冀北-辽西地区洪水庄期海洋氧化还原环境的不均一性

张涛, 李永飞, 孙守亮, 宗文明, 孙求实, 石蕾. 冀北-辽西地区洪水庄期海洋氧化还原环境的不均一性[J]. 地质与资源, 2021, 30(3): 257-264. doi: 10.13686/j.cnki.dzyzy.2021.03.007
引用本文: 张涛, 李永飞, 孙守亮, 宗文明, 孙求实, 石蕾. 冀北-辽西地区洪水庄期海洋氧化还原环境的不均一性[J]. 地质与资源, 2021, 30(3): 257-264. doi: 10.13686/j.cnki.dzyzy.2021.03.007
ZHANG Tao, LI Yong-fei, SUN Shou-liang, ZONG Wen-ming, SUN Qiu-shi, SHI Lei. HETEROGENEITY OF MARINE REDOX ENVIRONMENT DURING THE SEDIMENTARY PERIOD OF HONGSHUIZHUANG FORMATION IN NORTHERN HEBEI-WESTERN LIAONING[J]. Geology and Resources, 2021, 30(3): 257-264. doi: 10.13686/j.cnki.dzyzy.2021.03.007
Citation: ZHANG Tao, LI Yong-fei, SUN Shou-liang, ZONG Wen-ming, SUN Qiu-shi, SHI Lei. HETEROGENEITY OF MARINE REDOX ENVIRONMENT DURING THE SEDIMENTARY PERIOD OF HONGSHUIZHUANG FORMATION IN NORTHERN HEBEI-WESTERN LIAONING[J]. Geology and Resources, 2021, 30(3): 257-264. doi: 10.13686/j.cnki.dzyzy.2021.03.007

冀北-辽西地区洪水庄期海洋氧化还原环境的不均一性

  • 基金项目:
    中国地质调查局项目"冀北-辽西中新元古界油气地质调查"(编号DD20190098)
详细信息
    作者简介: 张涛(1989-), 男, 博士研究生, 工程师, 主要从事油气地质、前寒武纪地质调查研究工作, 通信地址辽宁省沈阳市皇姑区黄河北大街280号, E-mail//857591987@qq.com
    通讯作者: 孙守亮(1982-), 男, 高级工程师, 主要从事石油与天然气地质及基础地质调查研究工作, 通信地址辽宁省沈阳市皇姑区黄河北大街280号, E-mail//sunsolar@qq.com
  • 中图分类号: P595;P534.3

HETEROGENEITY OF MARINE REDOX ENVIRONMENT DURING THE SEDIMENTARY PERIOD OF HONGSHUIZHUANG FORMATION IN NORTHERN HEBEI-WESTERN LIAONING

More Information
  • 洪水庄组沉积时期的海洋氧化还原条件及其对有机质保存的影响目前仍有较大的争议.通过对辽西地区洪水庄组页岩的稀土和微量元素进行分析,探究了该时期海洋氧化还原条件.研究区稀土元素丰度较高,分布范围为167.57×10-6~316.95×10-6.稀土元素分布具有典型的海水特征,轻稀土较为亏损而重稀土相对富集.Ce负异常较为明显,基本不具有Eu异常,Y/Ho比值较低.微量元素(V、Cr、Ni、Co、Th和U)及其比值基本分布在一个较宽的范围内,说明该时期海洋具有不均一氧化的特征.稀土和微量元素指标均指示该时期海洋部分氧化和部分还原的特征,且部分地区属于硫化环境.综合华北北部其他地区洪水庄组氧化还原指标表明,该时期的海洋含氧量在空间上具有明显的不均一性,还原性较强的环境基本处于TOC较高的区域,与该区域的高生产力和丰富的营养元素有较好的关联性.

  • 加载中
  • 图 1  华北北部燕山地区构造略图及样品采集位置

    Figure 1. 

    图 2  洪水庄组典型样品的稀土元素配分模式图

    Figure 2. 

    图 3  PAAS标准化后Ce异常和TOC交汇图

    Figure 3. 

    图 4  PAAS标准化后Ce异常Pr异常交汇图

    Figure 4. 

    图 5  各种氧化还原参数限定的氧化还原条件判别图

    Figure 5. 

    图 6  各氧化还原参数与TOC关系图

    Figure 6. 

