GEOCHEMISRY OF THE MYLONITIZED SILICEOUS BANDED LIMESTONE IN CENTRAL LANGSHAN AREA, INNER MONGOLIA
-
摘要:
狼山构造带是华北地台北缘巨型造山带的重要组成部分,韧性剪切带是狼山构造带内的主要构造形式之一,是地壳深层次构造的反映.对狼山Ⅱ号韧性剪切带西南缘糜棱岩化硅质条带状灰岩进行地球化学特征研究,以探讨不同变形强度的糜棱岩化硅质条带状灰岩与原岩的成分变异规律.常量元素、微量元素和稀土元素分析结果表明,与原岩中常量元素和微量元素含量相比较,变形强度不同的硅质条带状灰岩存在着差异变化.变形岩石中常量元素仅CaO为带出组分,其他均为带入组分;微量元素中富集Rr、Sr、Ba、Pb、Ti、Cr、Cu、Nb、Ta、Zr、Hf元素,Ni元素相对亏损.变形的硅质条带状灰岩与原岩的稀土元素配分模式图基本一致,表现为轻稀土元素富集、重稀土元素亏损的右倾斜曲线,具有明显的负Eu异常特征,表明稀土元素在韧性剪切过程中具有一定的相对稳定性和同源性.
Abstract:The Langshan tectonic belt is an important part of the giant orogenic belt in the north margin of North China Platform, with ductile shear zone as one of the major structural styles, reflecting deep structure of the crust. The geochemical characteristics of the mylonitized siliceous banded limestone in the southwest of Langshan Ⅱ ductile shear zone are discussed to study the composition changes of the mylonitized rock from protolith in different deformation strength. The analysis results show that, compared with the content of the protolith, there are differences of major and trace elements in the siliceous banded limestone by deformation strength. Among the major elements of deformed rocks, only CaO is the exported component, all the others are imported ones. The trace elements such as Rr, Sr, Ba, Pb, Ti, Cr, Cu, Nb, Ta, Zr and Hf are enriched and Ni relatively deficient. The REE distribution patterns of deformed siliceous banded limestone and protolith are basically consistent, which are characterized by right-dipping curves with enrichment of LREEs and depletion of HREEs, and obvious negative Eu anomaly, indicating the REEs have relative stability and homology during ductile shearing.
-
表 1 硅质条带状灰岩样品常量元素分析结果表
Table 1. Major element contents in siliceous banded limestone samples
岩石 未变形条带状灰岩 初糜棱岩 糜棱岩 超糜棱岩 含量/% K 含量/% K 含量/% K 含量/% K SiO2 7.55 1 11.84 1.56 15.49 2.05 44.74 5.92 Al2O3 0.571 1 2.44 4.27 3.43 6 3.26 5.71 Fe2O3 0.347 1 1.49 4.29 2.82 8.12 2.92 8.41 MgO 1.07 1 3.93 3.67 1.35 1.26 2.34 2.19 CaO 51.14 1 43.68 0.85 42.66 0.83 26.02 0.51 Na2O 0.028 1 0.113 4.03 0.16 5.71 0.185 6.6 K2O 0.055 1 0.757 1.5 1.24 22.5 1.05 19.01 MnO 0.02 1 0.051 2.5 0.059 2.95 0.338 16.9 TiO2 0.051 1 0.179 3.5 0.374 7.3 0.247 4.84 P2O5 0.048 1 0.051 1.06 0.086 1.79 0.095 1.98 FeO 0.28 1 1.3 4.64 2.52 9 2.38 8.5 烧失量 38.03 1 34.14 29.07 16.4 总量 99.19 1 99.971 99.259 99.975 测试单位:北京核工业地质研究院,2015. 表 2 硅质条带状灰岩样品微量元素分析结果表
Table 2. Trace element contents in siliceous banded limestone samples
岩石 未变形条带状灰岩 初糜棱岩 糜棱岩 超糜棱岩 含量/10-6 K 含量/10-6 K 含量/10-6 K 含量/10-6 K Rb 0.208 1 32 153.0 34.2 164.4 37.8 181.7 Sr 0.612 1 657 1073.5 414 676.5 263 429.7 Ba 4.81 1 404 84.0 267 55.6 251 52.2 Pb 2.09 1 4.39 2.1 15.2 7.3 8.83 4.2 Ti 0.004 1 0.16 40 0.159 39.75 0.214 53.5 Cr 5.67 1 11.1 1.96 13.6 2.4 15.6 2.75 Ni 24 1 21.6 0.9 19.1 0.79 23.1 0.96 Cu 2 1 3.66 1.83 9.41 4.705 14.7 7.35 Nb 0.785 1 5.3 6.75 5.8 7.39 16.5 21.02 Ta 0.048 1 0.403 8.4 0.941 19.6 0.31 6.46 Zr 20.3 1 38.6 1.9 40 1.97 80.2 3.95 Hf 0.547 1 1.1 2.01 1.4 2.56 1.93 3.53 测试单位:北京核工业地质研究院,2015. 表 3 硅质条带状灰岩样品稀土元素分析结果表
Table 3. REE contents in siliceous banded limestone samples
岩石 未变形条带状灰岩 初糜棱岩 糜棱岩 超糜棱岩 含量/10-6 K 含量/10-6 K 含量/10-6 K 含量/10-6 K La 5.05 1 14.2 2.81 15.6 3.08 13.5 2.67 Ce 7.4 1 24.2 3.27 32.7 4.42 26.5 3.58 Pr 1.06 1 2.96 2.79 4.13 3.89 3.42 3.20 Nd 4.26 1 11.7 2.75 17.7 4.15 14.7 3.45 Sm 0.819 1 2.19 2.67 4.29 5.24 3.34 4.07 Eu 0.125 1 0.478 3.82 1.17 9.36 0.659 5.27 Gd 0.931 1 2.22 2.38 4.2 4.51 3.55 3.81 Tb 0.13 1 0.363 2.79 0.802 6.17 0.648 4.98 Dy 0.853 1 1.73 2.03 3.77 4.42 3.49 4.09 Ho 0.158 1 0.377 2.37 0.665 4.21 0.68 4.03 Er 0.512 1 1.01 1.97 1.75 3.42 1.78 3.48 Tm 0.08 1 0.156 1.95 0.241 3.01 0.288 3.6 Yb 0.527 1 0.935 1.77 1.48 2.81 1.88 3.57 Lu 0.057 1 0.114 2.00 0.181 3.16 0.257 4.51 Y 6.15 1 11.4 1.85 19.7 3.20 19.8 3.22 ΣREE 21.962 1 62.63 2.85 88.68 4.03 74.69 3.40 LREE 18.714 1 55.73 2.98 75.59 4.04 62.12 3.32 HREE 3.248 1 6.90 2.12 13.09 4.03 12.57 3.87 LREE/HREE 5.762 1 8.07 5.78 4.94 (La/Yb)N 6.48 1 10.26 7.12 4.85 δEu 0.44 1 0.66 0.84 0.58 δCe 0.75 1 0.87 0.95 0.914 测试单位:北京核工业地质研究院,2015. -
[1] 内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社, 1991.
