MICROFACIES ANALYSIS AND SEDIMENTARY ENVIRONMENT OF THE SECTION OF TOP MAJIAGOU FORMATION IN NIUMAOLING SCENIC AREA OF BENXI CITY, LIAONING PROVINCE
-
摘要:
牛毛岭马家沟组顶部剖面位于本溪国家地质公园牛毛岭景区的东部.通过对碳酸盐岩的微相分析,恢复了马家沟组顶部剖面沉积环境并总结了沉积环境变化规律.依据标本研究划分出14种微相类型,包括1种风暴岩微相类型、9种缓坡微相类型、3种标准微相类型和1种自定义微相类型.此剖面自下而上划分为3个低能型向上变浅潮缘旋回.旋回一的沉积环境由内缓坡的潮缘或潟湖,至沙滩和沙堤,至潮汐水道的潮缘;旋回二沉积环境由局限或开放的内缓坡,至潮缘的浅潮下带和个别层位的潮间、潮上带;旋回三最为典型,沉积环境由灰色灰岩的中缓坡,至潮缘,再到黄色调碳酸盐岩的潮缘浅潮下带,至潮间、潮上带的蒸发潟湖,至干旱气候下潮间、潮上带的蒸发海岸.推断染色的Fe3+和黏土矿物为陆源,此剖面点处是碳酸盐岩孤岛(洲)的潮缘环境.
Abstract:The section of top Majiagou Formation is located in the east of Niumaoling Scenic Area of Benxi National Geopark. The sedimentary environment of the section is restored and its change rules are summarized through the microfacies analysis of carbonate rocks. According to the study of specimens, 14 microfacies types are classified, including 1 tempestite microfacies type, 9 gentle slope microfacies types, 3 standard microfacies types and 1 custom microfacies type. The section can be divided into 3 low-energy upward-shallowing tidal margin cycles from bottom to top: The sedimentary environment of Cycle I is tidal margin or lagoon of inner gentle slope-sandbeach and sand bank-tidal margin of tide gate; The sedimentary environment of Cycle II is from limited or open inner gentle slope to shallow subtidal zone of tidal margin and intertidal-supratidal zone of individual layer; The Cycle III is the most typical, with the sedimentary environment from the middle gentle slope of gray limestone, to tidal margin, then to the tidal margin shallow subtidal zone of yellow carbonate rocks, to the evaporative lagoons of intertidal-supratidal zones, and to the evaporative coast of intertidal-supratidal zones in arid climate. It is inferred that the stained Fe3+ and clay minerals are of terrigenous origin, and the section point is the tidal margin environment of carbonate rock island (bar).
-
图 1 本溪市地质简图及剖面位置(引自文献[1])
Figure 1.
表 1 微相类型和对应标本的微相特征
Table 1. Microfacies types and microfacies characteristics of corresponding specimens
微相标准 标本号 与微相标准吻合度 颜色 成分分类名称(顿哈姆分类) 标本微相特征 Storm-SMF4 B8 很好 灰黑色 漂浮灰岩和颗粒灰岩 内碎屑颜色浅灰、灰白、棕色等,灰泥灰岩成分,多数0.4 mm,大者可达1~5 mm,次棱角—次圆状,紧密堆积;个别含介形虫;与RMF22共存(图 3a) RMF2 B35 好 灰色 灰泥灰岩 厚层,约1/3面积为通道状、枝状掘穴,宽为2~13 mm;掘穴内生物碎屑含量较高:海百合、三叶虫、介形虫,亮晶充填;沉积物中生物碎屑含量低(图 4a) RMF3(SMF8) B37 很好 灰色 生物碎屑粒泥灰岩 厚层,约1/2面积为圆点和通道状掘穴,宽10~30 mm,亮晶充填;沉积物中生物碎屑含量最高,包括介形虫、三叶虫、海百合、鹦鹉螺、有孔虫、Girvanellaproblematica、红藻(图 4b) RMF14 B15 好 灰色 生物碎屑粒泥灰岩-灰泥灰岩 有掘穴,含生物碎屑和颗粒:海百合、介形虫、椭圆内碎屑(1~2 mm)、腕足动物、三叶虫(图 4c) B17 好 深灰色 球粒粒泥灰岩 灰泥球粒,粒径0.08~0.3 mm,多数0.1 mm,个别砾屑可达5 mm;含生物碎屑:海百合、介形虫、三叶虫 RMF18 B12 好 灰色 球粒泥粒灰岩 掘穴,宽2~5 mm;灰泥球粒,多数60 μm;含生物碎屑:厚壳和薄壳介形虫、海百合、三叶虫、角石、腹足 B16、B20 很好、很好 灰色 灰泥灰岩 有掘穴,含生物碎屑:薄壳介形虫、小三叶虫等;B20层厚1 cm,与SMF16互层 B18、B19 很好、很好 灰色 生物碎屑粒泥灰岩-灰泥灰岩 有掘穴,含生物碎屑:介形虫、三叶虫、海百合,生物完整,三叶虫细小,B19中有一个4 mm大介形虫(图 4d) RMF19 B1、B4、B14 好、很好、好 灰色 灰泥灰岩 中层,层厚10~30 cm RMF23(SMF21) B27 好 黄色 泥灰岩(黏结灰岩) 球粒泥晶纹层含有许多小亮点和弯曲短亮线状蓝藻或藻丝,中间夹一层状小窗状孔(长2~3 mm,宽0.6 mm) B42 很好 土黄色 白云岩(黏结灰岩) 皱的、模糊的球粒亮晶和球粒泥晶相间纹层,达到海绵状孔层构造的程度(图 4e);菱形、方形白云石,半自形,5~20 