STUDY ON QUANTITATIVE INVERSION OF REMOTE SENSING FOR ORGANIC CARBON IN THE TYPICAL BLACK SOIL AREAS OF NORTHEAST CHINA
-
摘要:
利用多元逐步回归分析法,结合Landsat8 OLI遥感数据对该地区土壤有机碳进行定量反演.试验采集了164个土壤样品,通过3倍标准差准则对样品进行奇异点去除及数据集划分,其中120个样品作为训练集,44个样品作为验证集,建立土壤有机碳的多元逐步回归预测模型.结果表明:有机碳与Landsat8各波段反射率均显著相关;黑土有机碳光谱预测最优模型以倒数为自变量模型最优,决定系数R2=0.180,均方根误差RMSE=0.558,海伦地区适于Corg含量遥感反演,预测模型稳定性好,可以用于揭示黑土典型区Corg含量的空间分布特征.同时认为在不对土壤进行地面光谱测试的情况下,直接采用化学分析数据与遥感卫星相关联的方法预测模型拟合度有限,光谱对有机碳可解释性较低.
Abstract:The quantitative inversion of soil organic carbon (Corg) in the study area is conducted by using multiple stepwise regression analysis method in combination with Landsat8 OLI remote sensing data. For the test, 164 soil samples are collected. Singular points are removed and data sets are divided by tripled standard deviation. Among the total, 120 samples are chosen as the training set and the other 44 as the validation set to establish the multiple stepwise regression prediction model for Corg. The results show that the organic carbon is significantly correlated with the reflectivity of Landsat8 bands. The optimal model for the prediction of black soil organic carbon spectrum is the one that takes the reciprocal as the independent variable, with the determination coefficient R2=0.180, and root-mean-square error(RMSE)=0.558. Hailun area is suitable for remote sensing inversion of Corg content, with a stable prediction model, which can be used to reveal the spatial distribution of Corg content in typical black soil areas. Meanwhile, it is believed that without ground spectral test for the soil, the fitting degree of prediction model by simply using the method of associating chemical analysis data with remote sensing satellite is limited and the interpretation of Corg by spectrum is poor.
-
Key words:
- black soil area /
- organic carbon /
- Landsat8 /
- multiple stepwise regression analysis /
- Northeast China
-
表 1 黑土样本集划分后的描述性统计
Table 1. Descriptive statistics of black soil samples by set division
样本集 个数 Corg/10-3 最小值 最大值 均值 标准差 训练集 120 1.07 4.19 2.64 1.33 验证集 44 1.24 3.69 2.71 1.42 表 2 土壤光谱反射率及变换形式与有机碳含量的特征波段及其相关系数
Table 2. Characteristic bands and correlation coefficients of organic carbon content for soil spectral reflectance and variation forms
R lgR R′ 1/R 波段 相关系数 波段 相关系数 波段 相关系数 波段 相关系数 1 -0.349** 1 -0.346** 1 -0.176 1 0.388** 2 -0.313** 2 -0.332** 2 -0.268** 2 0.357** 3 -0.306** 3 -0.328** 3 -0.259** 3 0.313** 4 -0.295** 4 -0.320** 4 -0.271** 4 0.263** 5 -0.299** 5 -0.327** 5 -0.16 5 0.383** 6 -0.312** 6 -0.343** 6 0.062 6 0.357** 7 -0.354** 7 -0.329** 7 -0.176 7 0.361** **p<0.01 表 3 多元逐步回归模型评价指标分析结果
Table 3. Analysis results of evaluation indexes for multiple stepwise regression model
评价指标 非标准化系数 t p VIF R2 F B 标准误差 常数 1.644 0.163 10.069 0.000** - 0.18 F(2,117)=12.833,p=0.000 倒数B1 0.056 0.014 3.975 0.000** 4.559 倒数B4 -0.038 0.018 -2.04 0.044* 4.559 n=120.因变量:Corg. D-W值:1.725. *p < 0.05,**p < 0.01. -
[1] Marchant B P, Villanneau E J, Arrouays D, et al. Quantifying and mapping topsoil inorganic carbon concentrations and stocks:Approaches tested in France[J]. Soil Use and Management, 2015, 31(1):29-38. doi: 10.1111/sum.12158
