松辽盆地陆相页岩油地质研究方法与勘探评价进展

柳波, 刘俊杰, 付晓飞, 巩磊, 李玉伟, 白龙辉, 赵小青. 松辽盆地陆相页岩油地质研究方法与勘探评价进展[J]. 地质与资源, 2021, 30(3): 239-248. doi: 10.13686/j.cnki.dzyzy.2021.03.005
引用本文: 柳波, 刘俊杰, 付晓飞, 巩磊, 李玉伟, 白龙辉, 赵小青. 松辽盆地陆相页岩油地质研究方法与勘探评价进展[J]. 地质与资源, 2021, 30(3): 239-248. doi: 10.13686/j.cnki.dzyzy.2021.03.005
LIU Bo, LIU Jun-jie, FU Xiao-fei, GONG Lei, LI Yu-wei, BAI Long-hui, ZHAO Xiao-qing. PROGRESS IN GEOLOGICAL RESEARCH METHODS AND EXPLORATION EVALUATION OF CONTINENTAL SHALE OIL IN SONGLIAO BASIN[J]. Geology and Resources, 2021, 30(3): 239-248. doi: 10.13686/j.cnki.dzyzy.2021.03.005
Citation: LIU Bo, LIU Jun-jie, FU Xiao-fei, GONG Lei, LI Yu-wei, BAI Long-hui, ZHAO Xiao-qing. PROGRESS IN GEOLOGICAL RESEARCH METHODS AND EXPLORATION EVALUATION OF CONTINENTAL SHALE OIL IN SONGLIAO BASIN[J]. Geology and Resources, 2021, 30(3): 239-248. doi: 10.13686/j.cnki.dzyzy.2021.03.005

松辽盆地陆相页岩油地质研究方法与勘探评价进展

  • 基金项目:
    国家自然科学基金项目"陆相页岩油储层孔隙结构非均质性成因及其对烃类赋存相态的影响"(编号41972156)
详细信息
    作者简介: 柳波(1983-), 男, 教授, 主要从事非常规油气方面的研究, 通信地址黑龙江省大庆市火炬街孵化器1号楼, E-mail//liubo@nepu.edu.cn
    通讯作者: 付晓飞(1972-), 男, 教授, 主要从事油气成藏方面的研究, 通信地址黑龙江省大庆市高新技术开发区发展路199号, E-mail//fuxiaofei2008@sohu.com
  • 中图分类号: P618.13

PROGRESS IN GEOLOGICAL RESEARCH METHODS AND EXPLORATION EVALUATION OF CONTINENTAL SHALE OIL IN SONGLIAO BASIN

More Information
  • 针对陆相页岩油储层结构非均质性强、孔隙结构复杂、产能主控因素不明等勘探开发面临的挑战和技术瓶颈,建立了有机、无机地球化学与沉积学结合的陆相细粒沉积旋回及古环境演化重建的沉积地球化学方法,厘清了古水体性质与矿物组成、有机质富集的响应关系;建立了陆相富有机质页岩岩相划分标准和测井识别方法,分析了细粒沉积储层结构非均质性;厘清了泥页岩层系裂缝类型及分布规律.基于能量演化理论,建立了页岩储层脆性评价模型,并采用人工智能方法,建立了含油性地质甜点和脆性工程甜点评价方法.

  • 加载中
  • 图 1  松辽盆地青山口组一段沉积格架及古水体性质演化剖面(据文献[8]修改)

    Figure 1. 

    图 2  松辽盆地青山口组泥页岩成岩作用与孔隙演化模式(据文献[14]修改)

    Figure 2. 

    图 3  松辽盆地青一段泥页岩天然裂缝类型及发育特征

    Figure 3. 

    图 4  松辽盆地青一段泥页岩天然裂缝影响因素

    Figure 4. 

    图 5  松辽盆地青一段流体性质识别

    Figure 5. 

    图 6  松辽盆地青一段不同赋存状态页岩油表征

    Figure 6. 

