中国晚新生代构造-沉积-古气候事件的地质记录

胡健民, 闫纪元, 程瑜, 刘晓波. 中国晚新生代构造-沉积-古气候事件的地质记录[J]. 地质与资源, 2022, 31(3): 303-330. doi: 10.13686/j.cnki.dzyzy.2022.03.007
引用本文: 胡健民, 闫纪元, 程瑜, 刘晓波. 中国晚新生代构造-沉积-古气候事件的地质记录[J]. 地质与资源, 2022, 31(3): 303-330. doi: 10.13686/j.cnki.dzyzy.2022.03.007
HU Jian-min, YAN Ji-yuan, CHENG Yu, LIU Xiao-bo. GEOLOGICAL RECORDS OF LATE CENOZOIC TECTONO-SEDIMENTARY-PALEOCLIMATIC EVENTS IN CHINA[J]. Geology and Resources, 2022, 31(3): 303-330. doi: 10.13686/j.cnki.dzyzy.2022.03.007
Citation: HU Jian-min, YAN Ji-yuan, CHENG Yu, LIU Xiao-bo. GEOLOGICAL RECORDS OF LATE CENOZOIC TECTONO-SEDIMENTARY-PALEOCLIMATIC EVENTS IN CHINA[J]. Geology and Resources, 2022, 31(3): 303-330. doi: 10.13686/j.cnki.dzyzy.2022.03.007

中国晚新生代构造-沉积-古气候事件的地质记录

  • 基金项目:
    中国地质调查局地质调查项目"特殊地质地貌区填图试点"(DD20160060)
详细信息
    作者简介: 胡健民(1959-), 男, 博士, 研究员, 从事构造地质学与区域地质学研究, 通信地址北京市海淀区民族大学南路11号, E-mail//546045354@qq.com
  • 中图分类号: P534.6;P539.6

GEOLOGICAL RECORDS OF LATE CENOZOIC TECTONO-SEDIMENTARY-PALEOCLIMATIC EVENTS IN CHINA

  • 中国区域地质调查工作的重点正在转向大面积覆盖区为主的平原、盆地、草原、荒漠等地区,向深部三维调查拓展.第四纪松散沉积层覆盖区区域地质调查的核心是揭示晚新生代地表过程、圈层相互关系,探讨人与自然的关系,服务于国家生态文明建设与生态环境保护.然而,覆盖区进行地质填图一个很大的难处是第四纪松散沉积层的侧向延伸往往很不稳定,要特别重视重要构造-沉积-古气候和古环境事件,如重要的不整合面、侵蚀面、火山岩层、湖相沉积,重要的海侵层、古气候沉积(如黄土、红土、黑土),古文化层等.它们可以作为第四纪松散沉积层侧向对比的重要标志,并且往往具有等时性.东亚大陆构造演化及现代地貌特征主要受两大地球动力系统所控制,西部印度-欧亚板块碰撞、高原快速隆升并向北东方向扩展,东部太平洋板块向欧亚大陆俯冲消减并在东亚大陆东缘形成复杂的沟-弧-盆系统.两大构造系统作用奠定了晚新生代以来中国地质演化背景,导致地球深部过程和地表环境发生重大变革.总体表现为青藏高原隆升、东部岩石圈伸展减薄,最终塑造了现今的宏观地貌形态和水系格局.本文针对第四纪松散沉积物覆盖层的这些特点,对中国晚新生代以来重要构造-沉积-古气候事件进行了梳理,总结了晚新生代这些重要事件的地质记录,特别是重要的沉积层、侵蚀面、不整合面、海侵层等,以便在覆盖区区域地质调查时对第四纪松散沉积层进行区域性对比.

  • 加载中
  • 图 1  青藏高原及邻区古近纪一新近纪地层分区、岩石地层序列及其对比(据文献[71])

    Figure 1. 

    图 2  新生代全球主要气候、构造、生物事件及其碳氧同位素记录(据文献[106])

    Figure 2. 

    图 3  晚中新世黄土高原风尘堆积记录及北太平洋深海沉积物记录(据文献[109])

    Figure 3. 

    图 4  安徽宣城黄土黏土矿物分析及其与深海氧同位素和黄土记录对比(据文献[111])

    Figure 4. 

