松辽盆地北部页岩油水力压裂微地震监测技术及应用

王维红, 时伟, 柯璇, 韩刚. 松辽盆地北部页岩油水力压裂微地震监测技术及应用[J]. 地质与资源, 2021, 30(3): 357-365. doi: 10.13686/j.cnki.dzyzy.2021.03.018
引用本文: 王维红, 时伟, 柯璇, 韩刚. 松辽盆地北部页岩油水力压裂微地震监测技术及应用[J]. 地质与资源, 2021, 30(3): 357-365. doi: 10.13686/j.cnki.dzyzy.2021.03.018
WANG Wei-hong, SHI Wei, KE Xuan, HAN Gang. APPLICATION OF MICROSEISMIC MONITORING TECHNOLOGY IN HYDRAULIC FRACTURING OF THE SHALE OIL IN NORTHERN SONGLIAO BASIN[J]. Geology and Resources, 2021, 30(3): 357-365. doi: 10.13686/j.cnki.dzyzy.2021.03.018
Citation: WANG Wei-hong, SHI Wei, KE Xuan, HAN Gang. APPLICATION OF MICROSEISMIC MONITORING TECHNOLOGY IN HYDRAULIC FRACTURING OF THE SHALE OIL IN NORTHERN SONGLIAO BASIN[J]. Geology and Resources, 2021, 30(3): 357-365. doi: 10.13686/j.cnki.dzyzy.2021.03.018

松辽盆地北部页岩油水力压裂微地震监测技术及应用

  • 基金项目:
    国家自然科学基金项目"基于数据驱动的逆散射级数层间多次波压制方法"(41974116)
详细信息
    作者简介: 王维红(1975-), 男, 教授, 博士生导师, 主要从事地震资料数字处理和勘探地球物理研究, 通信地址黑龙江省大庆市高新技术产业开发区学府街99号, E-mail//wangweihong@nepu.edu.cn
  • 中图分类号: TE357.1;P618.4

APPLICATION OF MICROSEISMIC MONITORING TECHNOLOGY IN HYDRAULIC FRACTURING OF THE SHALE OIL IN NORTHERN SONGLIAO BASIN

  • 松辽盆地页岩油储量丰富,是重要的油气资源接替领域.页岩油是一种重要的非常规油气类型,但是其形成和埋藏的地质条件复杂,储层物性差.页岩油的勘探、开发都需要进行水力压裂,微地震监测是压裂效果需要评价的重要技术.根据松页油1HF井的地表、地下的地震地质条件和水平段展布特征,设计较为规则的矩形观测系统实施地面微地震监测,保证全方位均匀地覆盖目标区.通过保证检波器和地表良好耦合的系列措施,对埋深2 000 m以下的页岩油目标,采集到肉眼可识别的压裂微地震信号,采用层析成像技术进行压裂破裂范围计算和微地震事件反演定位.成像结果表明,各段压裂后造缝效果较为明显,有效沟通了储层与井眼的流体通道.微地震监测的实践初步证明,合理的压裂参数设计和工程施工,可获得页岩油压裂的良好效果,形成的微地震监测技术是评价压裂效果的重要而有效的手段,为页岩油的勘探开发提供技术支撑.

  • 加载中
  • 图 1  松页油1HF井和微地震信号采集器布设卫片图

    Figure 1. 

    图 2  某时刻采集到的不同分量微地震原始数据

    Figure 2. 

    图 3  地面微地震监测技术流程图

    Figure 3. 

    图 4  第四段压裂事件点

    Figure 4. 

    图 5  第四段裂缝解释图

    Figure 5. 

    图 6  第四段裂缝形成过程示意图

    Figure 6. 

    图 7  第四段压裂有效储层改造体积示意图

    Figure 7. 

    图 8  松页油1HF井全井段压裂微地震事件点处理结果图

    Figure 8. 

    图 9  松页油1HF井总有效压裂面积图

    Figure 9. 

    图 10  松页油1HF井压裂有效储层改造体积图

    Figure 10. 

    图 11  全井段压裂能量扫描二维空间展布图

    Figure 11. 