μm RMF24 B33 一般 黄灰色 含泥质灰岩(漂浮灰岩和粒泥灰岩) 由砂、砾级内碎屑和微亮晶基质组成;内碎屑为黄、棕、灰色,次棱角状—次圆状,大小0.2~3.5 mm(图 4f) RMF29 B10 很好 黄红色 表鲕泥粒灰岩 颗粒以切向同心表鲕为主,还有少量放射状表鲕、偏心鲕粒、复合鲕粒;表鲕一般是由泥晶核心和一个纹层组成,直径0.2~1 mm,大部分0.4~0.5 mm(图 5a) SMF16-非纹层 B19、B20 很好、很好 灰色 球粒颗粒灰岩 有掘穴,灰泥球粒,次圆—圆状,多数椭圆形,粒径0.1~0.3 mm;个别含厚壳介形虫、海百合,点-线接触,紧密堆积(图 5b);与RMF18互层 SMF23 B44 很好 土黄色 含泥质白云岩(灰泥灰岩) 含星散状硬石膏假晶,板条形,一般有直边和直角,0.1~0.4 mm,约1个假晶/mm2;砂糖状白云石结构,个体为方形、菱形,自形程度较高,40 μm(图 5c、d) SMF24 B10 很好 黄红色 砾屑灰岩和颗粒灰岩 由表鲕泥粒灰岩内碎屑和亮晶组成,无基质;内碎屑约2/3砾屑,1/3砂屑,0.2~5 mm,磨圆好,点-线接触,较紧密堆积(图 5e) 自定义MF1 B6 一般 浅奶黄色 灰泥灰岩 有“人”字形内碎屑条,宽约6 mm,有掘穴;内碎屑砂、砾级,0.3~3 mm,黄白、土黄、土色 B34、B39 好、很好 灰色 灰泥灰岩 相较泥晶区,微亮晶区为掘穴,呈现叉子状、椭圆状、通道状等,宽3~7 mm;B39掘穴集合起来葡萄状,占薄片面积的80%(图 5f);B34与RMF22共存 注:微相分析中生物碎屑类型按含量由高到低排序. -
[1] 曲跃, 曹成润, 张武, 等. 辽宁东部晚古生代本溪组煤系地层鳞木的发现及其意义[J]. 地质通报, 2015, 34(2/3): 419-424. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2015Z1018.htm
Qu Y, Cao C R, Zhang W, et al. Lepidodendrales fossils discovered from the coal bed of the Upper Paleozoic Benxi Formation in eastern Liaoning[J]. Geological Bulletin of China, 2015, 34(2/3): 419-424. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2015Z1018.htm
[2] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. New York: Springer, 2010: 1-976.
[3] 刘英才, 付俊彧, 赵春荆, 等. 《东北地区1: 150万大地构造相图》的编制[J]. 地质与资源, 2020, 29(1): 1-6. doi: 10.3969/j.issn.1671-1947.2020.01.001 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10143.shtml
Liu Y C, Fu J Y, Zhao C J, et al. Compilation of the 1: 1500000 Tectonic Facies Map of Northeast China[J]. Geology and Resources, 2020, 29(1): 1-6. doi: 10.3969/j.issn.1671-1947.2020.01.001 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10143.shtml
[4] 左洺滔, 胡忠贵, 张春林, 等. 克拉通盆地差异性构造活动对碳酸盐岩储集体的控制——以鄂尔多斯盆地马家沟组盐下储层为例[J]. 中国地质, 2021, 48(3): 794-806. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103011.htm
Zuo M T, Hu Z G, Zhang C L, et al. Control of differential tectonic activities on carbonate reservoirs in craton basin: A case study of the subsalt reservoir of Majiagou Formation in Ordos Basin[J]. Geology in China, 2021, 48(3): 794-806. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103011.htm
[5] 林玉祥, 赵承锦, 朱传真, 等. 华北地台东部早奥陶世岩相古地理特征[J]. 地球科学与环境学报, 2015, 37(6): 1-9. doi: 10.3969/j.issn.1672-6561.2015.06.001
Lin Y X, Zhao C J, Zhu C Z, et al. Lithofacies paleogeography characteristics of Early Ordovician in the eastern part of North China platform[J]. Journal of Earth Sciences and Environment, 2015, 37(6): 1-9. doi: 10.3969/j.issn.1672-6561.2015.06.001
[6] 郭胜哲, 张立东, 张长捷, 等. 辽宁太子河盆地元古宙-古生代层序地层[J]. 地质与资源, 2001, 10(1): 1-10. doi: 10.3969/j.issn.1671-1947.2001.01.001 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9754.shtml
Guo S Z, Zhang L D, Zhang C J, et al. Proterozoic-Paleozoic sequence stratigraphy in the Taizi River basin of Liaoning Province[J]. Geology and Resources, 2001, 10(1): 1-10. doi: 10.3969/j.issn.1671-1947.2001.01.001 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9754.shtml
[7] 辽宁省地质矿产局. 辽宁省区域地质志[M]. 北京: 地质出版社, 1989: 161-165.