    图 5  黄淮海地区第四纪演化(据文献[83]修改)

    Figure 5. 

    图 6  TZK3孔碎屑锆石U-Pb年龄谱系图(据文献[147])

    Figure 6. 

    图 7  中国不同地区的河流沉积记录(据文献[87-88, 148-149]修改)

    Figure 7. 

    图 8  渤海西岸晚第四纪海侵影响范围及古海岸线图(据文献[150])

    Figure 8. 

    图 9  灌云地区海侵层对比图

    Figure 9. 

    图 10  TZK9孔有孔虫、介形虫的垂向分布(据文献[152]修改)

    Figure 10. 

    图 11  渤海湾西部平原与长三角晚更新世海侵范围(据文献[161, 165]修改)

    Figure 11. 

    图 12  中国东部不同地区海侵层对比(据文献[147, 178]修改)

    Figure 12. 

    表 1  华北第四纪地层分区对比

    Table 1.  Regional correlation of Quaternary stratigraphy in North China

    地层 年龄/Ma 鄂尔多斯地块周缘盆地区 鄂尔多斯地块内部黄土高原 华北平原
    六盘山-银川盆地区 河套盆地区 渭河盆地区 山西地堑区 河北平原小区 鲁豫小区
    全新统 上段 0.01 湖积层 滴哨沟组 半坡组(耕植土, 黑土) 冲洪积等 全新世黄土 亚黏土层 临沂组、泰安组、沂河组
    下段 灵武组 大沟湾组
    更新统 上更新统 0.1 水洞沟组 城川组 马兰组 亁县组 马兰组 马兰组 马兰组 欧庄组 大站组
    吉兰泰组、萨拉乌苏组 萨拉乌苏组
    泄湖组
    中更新统 0.78 贺兰组 湖积层 离石组 离石组 小渡口组/周口店组 离石组 杨柳青组 金山组
    阳郭组
    下更新统 2.58 银川组或玉门组、羊圈堡砾岩 湖积层 固安组
    三门组上段 午城组 泥河湾组 午城组
    下载: 导出CSV

    表 2  黄河贯通三门峡的时代

    Table 2.  The time of the Yellow River passed through Sanmenxia

    研究对象 贯通时代 主要证据 参考文献
    构造地貌 黄河扣马段河流阶地 >1.165 Ma 最高级阶地上1.165 Ma开始堆积黄土 [76]
    黄河三门峡段河流阶地 3.63~1.24 Ma 黄河三门峡段上新世夷平面之下发育5级河流阶地; 夷平面以及最高级阶地的形成时代分别为3.63 Ma和1.24 Ma [77]
    三门峡段河流阶地及渭河盆地河湖相沉积 1.3~1.4 Ma 三门峡最高级河流阶地之上和渭河盆地中具有黄河上游碎屑锆石年龄分布特征的沉积物分别出现于1.3 Ma和1.4 Ma [78]
    沉积响应 三门峡盆地黄底沟剖面 0.15 Ma 三门古湖0.15 Ma结束湖相沉积 [33, 79]
    邙山黄土 L2以上粒度偏粗, 沉积速率增大 [80]
    200~250 ka 利用磁化率和粒度重新标定了邙山黄土的时代, 发现S2之后沉积速率及粒度发生明显变化 [81]
    约900 ka L9黄土(约900 ka)中已经出现了黄河物源 [82]
    河南东部平原沉积物 0.78 Ma 黄河冲积平原B/M界线(0.78 Ma)上下沉积物特征、孢粉特征以及重矿物组合明显不同 [83]
    汾渭盆地与河南平原更新统介形类化石 0.78~1.0 Ma 更新统介形类化石组合特征中更新世前后发生明显变化 [84]
    黄河三角洲石化2孔 早更新世 钻孔埋深223 m处上下沉积物元素组成存在明显差异, 其上与黄河接近, 其下与黄河明显不同 [85]
    渤海湾西岸G4孔 1.6 Ma 地球化学组成指示1.6 Ma物源发生变化 [86]
    渤海BH08孔及南黄海NHH01孔 880 ka 稀土元素和黏土矿物组成指示物源在880 ka由近源小型山地河流为主, 转变为以远源多组分的黄河沉积物为主 [87]
    南黄海西部CSDP-1孔 0.8 Ma 黏土矿物和Sr-Nd同位素指示物源在0.8 Ma由长江转为以黄河为主 [88]
    渤海湾西岸G2、G3及CK3 1.6~1.5 Ma G2、G3及CK3中的碎屑锆石年龄谱在1.6~1.5 Ma发生明显变化 [89]
    据文献[68].
    下载: 导出CSV