    表 1  松页油1HF井简况

    Table 1.  Profile of SYY-1HF well

    压裂井号 松页油1HF井(SYY-1HF)
    井别/井型 参数井/开窗侧钻水平井
    构造位置 松辽盆地中央拗陷区齐家凹陷南部
    地理位置 黑龙江省大庆市大同区大榆山村西1.9 km
    压裂层位 上白垩统青山口组一段(K2qn1
    压裂井段 2 765~3 418 m
    井口坐标 X:5138828.0 Y:21620127.0
    A靶坐标 X:5139333.98 Y:21620225.38,垂深:2 432.31 m
    B靶坐标 X:5139554.40 Y:21620268.20,垂深:2 434.18 m
    C靶坐标 X:5140120.23 Y:21620379.25,垂深:2 444.39 m
    监测站点 三分量站点52个,低频台站12个,有效站点63个
    下载: 导出CSV
  • [1]

    杨海波, 杨建国, 郭庆霞.大庆探区非常规油气资源潜力及勘探开发对策分析[J].地质与资源, 2015, 24(3):242-247, 183. doi: 10.3969/j.issn.1671-1947.2015.03.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8736.shtml

    Yang H B, Yang J G, Guo Q X. Resources prospects and development strategy of unconventional oil and gas in Daqing exploratory area[J]. Geology and Resources, 2015, 24(03):242-247+183. doi: 10.3969/j.issn.1671-1947.2015.03.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8736.shtml

    [2]

    杨建国, 李士超, 姚玉来, 等.松辽盆地北部陆相页岩油调查取得重大突破[J].地质与资源, 2020, 29(3):300. doi: 10.3969/j.issn.1671-1947.2020.03.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml

    Yang J G, Li S C, Yao Y L, et al. Significant breakthrough in the continental shale oil survey in northern Songliao Basin[J]. Geology and Resources, 2020, 29(3):300. doi: 10.3969/j.issn.1671-1947.2020.03.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml

    [3]

    贾利春, 陈勉, 金衍.国外页岩气井水力压裂裂缝监测技术进展[J].天然气与石油, 2012(1):44-47. doi: 10.3969/j.issn.1006-5539.2012.01.014

    Jia L C, Chen M, Jin Y. Technical progress in overseas hydraulic fracture monitoring techniques for shale gas well[J]. Natural Gas and Oil, 2012, 30(1):44-47. doi: 10.3969/j.issn.1006-5539.2012.01.014

    [4]

    李振春, 盛冠群, 王维波, 等.井地联合观测多分量微地震逆时干涉定位[J].石油地球物理勘探, 2014, 49(4):661-666, 671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201404006.htm

    Li Z C, Sheng G Q, Wang W B, et al. Time-reverse microseismic hypocenter location with interferometric imaging condition based on surface and downhole multi-components[J]. Petroleum Geophysical Exploration, 2014, 49(4):661-666, 671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201404006.htm

    [5]

    张晟瑞, 任朝发, 李星缘, 等.地面微地震资料噪声压制方法[J].地球物理学进展, 2018, 33(6):2522-2527. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201806043.htm

    Zhang S R, Ren C F, Li X Y, et al. Denoising method of surface microseismic data[J]. Progress in Geophysics, 2018, 33(6):2522-2527. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201806043.htm

    [6]

    Stevenson P R. Microearthquakes at Flathead Lake, Montana:A study using automatic earthquake processing[J]. Bulletin of the Seismological Society of America, 1976, 66(1):61-80.

    [7]

    Allen R. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America, 1978, 68:1521-1532. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=68/5/1521

    [8]

    Baer M, Kradolfer U. An automatic phase picker for local and teleseismic events[J]. Bulletin of the Seismological Society of America, 1987, 77:1437-1445.

    [9]

    Ross Z E, Ben-Zion Y. An earthquake detection algorithm with pseudo-probabilities of multiple indicators[J]. Geophysical Journal International, 2014, 197:458-463. doi: 10.1093/gji/ggt516

    [10]

    Vaezi Y, Baan M V D. Comparison of the STA/LTA and power spectral density methods for microseismic event detection[J]. Geophysical Journal International, 2015, 203(3):1896-1908. doi: 10.1093/gji/ggv419

    [11]

    Akram J, Peter D, Eaton D. A k-mean characteristic function for optimizing STA/LTA based detection of microseismic events[J]. Geophysics, GEO-2018-0484.R1.