  • [1]

    高瑞祺. 泥岩异常高压带油气的生成排出特征与泥岩裂缝油气藏的形成[J]. 大庆石油地质与开发, 1984, 3(1): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK198401014.htm

    Gao R Q. Characteristics of petroleum generation and expulsion in abnormal pressure shale zones and the formation of fractured shale reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 1984, 3(1): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK198401014.htm

    [2]

    陈章明, 张树林, 万龙贵. 古龙凹陷北部青山口组泥岩构造裂缝的形成及其油藏分布的预测[J]. 石油学报, 1988, 9(4): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198804001.htm

    Chen Z M, Zhang S L, Wan L G. The formation of structural fissures in the mudstone in Qingshankou group in the northern part of Gulong sag and a forecast of the distribution of oil and gas pools[J]. Acta Petrolei Sinica, 1988, 9(4): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198804001.htm

    [3]

    柳波, 吕延防, 冉清昌, 等. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J]. 石油与天然气地质, 2014, 35(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402019.htm

    Liu B, Lv Y F, Ran Q C, et al. Geological conditions and exploration potential of shale oil in Qingshankou Formation, Northern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402019.htm

    [4]

    杨建国, 李士超, 姚玉来, 等. 松辽盆地北部陆相页岩油调查取得重大突破[J]. 地质与资源, 2020, 29(3): 300. doi: 10.3969/j.issn.1671-1947.2020.03.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml

    Yang J G, Li S C, Yao Y L, et al. Significant breakthrough in the continental shale oil survey in northern Songliao Basin[J]. Geology and Resources, 2020, 29(3): 300. doi: 10.3969/j.issn.1671-1947.2020.03.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml

    [5]

    袁选俊, 林森虎, 刘群, 等. 湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发, 2015, 42(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501005.htm

    Yuan X J, Lin S H, Liu Q, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501005.htm

    [6]

    石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的高精度旋回识别与划分——以南图尔盖盆地Ary301井中侏罗统为例[J]. 沉积学报, 2017, 35(3): 436-448. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703002.htm

    Shi J Y, Jin Z J, Liu Q Y, et al. Recognition and division of high-resolution sequences based on the Milankovitch theory: A case study from the Middle Jurassic of Well Ary301 in the South Turgay Basin[J]. Acta Sedimentologica Sinica, 2017, 35(3): 436-448. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703002.htm

    [7]

    余继峰, 李增学. 测井数据小波变换及其地质意义[J]. 中国矿业大学学报, 2003, 32(3): 336-339. doi: 10.3321/j.issn:1000-1964.2003.03.029

    Yu J F, Li Z X. Wavelet transform of logging data and its geological significance[J]. Journal of China University of Mining & Technology, 2003, 32(3): 336-339. doi: 10.3321/j.issn:1000-1964.2003.03.029

    [8]

    杨雪, 柳波, 张金川, 等. 古龙凹陷青一段米兰科维奇旋回识别及其沉积响应[J]. 沉积学报, 2019, 37(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904001.htm

    Yang X, Liu B, Zhang J C, et al. Identification of sedimentary responses to the Milankovitch Cycles in the K2qn1 Formation, Gulong Depression[J]. Acta Sedimentologica Sinica, 2019, 37(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904001.htm

    [9]

    Liu B, Song Y, Zhu K, et al. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: Implications for paleoenvironment, provenance, tectonic setting and shale oil potential[J]. Marine and Petroleum Geology, 2020, 120: 104569. doi: 10.1016/j.marpetgeo.2020.104569

    [10]

    Liu B, Wang H, Fu X, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China[J]. AAPG Bulletin, 2019, 103: 405-432. doi: 10.1306/08031817416

    [11]

    Liu B, Zhao X, Fu X, et al. Petrophysical characteristics and log identification of lacustrine shale lithofacies: A case study of the first member of Qingshankou Formation in the Songliao Basin, Northeast China[C]. Interpretation 8, SL45. 2020.

    [12]

    柳波, 王蕃, 冉清昌, 等. 松辽盆地北部青一段含油泥页岩储集特征浅析[J]. 岩性油气藏, 2014, 26(5): 64-68. doi: 10.3969/j.issn.1673-8926.2014.05.012

    Liu B, Wang F, Ran Q C, et al. Characteristics of shale reservoir of the first member of Qingshankou Formation in northern Songliao Basin[J]. Lithologic Reservoirs, 2014, 26(5): 64-68. doi: 10.3969/j.issn.1673-8926.2014.05.012

    [13]

    Huo Z P, Hao S B, Liu B, et al. Geochemical characteristics and hydrocarbon expulsion of source rocks in the first member of the Qingshankou Formation in the Qijia-Gulong Sag, Songliao Basin, Northeast China: Evaluation of shale oil resource potential[J]. Energy Science & Engineering, 2020, 8(5): 1450-1467. http://onlinelibrary.wiley.com/doi/10.1002/ese3.603

    [14]

    贾梦成. 古龙地区青一段泥页岩层系储层特征及富油规律[D]. 大庆: 东北石油大学, 2017.

