20 297 6 96 −19 18.8 94.7 88.2 1.07 0.0521 0.0040 0.3404 0.0256 0.0474 0.0009 288 136 297 19 299 6 99 −20 16.0 45.7 75.4 0.61 0.0545 0.0044 0.3557 0.0280 0.0473 0.0010 391 141 309 21 298 6 104 -
[1] doi: 10.3969/j.issn.1671-2552.2006.05.007鲍庆中, 张长捷, 吴之理, 等 . 内蒙古东南部西乌珠穆沁旗地区石炭纪—二叠纪岩石地层和层序地层[J]. 地质通报,2006 ,25 (5 ):572 −579 . doi: 10.3969/j.issn.1671-2552.2006.05.007BAO Qingzhong, ZHANG Changjie, WU Zhili, et al . Carboniferous–Permian marine lithostratigraphy and sequence stratigraphy in Xi Ujimqin Qi, southeastern Inner Mongolia, China[J]. Geological Bulletin of China,2006 ,25 (5 ):572 −579 .[2] doi: 10.3969/j.issn.1671-2552.2011.06.016卜建军, 段先锋, 牛志军 . 内蒙古西部额济纳旗及邻区中二叠统腕足类动物群的特征和时代[J]. 地质通报,2011 ,30 (6 ):943 −954 . doi: 10.3969/j.issn.1671-2552.2011.06.016BU Jianjun, DUAN Xianfeng, NIU Zhijun . Characteristics and geological age of Middle Permian brachiopod fauna from Ejin Banner and its vicinities, western Inner Mongolia[J]. Geological Bulletin of China,2011 ,30 (6 ):943 −954 .[3] 卜建军, 牛志军, 吴俊, 等 . 内蒙古西部额济纳旗及邻区上石炭统一下二叠统阿木山组的沉积特征和时代[J]. 地质通报,2012 ,31 (10 ):1669 −1683 .BU Jianjun, NIU Zhijun, WU Jun, et al . Sedimentary characteristics and age of Amushan Formation in Ejin Banner and its adjacent areas, western Inner Mongolia[J]. Geological Bulletin of China,2012 ,31 (10 ):1669 −1683 .[4] 丁蕴杰, 夏国英, 段承华, 等 . 内蒙古哲斯地区早二叠世地层及动物群[A]. 中国地质科学院天津地质矿产研究所文集[C].1984 ,10 :1 −244 .DING Yunjie, XIA Guoying, DUAN Chenghua, et al . Study on the Early Permian stratigraphy and fauna in Zhesi District, Inner Mongolia[A]. Bulletin Tianjin Institute of Geology and Mineral Resources[C].1984 ,10 :1 −244 .[5] doi: 10.3321/j.issn:0371-5736.1998.02.001范炳恒 . 华北地台石炭系—二叠系界线的腕足动物标志[J]. 地质论评,1998 ,44 (2 ):113 −119 . doi: 10.3321/j.issn:0371-5736.1998.02.001FAN Bingheng . The brachiopod indicator on the Permo–Carboniferous boundary in the North China Platform[J]. Geological Review,1998 ,44 (2 ):113 −119 .[6] 甘肃省地质局区域地质调查队. 1/20万因格井幅区域地质图及调查报告(K4831)[R].甘肃省地质局区域地质调查队, 1980. [7] 甘肃省省地质局地质力学区域测量队. 1/20万拐子湖幅区域地质图及调查报告(K4819)[R].甘肃省地质局区域地质调查队, 1981. [8] 郭硕, 滕学建, 刘洋, 等 . 内蒙古狼山西北缘乌兰敖包地区“阿木山组”沉积时限、物源特征及其地质意义简[J]. 地球科学,2019 ,44 (1 ):193 −205 .GUO Shuo, TENG Xuejian, LIU Yang, et al . The age and potential provenance information of Amushan formation in Wulanaobao area, northwestern of Langshan, Inner Mongolia and its geological significance[J]. Earth Science,2019 ,44 (1 ):193 −205 .[9] 韩建修, 郭胜哲, 马秀, 等 . 大兴安岭南部中、晚石炭世地层[J]. 地层学杂志,1979 ,3 (3 ):214 −224 .HAN Jianxiu, GUO Shengzhe, MA Xiu, et al . Middle and Late Carboniferous strata in the southern Daxinganling[J]. Acta Stratigraphica Sinica,1979 ,3 (3 ):214 −224 .[10] doi: 10.3969/j.issn.1671-2552.2012.10.013韩伟, 刘溪, 李金超, 等 . 内蒙古乌拉特后旗乌兰敖包地区石炭系—二叠系阿木山组沉积环境[J]. 地质通报,2012 ,31 (10 ):1684 −1691 . doi: 10.3969/j.issn.1671-2552.2012.10.013HAN Wei, LIU Xi, LI Jinchao, et al . Sedimentary environment of Carboniferous–Permian Amushan Formation in Wulanaobao area of Urad Rear Banner, Inner Mongolia[J]. Geological Bulletin of China,2012 ,31 (10 ):1684 −1691 .[11] 李红英, 周志广, 李鹏举, 等 . 内蒙古西乌旗晚石炭世–早二叠世伸展事件——来自大石寨组火山岩的证据[J]. 