-
摘要:
地热能作为一种安全、稳定、成本低廉的清洁能源近年来备受推崇.地热系统是开展地热资源成因研究的基本单元,国际上按地质环境和热量的传递方式可将其分为热传导和热对流两大类型,据此进一步细分为沉积盆地型、地压型、干热岩型、岩浆侵入型、深循环型等5个亚类.本文回顾了地热系统的概念及发展史,并讨论了地热系统主控因素以及两大类型地热系统的传热机制.
Abstract:Geothermal energy, as a safe, stable and low-cost clean power resource, has been highly recommended in recent years. Geothermal system, the basic unit for the study of geothermal genesis, can be divided into 2 types including heat conduction and heat convection, and further subdivided into 5 subtypes of sedimentary basin, geopressure, dry hot rock, magmatic intrusion and deep circulation in terms of geological environment and heat transfer mode. This paper reviews the concept and research history of geothermal system, and discusses the main controlling factors and heat transfer mechanism of the two types of geothermal system.
-
Key words:
- geothermal system /
- energy resource /
- heat transfer /
- heat convection /
- transfer mechanism
-
图 2 孔隙流体压力和岩石抗剪强度随深度变化图解(据文献[28])
Figure 2.
图 3 地压型地热系统模型(据文献[30])
Figure 3.
图 4 对流地热系统模型(据文献[38])
Figure 4.
表 1 中国地热系统的基本类型
Table 1. Basic types of geothermal system in China
地热系统类型 构造隆起区热对流类 构造沉陷区热传导类 火山型 非火山型 深循环型 断陷盆地型 拗陷盆地型 地质构造背景 板块边缘第四纪火山区,构造活动异常强烈 板块碰撞边缘,构造活动异常强烈 板内规模不一的活动断裂 板内裂谷型盆地,不均一的断裂活动明显 板内造山型盆地,盆地稳定下沉;板内克拉通型盆地,无明显构造变动 据文献[17]. -
[1] 苏逊卿. 渭河盆地地热资源概况及应用研究[J]. 石化技术, 2017, 24(9): 297. doi: 10.3969/j.issn.1006-0235.2017.09.255
Su X Q. Survey and application of geothermal resources in Weihe Basin[J]. Petrochemical Industry Technology, 2017, 24(9): 297. (in Chinese) doi: 10.3969/j.issn.1006-0235.2017.09.255
[2] Miller A R, Densmore C D, Degens E T, et al. Hot brines and recent iron deposits in deeps of the Red Sea[J]. Geochimica et Cosmochimica Acta, 1966, 30(3): 341-350, IN1, 351-359. doi: 10.1016/0016-7037(66)90007-X
[3] 里巴克, 米夫尔. 地热系统: 原理和典型地热系统分析[M]. 北京大学地质学系地热研究室, 译. 北京: 地质出版社, 1981: 1-6.
Rybach L, Miffler L J P. Geothermal systems principles and case histories[M]. Geothermal Research Office, Department of Geology, Peking University, trans. Beijing: Geological Publishing House, 1981: 1-6.
[4] Hochstein M P. Classification and assessment of geothermal resources[C]//Small Geothermal Resources: A Guide to Development and Utilization. New York: UNITAR, 1990: 31-57.
[5] 宾德智. 《地热资源地质勘查规范》GB/T 11615-2010实施中应关注的一些问题[J]. 地热能, 2011(3): 29-32.
Bin D Z. Some issues that should be paid attention to in the implementation of "Geothermal Resources Geological Prospecting Specification" GB/T11615-2010[J]. Geothermal Energy, 2011(3): 29-32. (in Chinese)
[6] 朱焕来. 松辽盆地北部沉积盆地型地热资源研究[D]. 大庆: 东北石油大学, 2011.
Zhu H L. Research on the sedimentary geothermal resources in North Songliao Basin[D]. Daqing: Northeast Petroleum University, 2011.
[7] 汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015: 1-6.
Wang J Y. Geothermics and its applications[M]. Beijing: Science Press, 2015: 1-6.
[8] White D E. Some principles of geyser activity, mainly from Steamboat Springs, Nevada[J]. American Journal of Science, 1967, 265(8): 641-684. doi: 10.2475/ajs.265.8.641
[9] White D E. Characteristics of geothermal resources[C]//Kruger P, Otte C. Geothermal Energy: Resources, Production, Stimulation. Stanford, CA: Stanford University Press, 1973: 69-94.