Bureau of Geology and Mineral Resources of Liaoning Province. Regional geological records of Liaoning Province[M]. Beijing: Geological Publishing House, 1989: 161-165. (in Chinese)
[8] 梅冥相, 刘丽, 胡媛. 北京西郊寒武系凤山组叠层石生物层[J]. 地质学报, 2015, 89(2): 440-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502018.htm
Mei M X, Liu L, Hu Y. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing, North China[J]. Acta Geologica Sinica, 2015, 89(2): 440-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502018.htm
[9] Pruss S B, Finnegan S, Fischer W W, et al. Carbonates in skeleton-poor seas: New insights from Cambrian and Ordovician strata of Laurentia[J]. Palaios, 2010, 25(2): 73-84. doi: 10.2110/palo.2009.p09-101r
[10] Stigall A L, Edwards C T, Freeman R L, et al. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of Early Paleozoic building blocks[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 530: 249-270. doi: 10.1016/j.palaeo.2019.05.034
[11] Edwards C T. Links between Early Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): A review[J]. Palaeoworld, 2019, 28(1/2): 37-50. http://www.onacademic.com/detail/journal_1000040431995910_e7b6.html
[12] 马永生. 华北北部晚寒武世碳酸盐岩岩石学沉积学及沉积作用等时性研究[D]. 北京: 中国地质科学院, 1990.
Ma Y S. Study on carbonate petrology, sedimentology and sedimentational synchrony of Late Cambrian in the north part of North China platform[D]. Beijing: Chinese Academy of Geological Sciences, 1990.
[13] 李君文. 环渤海湾地区下古生界层序岩相古地理特征及演化[D]. 成都: 成都理工大学, 2007.
Li J W. The characteristic and evolution of sequence-lithofacies palaeogeography of Lower Paleozoic around Bohai Gulf area[D]. Chengdu: Chengdu University of Technology, 2007.
[14] 单学东, 刘文海, 潘明臣, 等. 辽宁省寒武-奥陶系沉积环境与层序地层划分[J]. 辽宁地质, 2000, 17(2): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-LOAD200002000.htm
Shan X D, Liu W H, Pan M C, et al. Sedimentary environment and sequence subdivision of Cambrian and Ordovician systems in Liaoning Province[J]. Liaoning Geology, 2000, 17(2): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-LOAD200002000.htm
[15] 陶洪兴, 张荫本, 唐泽尧. 中国油气储层研究图集(卷二)——碳酸盐岩[M]. 北京: 石油工业出版社, 1994: 1-201.
Tao H X, Zhang Y B, Tang Z Y. China petroleum reservoir study atlas (v. 2): Carbonate rocks[M]. Beijing: Petroleum Industry Press, 1994: 1-201. (in Chinese)
[16] Cariou E, Olivier N, Pittet B, et al. Dinosaur track record on a shallow carbonate-dominated ramp (Loulle section, Late Jurassic, French Jura)[J]. Facies, 2014, 60(1): 229-253. doi: 10.1007/s10347-013-0368-y
[17] Vachard D, Clausen S, Palafox J J, et al. Lower Ordovician microfacies and microfossils from Cerro San Pedro (San Pedro de la Cueva, Sonora, Mexico), as a westernmost outcrop of the newly defined NuiaProvince[J]. Facies, 2017, 63(3): 18.
[18] Luan X C, Brett C E, Zhan R B, et al. Microfacies analysis of the Lower-Middle Ordovician succession at Xiangshuidong, southwestern Hubei Province, and the drowning and shelf-ramp transition of a carbonate platform in the Yangtze region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 68-83. doi: 10.1016/j.palaeo.2017.06.004
[19] Park J, Lee J H, Hong J, et al. An upper Ordovician sponge-bearing micritic limestone and implication for Early Palaeozoic carbonate successions[J]. Sedimentary Geology, 2015, 319: 124-133. doi: 10.1016/j.sedgeo.2015.02.002
[20] 王一刚, 文应初, 洪海涛, 等. 四川盆地北部晚二叠世-早三叠世碳酸盐岩斜坡相带沉积特征[J]. 古地理学报, 2009, 11(2): 143-156. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200902002.htm
Wang Y G, Wen Y C, Hong H T, et al. Carbonate slope facies sedimentary characteristics of the Late Permian to Early Triassic in northern Sichuan Basin[J]. Journal of Palaeogeography, 2009, 11(2): 143-156. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200902002.htm
[21] 洪海涛, 田兴旺, 孙奕婷, 等. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质, 2020, 47(1): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001009.htm
Hong H T, Tian X W, Sun Y T, et al. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China, 2020, 47(1): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001009.htm