大地构造与成矿学,2016 ,40 (5 ):996 −1013 .LI Hongying, ZHOU Zhiguang, LI Pengjun, et al . A Late Carboniferous-Early Permian extensional event in Xi Ujimqin Qi, Inner Mongolia–Evidence from volcanic rocks of Dashizhai Formation[J]. Geotectonica et Metallogenia,2016 ,40 (5 ):996 −1013 .[12] doi: 10.3969/j.issn.0001-5717.2015.12.015李艳广, 汪双双, 刘民武, 等 . 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报,2015 ,89 (12 ):2400 −2418 . doi: 10.3969/j.issn.0001-5717.2015.12.015LI Yanguang, WANG Shuangshuang, LIU Minwu, et al . U-Pb dating study of Baddeleyite by LA-ICP-MS: Technique and application[J]. Acta Geological Sinica,2015 ,89 (12 ):2400 −2418 .[13] 李艳广, 靳梦琪, 汪双双, 等 . LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质,2023 ,56 (4 ):274 −282 .LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al . Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology,2023 ,56 (4 ):274 −282 .[14] 刘宝珺, 曾允孚. 岩相古地理基础和工作方法[M]. 北京: 地质出版社, 1985. LIU Baojun, ZENG Yongfu. Lithofacies and Paleogeography: Principles and application [M]. Beijing: Geological Publishing House, 1985. [15] 卢进才, 陈高潮, 李玉宏, 等. 银额盆地及其邻区石炭—二叠系油气地质条件与资源前景[M]. 北京: 地质出版社, 2012. [16] 卢进才, 史冀忠, 牛亚卓, 等 . 内蒙古西部北山-银额地区石炭纪-二叠纪层序地层与沉积演化[J]. 岩石学报,2018 ,34 (10 ):3101 −3115 .LU Jincai, SHI Jizhong, NIU Yazhuo, et al . The Carboniferous–Permian sequence stratigraphy and sedimentary evolution of Beishan–Yin'e region, western Inner Mongolia[J]. Acta Petrologica Sinica,2018 ,34 (10 ):3101 −3115 .[17] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991. [18] 内蒙古自治区地质矿产局. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996. [19] 内蒙古自治区第一区域地质调查队. 1/20万乌尔特幅区域地质图及调查报告(K4822)[R]. 内蒙古自治区第一区域地质调查队, 1982. [20] 宁夏回族自治区地质局区域地质调查队. 1/20万乌力吉幅区域地质图及调查报告(K4827) [R]. 宁夏回族自治区地质局区域地质调查队, 1980. [21] 牛亚卓, 卢进才, 刘池阳, 等 . 甘肃北山地区上石炭统—下二叠统干泉组的时代、分布及其构造意义[J]. 地质论评,2018 ,64 (4 ):806 −827 .NIU Yazhuo, LU Jincai, LIU Chiyang, et al . Geochronology and distribution of the Upper Carboniferous–Lower Permian Ganquan Formation in the Beishan Region, northwestern China and its tectonic implication[J]. Geological Review,2018 ,64 (4 ):806 −827 .[22] 盛金章. 内蒙白云鄂博附近上石炭纪的䗴科[J]. 古生物学报, 1958, 6(1): 37–45. SHENG Jinzhang. Upper Carboniferous fusulinids from Baiyunebo, Inner Mongolia [J]. Acta Palaeontologica Sinica, 1958, 6(1): 37–45. [23] 史冀忠, 魏建设, 姜亭, 等. 银额盆地石炭系—二叠系阿木山组碳酸盐岩地球化学特征及古海洋环境[J]. 西北地质, 2024, 57(6): 113−126. SHI Jizhong, WEI Jianshe, JIANG Ting, et al. Geochemical characteristics and paleo-oceanic environment of carbonate rocks of Carboniferous-Permian Amushan Formation in Yingen-Ejin Banner Basin: A case study of Wuliji–Taolai Section[J]. Northwestern Geology, 2024, 57(6): 113−126. [24] 苏养正 . 内蒙古草原地层区的古生代地层[J]. 吉林地质,1996 ,15 (3−4 ):42 −54 .SU Yangzheng . Paleozoic stratigraphy of Nei Mongol grass stratigraphical province[J]. Jilin Geology,1996 ,15 (3−4 ):42 −54 .[25] 王文宝, 李卫星, 雷聪聪, 等 . 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质,2024 ,57 (3 ):29 −43 .WANG Wenbao, LI Weixing, LEI Congcong, et al . Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology,2024 ,57 (3 ):29 −43 .[26] 田坤烜, 史宇坤, 闫振 . 内蒙古苏尼特右旗德言其庙剖面二叠纪䗴类动物群[J]. 