[10] Jones P H. Hydrology of Neogene deposits in the northern Gulf of Mexico basin[D]. Baton Rouge: Louisiana State University, 1968.
[11] Wallace Jr R H, Kraemer T F, Taylor R E, et al. Assessment of onshore geopressured-geothermal resources in the northern Gulf of Mexico basin[J]. Geological Survey Circular (United States), 1979, 726(790): 132-155. http://www.researchgate.net/publication/279897547_Assessment_of_onshore_geopressured-geothermal_resources_in_the_northern_Gulf_of_Mexico_basin
[12] Dickson M H, Fanelli M. What is geothermal energy?[R]. Pisa: Istituto di Geoscienze e Georisorse, 2004.
[13] Potter R M, Robinson E S, Smith M C. Method of extracting heat from dry geothermal reservoirs: US, 3786858[P]. 1974-01-22.
[14] EurOBserv'ER. Geothermal energy barometer[J]. Systemes Solaires, 2007, 39(23): 49-66.
[15] 黄尚瑶, 胡素敏, 马兰, 等. 火山·温泉·地热能[M]. 北京: 地质出版社, 1986: 95-105.
Huang S Y, Hu S M, Ma L, et al. Volcano, hot spring and geothermal energy[M]. Beijing: Geological Publishing House, 1986: 95-105. (in Chinese)
[16] 陈墨香, 汪集旸, 邓孝. 中国地热系统类型图及其简要说明[J]. 地质科学, 1996, 31(2): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX602.001.htm
Chen M X, Wang J Y, Deng X. The map of geothermal system types in China and its brief explanation[J]. Scientia Geologica Sinica, 1996, 31(2): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX602.001.htm
[17] 陈墨香, 汪集旸, 邓孝. 中国地热资源——形成特点和潜力评估[M]. 北京: 科学出版社, 1994: 1-39.
Chen M X, Wang J Y, Deng X. Geothermal resources in China: Formation characteristics and potential evaluation[M]. Beijing: Science Press, 1994: 1-39. (in Chinese)
[18] Wisian K W, Blackwell D D. Numerical modeling of Basin and Range geothermal systems[J]. Geothermics, 2004, 33(6): 713-741. doi: 10.1016/j.geothermics.2004.01.002
[19] Cherubini Y, Cacace M, Scheck-Wenderoth M, et al. Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site GroβSchönebeck[J]. Environmental Earth Sciences, 2013, 70(8): 3619-3642. doi: 10.1007/s12665-013-2519-4
[20] 陈鹏. 长白山松江河地区地热资源形成条件及主控因素[D]. 长春: 吉林大学, 2018.
Chen P. The formation conditions and main controlling factors of geothermal resources in Songjianghe area of Changbai Mountain[D]. Changchun: Jilin University, 2018.
[21] 张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703022.htm
Zhang Y, Feng J Y, He Z L, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703022.htm
[22] 林正良, 肖鹏飞, 李弘, 等. 甘孜地区雅拉河段地热系统特征及控制因素[J]. 地质与勘探, 2015, 51(4): 764-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201504018.htm
Lin Z L, Xiao P F, Li H, et al. Characteristics of the geothermal system and control factors in the Yalahe Reach, Ganzi Area[J]. Geology and Exploration, 2015, 51(4): 764-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201504018.htm
[23] 甘军, 吴迪, 张迎朝, 等. 琼东南盆地现今地层温度分布特征及油气地质意义[J]. 高校地质学报, 2019, 25(6): 952-960. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201906014.htm
Gan J, Wu D, Zhang Y C, et al. Distribution Pattern of present-day formation temperature in the Qiongdongnan Basin: implications for hydrocarbon generation and preservation[J]. Geological Journal of China Universities, 2019, 25(6): 952-960. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201906014.htm
[24] Muffler L J P. Tectonic and hydrologic control on the nature and distribution of geothermal resources[C]//Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources. San Franico, 1976: 499-507.
[25] Zarrouk S J, Moore T. Preliminary assessment of the geothermal signature and ECBM potential of the Huntly Coalbed methane field, New Zealand[C]//Proceedings of the 29th NZ Geothermal Workshop. Auckland, New Zealand, 2007.