    表 3  长江贯通时代的不同观点

    Table 3.  Different viewpoints about the time when the Yangtze River runs through

    研究对象 贯通时代 主要证据 参考文献
    江汉盆地阶地 0.75 Ma 长江第五、四级阶地沉积物中的锆石U-Pb年龄谱具有长江上游的特征 [101]
    江汉盆地钻孔 早于第四纪初期 与第四纪沉积物相比, 上新世沉积物的εNd(0)值较低, 显示其物源不同 [102]
    南京雨花台组长江砾石层 23 Ma 长江上游物质在渐新世或者最晚在渐新世/中新世之交到达南京地区 [97]
    兴化XH-1孔 2.32 Ma 磁化率和粒度的相关性在2.32 Ma发生了变化, 分别与淮河下游和长江下游现代沉积物的记录相一致 [100]
    长江口PD-99孔 >2.58 Ma 指示长江上游物质的独居石年龄<25 Ma颗粒在河口地区地层出现 [103]
    长江口DY03孔 3.1 Ma 常量和微量元素结果显示, 沉积物来源在3.1 Ma由近源转变为远源 [104]
    长江口DY03孔 >3.2 Ma 锆石U-Pb年龄谱结果显示, 3.2 Ma以来沉积物碎屑锆石中识别出大量来自长江上游的年龄信息 [98]
    东海盆地钻孔沉积物 中新世晚期 现代长江锆石谱首次在中新世晚期出现 [105]
    下载: 导出CSV

    表 4  黄淮海平原沿海地区的海侵期次划分

    Table 4.  Transgressive periods in the coastal areas of the Yellow River-Huaihe-Haihe plain

    地点 海侵期次及名称 参考文献
    黄骅、沧州、保定等地 渤海海进(早更新世), 海兴海进(中更新世), 黄骅海进(晚更新世早期), 白洋淀海进(晚更新世早期), 沧州海进(晚更新世早期), 天津海进(全新世) [153]
    渤海湾西岸 沧州海侵(102~70 ka), 献县海侵(39~23 ka), 黄骅海侵(8~2 ka) [154]
    河北平原东部 海兴海进, 黄骅海进, 青县海进, 沧西海进(40~20 ka), 献县海进(8. 5~5. 5 ka), 沧东海进(5~3. 5 ka) [162]
    中国东部平原 星轮虫海侵(110~70 ka), 假轮虫海侵(40~25 ka), 卷转虫海侵(15~2 ka) [156]
    台湾海峡以北沿海平原 盘旋虫海侵(中更新世早期), 星轮虫海侵(晚更新世早期), 假轮虫海侵(晚更新世中期), 卷转虫海侵(全新世) [157]
    渤海西、南岸平原 早更新世(2. 26 Ma), 中更新世(约0. 30 Ma), 晚更新世(约100 ka), 晚更新世(39~24 ka)、全新世(<10 ka) [158-159]
    长江三角洲 如皋海侵(早更新世中期)、上海海侵(中更新世早期)、太湖海侵(晚更新世早期)、滆湖海侵(晚更新世晚期)、镇江海侵(全新世) [161]
    据文献[68].
    下载: 导出CSV
  • [1]

    姜作勤. 国内外区域地质调查全过程信息化的现状与特点[J]. 地质通报, 2008, 27(7): 956-964. doi: 10.3969/j.issn.1671-2552.2008.07.004

    Jiang Z Q. Present status and features of informationization of the full process of regional geological survey at home and abroad[J]. Geological Bulletin of China, 2008, 27(7): 956-964. doi: 10.3969/j.issn.1671-2552.2008.07.004

    [2]

    陈克强. 面向21世纪的中国区域地质调查工作[J]. 中国区域地质, 1995(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD501.000.htm

    Chen K Q. China's regional geological survey work facing the 21st century[J]. Regional Geology of China, 1995(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD501.000.htm

    [3]

    胡道功, 刘凤山, 吴珍汉, 等. 欧美地质填图方法: 经验、试点与建议——以东昆仑造山带地质填图试验为例[M]. 北京: 地质出版社, 2013.