微体古生物学报,2019 ,36 (3 ):232 −250 .TIAN Kunxuan, SHI Yukun, YAN Zhen . Permian fusulinids from the Deyanqimiao Ⅲ section of Sonid Right Banner, Inner Mongolia[J]. Acta Micropalaeontologica Sinica,2019 ,36 (3 ):232 −250 .[27] 吴妍蓉, 周海, 赵国春, 等 . 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质,2024 ,57 (3 ):11 −28 .WU Yanrong, ZHOU Hai, ZHAO Guochun, et al . Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology,2024 ,57 (3 ):11 −28 .[28] 吴泰然, 何国琦 . 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报,1993 ,67 (2 ):97 −108 .WU Tairan, HE Guoqi . Tectonic units and their fundamental characteristics on the northern margin of the Alxa Block[J]. Acta Geologica Sinica,1993 ,67 (2 ):97 −108 .[29] 徐备, 赵盼, 鲍庆中, 等 . 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报,2014 ,30 (7 ):1841 −1857 .XU Bei, ZHAO Pan, BAO Qingzhong, et al . Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt[J]. Acta Petrologica Sinica,2014 ,30 (7 ):1841 −1857 .[30] 杨海星, 高利东, 高玉石, 等 . 内蒙古霍林河地区晚石炭世本巴图组火山岩年代学、地球化学特征及构造背景[J]. 中国地质,2020 ,47 (4 ):281 −293 .YANG Haixing, GAO Lidong, GAO Yushi, et al . The chronology, geochemical characteristics and tectonic setting of the volcanic rocks in the Benbatu Formation of Huolinhe area, Inner Mongolia[J]. Geology in China,2020 ,47 (4 ):281 −293 .[31] 张海迪, 陈博, 吕鹏瑞, 等 . 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U-Pb年代学及地球化学的证据[J]. 西北地质,2021 ,54 (3 ):51 −65 .ZHANG Haidi, CHEN Bo, LÜ Pengrui, et al . The Petrogenesis and Geological Significance of the Hornblende Gabbro in Western Huangshan of East Tianshan: Evidence from Zircon U-Pb Chronology and Geochemistry[J]. Northwestern Geology,2021 ,54 (3 ):51 −65 .[32] 张建新, 宫江华 . 阿拉善地块性质和归属的再认识[J]. 岩石学报,2018 ,34 (4 ):940 −962 .ZHANG Jianxin, GONG Jianghua . Revisiting the nature and affinity of the Alxa Block[J]. Acta Petrologica Sinica,2018 ,34 (4 ):940 −962 .[33] 张晓飞, 周毅, 刘俊来, 等 . 内蒙古西乌旗大石寨组火山岩年代学和地球化学特征及地质意义[J]. 岩石学报,2018 ,34 (6 ):1775 −1791 .ZHANG Xiaofei, ZHOU Yi, LIU Junlai, et al . Geochronology and geochemistry for volcanic rocks of Dashizhai Formation and its geological significance in Xi U jimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica,2018 ,34 (6 ):1775 −1791 .[34] 张研 . 内蒙古巴丹吉林沙漠南缘额肯阿尔斯楞地区早二叠世腕足动物群[J]. 西北地质科学,1990 ,28 :57 −66 .ZHANG Yan . Early Permian brachiopod fauna from Ekenalsileng region of Badain Jaran Desert south margin, Nei Mongol[J]. Northwest Geoscience,1990 ,28 :57 −66 .[35] doi: 10.12029/gc20160322张玉清, 张婷 . 内蒙古阿木山组[J]. 中国地质,2016 ,43 (3 ):1000 −1015 . doi: 10.12029/gc20160322ZHANG Yuqing, ZHANG Ting . Amushan Formation in Inner Mongolia[J]. Geology in China,2016 ,43 (3 ):1000 −1015 .[36] 张志存, 盛金章 . 内蒙古白乃庙Parafusulina动物群[J]. 微体古生物学报,1987 ,4 (3 ):237 −246 .ZHANG Zhicun, SHENG Jinzhang . Parafusilina fauna from Bainaimiao, Nei Mongol[J]. Acta Mircopalaeontologica Sinica,1987 ,4 (3 ):237 −246 .[37] 郑和荣, 胡宗全. 中国前中生代构造–岩相古地理图集[M]. 北京: 地质出版社, 2010. [38] doi: 10.1016/S0009-2541(02)00195-XAndersen T . Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology,2002 ,192 :59 −79 .[39] doi: 10.1016/j.earscirev.2020.103091Cao J, Xia L W, Wang T T, et al . An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews,2020 ,202 :103091 .