[26] 季汉成, 李海泉, 陈亮, 等. 南襄盆地地热系统构成及资源量预测: 以泌阳、南阳凹陷为例[J]. 地学前缘, 2017, 24(3): 199-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703023.htm
Ji H C, Li H Q, Chen L, et al. Composition and resource prediction of the Nanxiang Basin geothermal system: a case study, from the Biyang and Nanyang Sags[J]. Earth Science Frontiers, 2017, 24(3): 199-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703023.htm
[27] 彭大钧. 地压地热资源[J]. 成都地质学院学报, 1981(1): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198101009.htm
Peng D J. Geopressure geothermal resources[J]. Journal of Chengdu University of Technology (Natural Science Edition), 1981(1): 86-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198101009.htm
[28] Bitzer K. Mechanisms for generating overpressure in sedimentary basins: a revaluation: discussion[J]. AAPG Bulletin, 1999, 83(5): 798-799. http://pubs.geoscienceworld.org/aapgbull/article-pdf/85/12/2118/3355826/2118.pdf
[29] 王连进, 叶加仁. 沉积盆地超压形成机制述评[J]. 石油与天然气地质, 2001, 22(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200101003.htm
Wang L J, Ye J R. A comment on forming mechanism of overpressure in sedimentary basins[J]. Oil & Gas Geology, 2001, 22(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200101003.htm
[30] 李正, 贾海平, 张阳, 等. 渭河盆地地热资源类型[J]. 承德石油高等专科学校学报, 2017, 19(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-CDSY201704002.htm
Li Z, Jia H P, Zhang Y, et al. Types of geothermal resources in Weihe Basin[J]. Journal of Chengde Petroleum College, 2017, 19(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-CDSY201704002.htm
[31] Tester J W, Anderson B J, Batchelor A S, et al. The futher of geothermal energy[D]. Stanford, CA: Stanford University, 2013.
[32] 汪集旸. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 1-240.
Wang J Y. Low-Medium temperature geothermal system of convective type[M]. Beijing: Science Press, 1993: 1-240.
[33] 张金华, 魏伟, 杜东, 等. 地热资源的开发利用及可持续发展[J]. 中外能源, 2013, 18(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201301007.htm
Zhang J H, Wei W, Du D, et al. The development, utilization and sustainable development of geothermal resources[J]. Sino-Global Energy, 2013, 18(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201301007.htm
[34] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
[35] Zarrouk S J, McLean K. Geothermal systems[M]//Zarrouk S J, McLean K. Geothermal Well Test Analysis: Fundamentals, Applications and Advanced Techniques. New York: Academic Press, 2019: 13-38.
[36] White D E. Characteristics of geothermal resources[J]. EOS, Trans Am Geophys Union, 1973, 54: 4(4): 223-224. http://www.osti.gov/geothermal/product.biblio.jsp?query_id=0&Page=0&osti_id=5240185&PF=true
[37] 伍小雄. 松辽盆地北部干热岩地热资源研究[D]. 大庆: 东北石油大学, 2014.
Wu X X. Research of geothermal resources on dry hot rocks in North Songliao Basin[D]. Daqing: Northeast Petroleum University, 2014.
[38] 李朋威, 何治亮, 张英, 等. 我国水热型地热系统类型与形成机理浅析[C]//2014年博士后学术论坛——油气成藏理论与勘探开发技术论文集. 北京: 中国石化石油勘探开发研究院, 中国石化石油工程技术研究院, 2014: 193-203.
Li P W, He Z L, Zhang Y, et al. Types and distribution of the hydro-geothermal systems in China[C]//2014 Postdoctoral Academic Forum: Oil and Gas Reservoir Formation Theory and Exploration-Development Technology. Beijing: Sinopec Petroleum Exploration and Development Research Institute, SINOPEC Research Institute of Petroleum Engineering, 2014: 193-203. (in Chinese)
[39] 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉: 中国地质大学, 2018.
Wang X. Formation conditions and hydrogeochemical characteristics of the geothermal water in Typical Coastal Geothermal field with Deep faults, Guangdong Province[D]. Wuhan: China University of Geosciences, 2018.
[40] 廖志杰. 促进中低温对流型地热资源的开发利用[J]. 科技导报, 2012, 30(32): 80. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232033.htm
Liao Z J. Promote the development and utilization of medium and low temperature convective geothermal resources[J]. Science & Technology Review, 2012, 30(32): 80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232033.htm
[41] White D E. Hydrology, activity, and heat flow of the Steamboat Springs thermal system, Washoe County, Nevada[R]. Washington, D. C. : United States Government Printing Office, 1968: 1-116.