  • [1]

    Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315. doi: 10.1038/nature13068

    [2]

    Cawood P A, Hawkesworth C J. Earth's middle age[J]. Geology, 2014, 42(6): 503-506. doi: 10.1130/G35402.1

    [3]

    Planavsky N J, Reinhard C T, Wang X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638. doi: 10.1126/science.1258410

    [4]

    Tang D J, Shi X Y, Wang X Q, et al. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters[J]. Precambrian Research, 2016, 276: 145-157. doi: 10.1016/j.precamres.2016.02.005

    [5]

    Bellefroid E J, Hood A V S, Hoffman P F, et al. Constraints on Paleoproterozoic atmospheric oxygen levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8104-8109. doi: 10.1073/pnas.1806216115

    [6]

    Cole D B, Reinhard C T, Wang X L, et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic[J]. Geology, 2016, 44(7): 555-558. doi: 10.1130/G37787.1

    [7]

    Luo J, Long X P, Bowyer F T, et al. Pulsed oxygenation events drove progressive oxygenation of the early Mesoproterozoic ocean[J]. Earth and Planetary Science Letters, 2021, 559: 116754. doi: 10.1016/j.epsl.2021.116754

    [8]

    Wei W, Frei R, Klaebe R, et al. A transient swing to higher oxygen levels in the atmosphere and oceans at~1.4 Ga[J]. Precambrian Research, 2021, 354: 106058. doi: 10.1016/j.precamres.2020.106058

    [9]

    Canfield D E, Zhang S C, Frank A B, et al. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen[J]. Nature Communications, 2018, 9(1): 2871. doi: 10.1038/s41467-018-05263-9

    [10]

    Zhang S C, Wang X M, Wang H J, et al. Sufficient oxygen for animal respiration 1, 400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736. doi: 10.1073/pnas.1523449113

    [11]

    Planavsky N J, McGoldrick P, Scott C T, et al. Widespread iron-rich conditions in the mid-Proterozoic ocean[J]. Nature, 2011, 477(7365): 448-451. doi: 10.1038/nature10327

    [12]

    Poulton S W, Canfield D E. Ferruginous conditions: A dominant feature of the ocean through earth's history[J]. Elements, 2011, 7(2): 107-112. doi: 10.2113/gselements.7.2.107

    [13]

    贾雨东, 王德海, 王新宇, 等. 天津蓟州雾迷山组与洪水庄组沉积环境与地球化学特征[J]. 世界地质, 2020, 39(3): 569-577. doi: 10.3969/j.issn.1004-5589.2020.03.006

    Jia Y D, Wang D H, Wang X Y, et al. Sedimentary environment and geochemical features of Wumishan and Hongshuizhuang formations in Jizhou, Tianjin[J]. Global Geology, 2020, 39(3): 569-577. doi: 10.3969/j.issn.1004-5589.2020.03.006

    [14]

    罗情勇, 钟宁宁, 王延年, 等. 华北北部中元古界洪水庄组页岩地球化学特征: 物源及其风化作用[J]. 地质学报, 2013, 87(12): 1913-1921. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201312013.htm

    Luo Q Y, Zhong N N, Wang Y N, et al. Geochemistry of Mesoproterozoic Hongshuizhuang Formation shales in northern North China: Implications for provenance and source weathering[J]. Acta Geologica Sinica, 2013, 87(12): 1913-1921. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201312013.htm

    [15]

    罗情勇, 钟宁宁, 朱雷, 等. 华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J]. 科学通报, 2013, 58(11): 1036-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201311012.htm

    Luo Q Y, Zhong N N, Zhu L, et al. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China[J]. Chinese Science Bulletin, 2013, 58(11): 1299-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201311012.htm

    [16]

    马奎, 肖南, 蒲钰龙, 等. 华北北部中元古界洪水庄组物源和沉积环境分析[J]. 中国地质, 2021, 48(1): 309-321.

    Ma K, Xiao N, Pu Y L, et al. Provenance and sedimentary environment of the Mesoproterozoic Honghongzhuang Formation in northern part of North China[J]. Geology in China, 2021, 48(1): 309-321.

    [17]

    Ma K, Hu S Y, Wang T S, et al. Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475: 176-187. doi: 10.1016/j.palaeo.2017.02.038

    [18]

    Zhang T, Sun S L, Li Y F, et al. Primary productivity and basin redox conditions within the Mesoproterozoic Hongshuizhuang Formation from Chaoyang area, Liaoxi sag[J]. IOP Conference Series: Earth and Environmental Science, 2020, 600(1): 012052.