[40] doi: 10.1017/S0016756820000965Chen Y, Wu T R, Zhang Z C . Detrital zircon U–Pb–Hf isotopes for the Permo-Carboniferous sediments in the northern Alxa area, NW China: provenance and tectonic implications for the middle segment of the Central Asian Orogenic Belt[J]. Geological Magazine,2021 ,158 (5 ):875 −890 .[41] doi: 10.1144/0016-76492007-036Fielding C R, Frank T D, Birgenheier L P, et al . Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society,2008 ,165 (1 ):129 −140 .[42] Flügel E. Microfacies of carbonate rocks: analysis, interpretation and application [M]. Verlag Berlin Heidelberg, Springer, 2010. [43] Haq B U, Schutter S R . A chronology of Paleozoic sea-level changes[J]. Science,2008 ,5898 (322 ):64 −68 .[44] Isbell J L, Vesely F F, Rosa E L M, et al. Evaluation of physical and chemical proxies used to interpret past glaciations with a focus on the late Paleozoic Ice Age [J]. Earth-Science Reviews, 2021: 103756. [45] doi: 10.1130/B32023.1Liu Q, Zhao G C, Han Y G, et al . Timing of the final closure of the middle segment of the Paleo-Asian Ocean: Insights from geochronology and geochemistry of Carboniferous–Triassic volcanosedimentary successions in western Inner Mongolia, China[J]. GSA Bulletin,2019 ,131 (5−6 ):941 −965 .[46] doi: 10.1016/j.chemgeo.2021.120168Lu J, Wang Y, Yang M F, et al . Records of volcanism and organic carbon isotopic composition (δ13Corg) linked to changes in atmospheric PCO2 and climate during the Pennsylvanian icehouse interval[J]. Chemical Geology,2021 ,570 :120168 .[47] doi: 10.1016/j.jseaes.2018.06.019Niu Y Z, Liu C Y, Shi G R, et al . Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure[J]. Journal of Asian Earth Sciences,2018 ,167 :11 −32 .[48] Ludwig K R. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0) [M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003. [49] doi: 10.1016/j.earscirev.2021.103738Niu Y Z, Shi G R, Ji W H, et al . Paleogeographic evolution of a Carboniferous–Permian sea in the southernmost part of the Central Asian Orogenic Belt, NW China: Evidence from microfacies, provenance and paleobiogeography[J]. Earth-Science Reviews,2021 ,220 :103738 .[50] Reading H G. Sedimentary environments: processes, facies and stratigraphy [M]. Oxford: Blackwell Science Inc, 1996. [51] doi: 10.1038/364299a0Sengör A M C., Natalin B A, Burtman V S . Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature,1993 ,364 :299 −307 .[52] doi: 10.1146/annurev-earth-060313-054826Sengör A M C, Natalin B A, Sunal G, et al . The tectonics of the Altaids: crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130 Ma ago[J]. Annual Review of Earth and Planetary Sciences,2018 ,46 :439 −494 .[53] Shen S Z, Zhang H, Shang Q H, et al . Permian stratigraphy and correlation of Northeast China: A review[J]. Journal of Asian Earth Sciences,2006 ,26 (3 ):304 −326 .[54] doi: 10.1016/j.jseaes.2016.06.022Shi G Z, Song G Z, Wang H, et al . Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry[J]. Journal of Asian Earth Sciences,2016 ,127 :100 −118 .