    [12]

    吕世超, 郭晓中, 贾立坤.水力压裂井中微地震监测资料处理与解释[J].油气藏评价与开发, 2013, 3(6):37-42. doi: 10.3969/j.issn.2095-1426.2013.06.009

    Lv S C, Guo X Z, Jia L K. Microseismic monitoring data processing and interpretation of horizontal fracturing wells[J]. Reservoir Evaluation and Development, 2013, 3(6):37-42. doi: 10.3969/j.issn.2095-1426.2013.06.009

    [13]

    田峰.地面微地震压裂监测技术在煤层气开发中的应用[J].中国煤炭地质, 2018, 30(8):75-78, 90. doi: 10.3969/j.issn.1674-1803.2018.08.14

    Tian F. Application of surface microseismic fracturing monitoring technology in CBM exploitation[J]. Coal Geology in China, 2018, 30(8):75-78, 90. doi: 10.3969/j.issn.1674-1803.2018.08.14

    [14]

    周新国.油层水力压裂原理的探讨与技术应用[J].科技致富向导, 2009(20):94-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KJZF200920098.htm

    Zhou X G. Discussion on hydraulic fracturing principle of oil reservoir and its technical application[J]. Guide of Sci-tech Magazine, 2009(20):94-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KJZF200920098.htm

    [15]

    Duncan P M. Microseismic monitoring: Technology state of play[C]. 2010, SPE 131777.

    [16]

    张山, 刘清林, 赵群, 等.微地震监测技术在油田开发中的应用[J].石油物探, 2002, 41(2):226-231. doi: 10.3969/j.issn.1000-1441.2002.02.021

    Zhang S, Liu Q L, Zhao Q, et al. Application of microseismic monitoring technology in development of oil field[J]. Geophysical Prospecting for Petroleum, 2002, 2002, 41(2):226-231. doi: 10.3969/j.issn.1000-1441.2002.02.021

    [17]

    任朝发, 赵海波, 陈百军, 等.地面微地震监测采集观测系统定位精度的影响因素分析——以大庆SZ探区为例[J].石油物探, 2018, 57(5):668-677. doi: 10.3969/j.issn.1000-1441.2018.05.005

    Ren C F, Zhao H B, Chen B J, et al. Analysis of location precision factors in surface microseismic monitoring acquisition geometry:A case study of an SZ exploration area in Daqing, China[J]. Petroleum Geophysical Prospecting, 2018, 57(5):668-677. doi: 10.3969/j.issn.1000-1441.2018.05.005

    [18]

    李红梅.微地震监测技术在非常规油气藏压裂效果综合评估中的应用[J].油气地质与采收率, 2015, 22(3):129-134. doi: 10.3969/j.issn.1009-9603.2015.03.024

    Li H M. Application of micro-seismic monitoring technology to unconventional hydrocarbon reservoir fracturing evaluation[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(3):129-134. doi: 10.3969/j.issn.1009-9603.2015.03.024

    [19]

    芮拥军.地面微地震水力压裂监测可行性分析[J].物探与化探, 2015, 3(2):341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502021.htm

    Rui Y J. Feasibility analysis of surface micro-seismic hydraulic fracturing monitoring[J]. Geophysical and Geochemical Exploration, 2015, 3(2):341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502021.htm

    [20]

    张伟, 王海, 李洪臣, 等.用变换时窗统计能量比法拾取地震初至波[J].物探与化探, 2009, 33(2):178-180. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200902016.htm

    Zhang W, Wang H, Li H C, et al. The application of statist energy ratio of transform time windows to the pickup of seismic first arrival wave[J]. Geophysical and Geochemical Exploration, 2009, 33(2):178-180. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200902016.htm

    [21]

    王程, 王维红.基于背景噪声和特征值下降比的微地震SVD去噪改进方法[J].东北石油大学学报, 2020, 44(5):1-12, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202005001.htm

    Wang C, Wang W H. Optimal method of SVD for micro-seismic data based on background noise and wigenvalue ratio of reduction[J]. Journal of Northeast Petroleum University, 2020, 44(5):1-12, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202005001.htm

    [22]

    Julian B R, Foulger G R. Time-dependent seismic tomography[J]. Geophysical Journal International, 2010, 182(3):1327-1338. doi: 10.1111/j.1365-246X.2010.04668.x

    [23]

    杨瑞召, 李德伟, 庞海玲, 等.页岩气压裂微地震监测中的裂缝成像方法[J].天然气工业, 2017, 37(5):31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201705006.htm

    Yang R Z, Li D W, Pang H L, et al. Fracture imaging of the surface based microseismic monitoring in shale gas fracking:Methods and application[J]. Natural Gas Industry, 2017, 37(05):31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201705006.htm

    [24]

    吴建光, 张平, 吕昊, 等.基于震幅叠加的微地震事件定位在地面监测中的应用[J].吉林大学学报(地球科学版), 2017, 47(1):255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701025.htm

    Wu J G, Zhang P, Lv H, et al. Application of microseismic event location using amplitude summation in surface monitoring[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701025.htm

  • 加载中

(11)

(1)

计量
  • 文章访问数:  1468
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2020-05-08
修回日期:  2020-05-12
刊出日期:  2021-06-25

目录