    Jia M C. Reservoir characteristics and oil enrichment rule of shale series in the first member of Qingshankou Formation in Gulong Sag[D]. Daqing: Northeast Petroleum University, 2017.

    [15]

    Gong L, Fu X, Wang Z, et al. A new approach for characterization and prediction of natural fracture occurrence in tight-oil sandstones with intense anisotropy[J]. AAPG Bulletin, 2019, 103(6): 1383-1400. doi: 10.1306/12131818054

    [16]

    Gong L, Wang J, Gao S, et al. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108655. doi:10.1016/j.petrol.2021.108655

    [17]

    巩磊, 姚嘉琪, 高帅, 等. 岩石力学层对构造裂缝间距的控制作用[J]. 大地构造与成矿学, 2018, 42(6): 965-973. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201806002.htm

    Gong L, Yao J Q, Gao S, et al. Controls of rock mechanical stratigraphy on tectonic fracture spacing[J]. Geotectonica et Metallogenia, 2018, 42(6): 965-973. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201806002.htm

    [18]

    Liu J, Ding W, Wang R, et al. Methodology for quantitative prediction of fracture sealing with a case study of the Lower Cambrian Niutitang Formation in the Cen'gong block in South China[J]. Journal of Petroleum Science and Engineering, 2018, 160: 565-581. doi: 10.1016/j.petrol.2017.10.046

    [19]

    Gong L, Su X, Gao S, et al. Characteristics and formation mechanism of natural fractures in the tight gas sandstones of Jiulongshan Gas Field, China[J]. Journal of Petroleum Science and Engineering, 2019, 175: 1112-1121. doi: 10.1016/j.petrol.2019.01.021

    [20]

    董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组-龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805003.htm

    Dong D Z, Shi Z S, Sun S S, et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805003.htm

    [21]

    Ghosh S, Galvis-Portilla H A, Klockow C M, et al. An application of outcrop analogues to understanding the origin and abundance of natural fractures in the Woodford shale[J]. Journal of Petroleum Science and Engineering, 2018, 164: 623-639. doi: 10.1016/j.petrol.2017.11.073

    [22]

    Zeng L, Lyu W, Li J, et al. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 30(1): 1-9. http://www.sciencedirect.com/science/article/pii/S1875510015302882

    [23]

    高帅, 巩磊, 刘小波, 等. 松辽盆地北部徐家围子地区深层致密火山岩气藏天然裂缝分布特征及控制因素[J]. 石油与天然气地质, 2020, 41(3): 503-512.

    Gao S, Gong L, Liu X B, et al. Distribution and controlling factors of natural fractures in deep tight volcanic gas reservoirs in Xujiaweizi area, Northern Songliao Basin[J]. Oil & Gas Geology, 2020, 41(3): 503-512.

    [24]

    Löhr S C, Baruch E T, Hall P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132. doi: 10.1016/j.orggeochem.2015.07.010

    [25]

    Jarvie D M. Shale resource systems for oil and gas: Part 2-Shale-oil resource systems[C]. Breyer J A. Shale reservoirs-Giant resources for the 21st Century. AAPG Memoir, 2012, 97: 89-119.

    [26]

    柳波, 何佳, 吕延防, 等. 页岩油资源评价指标与方法——以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报(自然科学版), 2014, 45(11): 3846-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411019.htm

    Liu B, He J, Lü Y F, et al. Parameters and method for shale oil assessment: Taking Qinshankou Formation shale oil of Northern Songliao Basin[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 3846-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411019.htm

    [27]

    Liu B, Bai L, Chi Y, et al. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, Northeast[J]. Mar Pet Geol, 2019, 109: 561-573. doi: 10.1016/j.marpetgeo.2019.06.046

    [28]

    Fleury M, Romero-Sarmiento M. Characterization of shales using T1-T2 NMR maps[J]. J Petrol Sci Eng, 2016, 137: 55-62. doi: 10.1016/j.petrol.2015.11.006

    [29]