[55] doi: 10.1144/jgs2020-046Song D F, Xiao W J, Windley B F., et al . Carboniferous to Early Triassic magmatism and accretion in Alxa (NW China): implications for accretionary orogenesis of the southern Altaids[J]. Journal of the Geological Society,2020 ,177 (5 ):997 −1012 .[56] Tian R S, Xie G A, Zhu W B, et al . Late Paleozoic Tectonic Evolution of the Paleo-Asian Ocean in the Northern Alxa Block (NW China)[J]. Tectonics,2020 ,39 (8 ):e2020T −e6359T .[57] doi: 10.1017/S0016756815001077Wang Y, Luo Z H, Santosh M, et al . The Liuyuan Volcanic Belt in NW China revisited: evidence for Permian rifting associated with the assembly of continental blocks in the Central Asian Orogenic Belt[J]. Geological Magazine,2017 ,154 (2 ):265 −285 .[58] doi: 10.1016/j.earscirev.2017.09.020Xiao W J, Windley B F, Han C M, et al . Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews,2018 ,186 :94 −128 .[59] Xiao W J, Windley B F, Sun S, et al . A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth & Planetary Sciences,2015 ,43 (43 ):477 −507 .[60] doi: 10.1016/j.sedgeo.2019.02.007Yan Z, Liu J B, Jin X C, et al . Construction model and paleogeographic distribution of Late Pennsylvanian phylloid algal–microbial reefs: A case study in eastern Inner Mongolia, North China[J]. Sedimentary Geology,2019 ,383 :181 −194 .[61] Zhang D H, Huang B C, Meert J G, et al. Micro-blocks in NE Asia amalgamated into the unified Amuria block by ∼300 Ma: first paleomagnetic evidence from the Songliao block, NE China [J]. Journal of Geophysical Research: Solid Earth, 2021: e2021J–e22881J. [62] doi: 10.1007/s00531-016-1297-0Zhang W, Pease V, Meng Q P, et al . Age and petrogenesis of late Paleozoic granites from the northernmost Alxa region, northwest China, and implications for the tectonic evolution of the region[J]. International Journal of Earth Sciences,2017 ,106 (1 ):79 −96 .[63] doi: 10.1016/j.precamres.2022.106864Zhang Q, Niu Y Z, Yao J L, et al . Paleogeographic affinity of the Alxa Block across the Archean–Proterozoic: Insights from metamorphosed Archean basement[J]. Precambrian Research,2022 ,381 :106864 .[64] doi: 10.1016/j.earscirev.2018.10.003Zhao G C, Wang Y J, Huang B C, et al . Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews,2018 ,186 :262 −286 .[65] Zhao X X, Coe S R, Zhou Y X, et al . New paleomagnetic results from northern China: collision and suturing with Siberia and Kazakhstan[J]. Tectonophysics,1990 ,181 (1 ):43 −81 .[66] doi: 10.1016/j.gr.2013.05.011Zheng R G, Wu T R, Zhang W, et al . Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: Geochronological and geochemical evidences from ophiolites[J]. Gondwana Research,2014 ,25 (2 ):842 −858 .[67] doi: 10.1016/j.earscirev.2017.01.012Zhou J B, Wilde S A, Zhao G C, et al . Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews,2018 ,186 :76 −93 .[68] doi: 10.1111/1755-6724.13313Zhu J B, Ren J S . Carboniferous–Permian stratigraphy and sedimentary environment of southeastern Inner Mongolia, China: Constraints on final closure of the Paleo-Asian Ocean[J]. Acta Geologica Sinica (English Edition),2017 ,91 (3 ):832 −856 . -