[2] 任纪舜, 姜春发, 张正坤, 等.中国大地构造及其演化[M].北京:科学出版社, 1980.
[3] 李春昱, 王荃, 刘雪亚, 等.亚洲大地构造图(1:800万)及其说明书[M].北京:地图出版社, 1982.
[4] 田健, 滕学建, 刘洋, 等.内蒙古狼山地区早二叠世花岗闪长岩的年代学、地球化学特征及其构造背景[J].中国地质, 2020, 47(3):767-781.
[5] 赵衡, 张进, 李岩峰, 等.内蒙古狼山地区新生代断层活动特征:对正断层生长的限定[J].中国地质, 2019, 46(6):1433-1453. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DIZI201906014
[6] 彭润民, 翟裕生, 王建平, 等.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, 2010, 55(26):2611-2620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008
[7] 胡骁, 许传诗, 牛树银.华北地台北缘早古生代大陆边缘演化[M].北京:北京大学出版社, 1990.
[8] Chen Y P, Wei C J, Zhang J R, et al. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia[J]. Science Bulletin, 2015, 60(19):1698-1707. doi: 10.1007/s11434-015-0890-0
[9] Wang Z Z, Han B F, Feng L X, et al. Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2015, 97:337-351. doi: 10.1016/j.jseaes.2014.08.005
[10] 王楫, 李双庆, 王保良, 等.狼山-白云鄂博裂谷系[M].北京:北京大学出版社, 1992:1-136.
[11] Zhai M G, Santosh M. The early Precambrian odyssey of the North China Craton:A synoptic overview[J]. Gondwana Research, 2011, 20(1):6-25. doi: 10.1016/j.gr.2011.02.005
[12] Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton:Key issues and discussion[J]. Precambrian Research, 2012, 222-223:55-76. doi: 10.1016/j.precamres.2012.09.016
[13] Wang Z Z, Han B F, Feng L X, et al. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the western North China Craton:evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 2016, 261:278-295. doi: 10.1016/j.lithos.2016.03.005
[14] 初航, 王惠初, 魏春景, 等.内蒙古狼山巴音前达门地区黑云斜长片麻岩年代学研究及板块归属[J].地质学报, 2018, 92(12):2410-2419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201812003
[15] 周建波, 胡克, 孙加鹏, 等.韧性剪切带的地球化学变异研究——以胶南造山带北缘剪切带为例[J].地质地球化学, 1994(4):27-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700063287
[16] 杨福新.内蒙狼山地区糜棱岩岩石特征及构造意义[J].西北地质, 1998, 19(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800611053
[17] 彭润民, 翟裕生, 韩雪峰, 等.内蒙古狼山造山带构造演化与成矿响应[J].岩石学报, 2007, 23(3):679-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200703014
[18] Hu J M, Gong W B, Wu S J, et al. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255:756-770. doi: 10.1016/j.precamres.2014.08.013
[19] 彭润民.内蒙东升庙矿区狼山群中石英角斑岩的发现及意义[J].矿床地质, 1993, 12(3):273-283, 286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0400390175
[20] Peng R M, Zhai Y S, Wang Z G, et al. Discovery of double-peaking potassic volcanic rocks in Langshan Group of the Tanyaokou hydrothermal-sedimentary deposit, Inner Mongolia, and its indicating significance[J]. Science China Series D:Earth Sciences, 2005, 48(6):822-833. doi: 10.1360/03yd0510
[21] Darby B J, Ritts B D. Mesozoic structural architecture of the Lang Shan, North-Central China:Intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 2007, 29(12):2006-2016. doi: 10.1016/j.jsg.2007.06.011
[22] Dan W, Li X H, Wang Q, et al. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China:A magmatic flare-up triggered by a mantle-plume?[J]. Lithos, 2014, 204:144-158. doi: 10.1016/j.lithos.2014.01.018
[23] 刘耀荣.湘中雪家坡脆韧性剪切构造岩地球化学特征[J].中国区域地质, 1997, 16(1):3-8. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD701.000.htm