    Jiang Q, Li M, Qian M, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38: 842-849. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201606020.htm

    [30]

    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

    [31]

    柳波, 迟亚奥, 黄志龙, 等. 三塘湖盆地马朗凹陷二叠系油气运移与页岩油富集规律[J]. 石油与天然气地质, 2013, 4(6): 725-730. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306003.htm

    Liu B, Chi Y A, Huang Z L, et al. Migration mechanism of the Permian hydrocarbon and shale oil accumulation in Malang Sag, the Santanghu Basin[J]. Oil & Gas Geology, 2013, 4(6): 725-730. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306003.htm

    [32]

    罗晓容. 油气初次运移的动力学背景与条件[J]. 石油学报, 2001, 22(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106004.htm

    Luo X R. Dynamic background and conditions for petroleum primary migration[J]. Acta Petrolei Sinica, 2001, 22(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106004.htm

    [33]

    Pan Y, Li M, Sun Y, et al. Characterization of free and bound bitumen fractions in a thermal maturation shale sequence. Part 1: Acidic and neutral compounds by negative-ion ESI FT-ICR MS[J]. Organic Geochemistry, 2019, 134: 1-15. doi: 10.1016/j.orggeochem.2019.05.005

    [34]

    Liu K Y, George S C, Lu X S, et al. Innovative fluorescence spectroscopic techniques for rapidly characterising oil inclusions[J]. Organic Geochemistry, 2014, 72: 34-45. doi: 10.1016/j.orggeochem.2014.04.010

    [35]

    张军, 艾池, 李玉伟, 等. 基于岩石破坏全过程能量演化的脆性评价指数[J]. 岩石力学与工程学报, 2017, 36(6): 1326-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706004.htm

    Zhang J, Ai C, Li Y W, et al. Brittleness evaluation index based on energy variation in the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1326-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706004.htm

    [36]

    Ai C, Zhang J, Li Y W, et al. Estimation criteria for rock brittleness based energy analysis during the rupturing process[J]. Rock Mechanics and Rock Engineering, 2016, 49: 4681-4698. doi: 10.1007/s00603-016-1078-x

    [37]

    Li Y W, Long M, Zuo L H, et al. Brittleness evaluation of coal based on statistical damage and energy evolution theory[J]. Journal of Petroleum Science and Engineering, 2019, 172: 753-763. doi: 10.1016/j.petrol.2018.08.069

    [38]

    Zhang J, Ai C, Li Y W, et al. Energy-based brittleness index and acoustic emission characteristics of anisotropic coal under triaxial stress condition[J]. Rock Mechanics and Rock Engineering, 2018, 51: 3343-3360. doi: 10.1007/s00603-018-1535-9

    [39]

    Liu B, Wang S, Ke X, et al. Mechanical characteristics and factors controlling brittleness of organic-rich continental shales[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107464. doi: 10.1016/j.petrol.2020.107464

    [40]

    Li Y W, Zhao Y D, Tang J Z, et al. Rock damage evolution model of pulsating fracturing based on energy evolution theory[J]. Energy Science and Engineering, 2020, 8(4): 1050-1067. doi: 10.1002/ese3.567

    [41]

    李玉伟, 龙敏, 汤继周, 等. 考虑裂尖塑性区影响的水力压裂缝高计算模型[J]. 石油勘探与开发, 2020, 47(1): 175-185. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001019.htm

    Li Y W, Long M, Tang J Z, et al. A hydraulic fracture height mathematical model considering the influence of plastic region at fracture tip[J]. Petroleum Exploration and Development, 2020, 47(1): 175-185. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001019.htm

    [42]

    Li Y W, Yang S, Zhao W C, et al. Experimental of hydraulic fracture propagation using fixed-point multistage fracturing in a vertical well in tight sandstone reservoir[J]. Journal of Petroleum Science and Engineering, 2018, 171: 704-713. doi: 10.1016/j.petrol.2018.07.080

    [43]

    Xie J, Tang J Z, Yong R, et al. A 3-D hydraulic fracture propagation model applied for shale gas reservoirs with multiple bedding planes[J]. Engineering Fracture Mechanics, 2020, 228, 106872. doi: 10.1016/j.engfracmech.2020.106872

  • 加载中

(6)

计量
  • 文章访问数:  1145
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2021-05-07
修回日期:  2021-05-20
刊出日期:  2021-06-25

目录