[2] Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68:A4-A9. doi: 10.1016/j.soilbio.2013.06.014
[3] Webster R, Oliver M A. Sample adequately to estimate variograms of soil properties[J]. European Journal of Soil Science, 1992, 43(1):177-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2389.1992.tb00128.x
[4] 张新乐, 窦欣, 谢雅慧, 等.引入时相信息的耕地土壤有机质遥感反演模型[J].农业工程学报, 2018, 34(4):143-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201804017
[5] 吴才武, 张月丛, 夏建新.基于地统计与遥感反演相结合的有机质预测制图研究[J].土壤学报, 2016, 53(6):1568-1575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201606022
[6] 陆访仪, 赵永存, 黄标, 等.海伦市耕层土壤有机质含量空间预测方法研究[J].土壤通报, 2012, 43(3):662-667. http://www.cnki.com.cn/Article/CJFDTotal-TRTB201203027.htm
[7] 于芳, 李海明.基于地统计学和GIS的湖北省土壤有机质空间变异性研究[J].江苏农业科学, 2019, 47(15):282-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201915066
[8] 韩丹, 程先富, 谢金红, 等.大别山区江子河流域土壤有机质的空间变异及其影响因素[J].土壤学报, 2012, 49(2):408-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201202026
[9] 赵明松, 张甘霖, 王德彩, 等.徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J].土壤学报, 2013, 50(1):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201301001
[10] 张哲寰, 赵君, 戴慧敏, 等.黑龙江省讷河市土壤-作物系统Se元素地球化学特征[J].地质与资源, 2020, 29(1):38-43. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10147.shtml
[11] 陶培峰, 王建华, 李志忠, 等.基于高光谱的土壤养分含量反演模型研究[J].地质与资源, 2020, 29(1):68-75. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10151.shtml
[12] Wu C F, Wu J P, Luo Y M, et al. Spatial prediction of soil organic matter content using cokriging with remotely sensed data[J]. Soil Science Society of America Journal, 2009, 73(4):1202-1208. doi: 10.2136/sssaj2008.0045
[13] Mirzaee S, Ghorbani-Dashtaki S, Mohammadi J, et al. Spatial variability of soil organic matter using remote sensing data[J]. CATENA, 2016, 145:118-127. doi: 10.1016/j.catena.2016.05.023
[14] 王茵茵, 齐雁冰, 陈洋, 等.基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J].土壤学报, 2016, 53(2):342-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201602007
[15] 杨佳佳, 白磊, 吴嵩.黑龙江典型黑土区土壤侵蚀遥感监测技术研究[J]. 2019, 28(2): 193-199, 183.
[16] 丁美青, 肖红光, 陈松岭, 等.基于BP神经网络的土地开发整理区土壤有机质含量遥感定量反演[J].湘潭大学自然科学学报, 2012, 34(2):103-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtdx201202022
[17] 程朋根, 吴剑, 李大军, 等.土壤有机质高光谱遥感和地统计定量预测[J].农业工程学报, 2009, 25(3):142-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200903029
[18] 刘焕军, 赵春江, 王纪华, 等.黑土典型区土壤有机质遥感反演[J].农业工程学报, 2011, 27(8):211-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201108036
[19] 刘焕军, 吴炳方, 赵春江, 等.光谱分辨率对黑土有机质预测模型的影响[J].光谱学与光谱分析, 2012, 32(3):739-742. http://www.cnki.com.cn/Article/CJFDTotal-GUAN201203038.htm
[20] Hill J, Schütt B. Mapping complex patterns of erosion and stability in dry mediterranean ecosystems[J]. Remote Sensing of Environment, 2000, 74(3):557-569. doi: 10.1016/S0034-4257(00)00146-2
[21] 周萍, 王润生, 阎柏琨, 等.高光谱遥感土壤有机质信息提取研究[J].地理科学进展, 2008, 27(5):27-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz200805004
[22] 李媛媛, 李薇, 刘远, 等.基于高光谱遥感土壤有机质含量预测研究[J].土壤通报, 2014, 45(6):1313-1318. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb201406005