    [19]

    Luo Q Y, George S C, Xu Y H, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37. doi: 10.1016/j.orggeochem.2016.05.004

    [20]

    Shi Q, Shi X Y, Tang D J, et al. Heterogeneous oxygenation coupled with low phosphorus bio-availability delayed eukaryotic diversification in Mesoproterozoic oceans: evidence from the ca 1.46 Ga Hongshuizhuang Formation of North China[J]. Precambrian Research, 2021, 354: 106050. doi: 10.1016/j.precamres.2020.106050

    [21]

    任传真, 褚润健, 吴怀春, 等. 天津蓟县剖面前寒武系洪水庄组-铁岭组米兰科维奇旋回[J]. 现代地质, 2019, 33(5): 979-989. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905005.htm

    Ren C Z, Chu R J, Wu H C, et al. Milankovitch cycles of the Precambrian Hongshuizhuang-Tieling formations at Jixian section in Tianjin[J]. Geoscience, 2019, 33(5): 979-989. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905005.htm

    [22]

    Chen X Y, Li M H, Sperling E A, et al. Mesoproterozoic paleo-redox changes during 1500-1400?Ma in the Yanshan Basin, North China[J]. Precambrian Research, 2020, 347: 105835. doi: 10.1016/j.precamres.2020.105835

    [23]

    Zhang S H, Li Z X, Evans D A D, et al. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 2012, 353-354: 145-155. doi: 10.1016/j.epsl.2012.07.034

    [24]

    李怀坤, 张健, 田辉, 等. 华北克拉通北缘燕辽裂陷槽中-新元古代地层年代学研究进展[J]. 地质调查与研究, 2020, 43(2): 127-136. doi: 10.3969/j.issn.1672-4135.2020.02.007

    Li H K, Zhang J, Tian H, et al. Recent advances in the study of the Meso-to Neoproterozoic chronostratigraphy of the Yanliao Aulacogen on the northern margin of the North China Craton[J]. Geological Survey and Research, 2020, 43(2): 127-136. doi: 10.3969/j.issn.1672-4135.2020.02.007

    [25]

    Su W B, Zhang S H, Huff W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3): 543-553. doi: 10.1016/j.gr.2008.04.007

    [26]

    Li H K, Lu S N, Su W B, et al. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton[J]. Journal of Asian Earth Sciences, 2013, 72: 216-227. doi: 10.1016/j.jseaes.2013.02.020

    [27]

    McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.

    [28]

    Taylor S R, McLennan S M. The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publications, 1985.

    [29]

    Alibo D S, Nozaki Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.

    [30]

    祁钰, 顾尚义, 赵凤其. 南华盆地南沱冰期海水氧化还原特征[J/OL]. 沉积学报. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=CJXB20210125000, 2021-01-26.

    Qi Y, Gu S Y, Zhao F Q. Redox characteristics of marine environment of Nantuo Glaciation, Nanhua Basin[J]. Acta Sedimentologica Sinica, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=CJXB20210125000, 2021-01-26.

    [31]

    Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.

    [32]

    De Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1943-1959. doi: 10.1016/0016-7037(85)90089-4

    [33]

    Bau M, Möller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling[J]. Marine Chemistry, 1997, 56(1/2): 123-131.

    [34]

    Zhang T, Sun S L, Sun Q S, et al. Geochemical characteristics of the lower Jurassic black shales in the Jinyang Basin, Northeast China: Implications for organic matter accumulation[J]. IOP Conference Series: Earth and Environmental Science, 2019, 360(1): 012051.

    [35]

    Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.

    [36]

    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129.

    [37]

    Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219. doi: 10.1038/296214a0

    [38]

    Zhao J H, Jin Z J, Jin Z K, et al. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China[J]. International Journal of Coal Geology, 2016, 163: 52-71. doi: 10.1016/j.coal.2016.06.015

    [39]

    Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. [J]. Chemical Geology, 1992, 99(1/3): 65-82.

    [40]

    Algeo T J, Li C. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26. doi: 10.1016/j.gca.2020.01.055

    [41]

    Crockford P W, Hayles J A, Bao H M, et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity[J]. Nature, 2018, 559(7715): 613-616. doi: 10.1038/s41586-018-0349-y

  • 加载中

(6)

计量
  • 文章访问数:  997
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2021-03-22
修回日期:  2021-04-14
刊出日期:  2021-06-25

目录