    Hu D G, Liu F S, Wu Z H, et al. Geological mapping techniques in Europe and America: Experience, experiments and suggestions, taking the geological mapping test in the east Kunlun orogenic belts as an example[M]. Beijing: Geology Press, 2013. (in Chinese)

    [4]

    胡健民, 陈虹, 梁霞, 等. 特殊地区地质填图技术方法及应用成果[J]. 地质力学学报, 2017, 23(2): 181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201702001.htm

    Hu J M, Chen H, Liang X, et al. Geological mapping techniques in special areas and their achievements[J]. Journal of Geomechanics, 2017, 23(2): 181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201702001.htm

    [5]

    胡健民, 陈虹. 覆盖区区域地质填图指导思想与方法体系的创新与探索——特殊地质地貌区填图试点项目成果概述[J]. 地质力学学报, 2019, 25(5): 1001-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905027.htm

    Hu J M, Chen H. Innovation and exploration of guidance thought and method systems of regional geological mapping in covered areas[J]. Journal of Geomechanics, 2019, 25(5): 1001-1002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905027.htm

    [6]

    胡健民, 陈虹, 邱士东, 等. 覆盖区区域地质调查(1: 50000)思路、原则与方法[J]. 地球科学, 2020, 45(12): 4291-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012002.htm

    Hu J M, Chen H, Qiu S D, et al. Thoughts, principles and methods of regional geological survey in covered area (1: 50000)[J]. Earth Science, 2020, 45(12): 4291-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012002.htm

    [7]

    辜平阳, 陈锐明, 胡健民, 等. 高山峡谷区1: 50000填图方法指南[M]. 北京: 科学出版社, 2018.

    Gu P Y, Chen R M, Hu J M, et al. Guide book of 1: 50000 geological mapping methods in alpine-gorge area[M]. Beijing: Science Press, 2018. (in Chinese)

    [8]

    吕勇, 潘明, 山克强, 等. 岩溶区1: 50000填图方法指南[M]. 北京: 科学出版社.

    Lü Y, Pan M, Shan K Q, et al. Guide book of 1: 50000 geological mapping methods in karst area[M]. Beijing: Science Press. (in Chinese)

    [9]

    Dong S W, Li T D, Gao R, et al. Progress of SinoProbe: Deep exploration in China 2008-2012[J]. Acta Geologica Sinica, 2013, 87(S1): 122.

    [10]

    董树文, 李廷栋, 陈宣华, 等. 深部探测揭示中国地壳结构、深部过程与成矿作用背景[J]. 地学前缘, 2014, 21(3): 201-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403030.htm

    Dong S W, Li T D, Chen X H, et al. SinoProbe revealed crustal structures, deep processes, and metallogenic background within China continent[J]. Earth Science Frontiers, 2014, 21(3): 201-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403030.htm

    [11]

    胡健民. 特殊地区地质填图工程概况[J]. 地质力学学报, 2016, 22(4): 803-808. doi: 10.3969/j.issn.1006-6616.2016.04.001

    Hu J M. Introduction of geological mapping engineering in special area[J]. Journal of Geomechanics, 2016, 22(4): 803-808. (in Chinese) doi: 10.3969/j.issn.1006-6616.2016.04.001

    [12]

    王国灿, 陈超, 胡健民, 等. 戈壁荒漠覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2018.

    Wang G C, Chen C, Hu J M, et al. Guide book of 1: 50000 geological mapping methods in gobi desert covered area[M]. Beijing: Science Press, 2018. (in Chinese)

    [13]

    李向前, 赵增玉, 邱士东, 等. 长三角平原区1: 50000填图方法指南[M]. 北京: 科学出版社, 2018.

    Li X Q, Zhao Z Y, Qiu S D, et al. Guide book of 1: 50000 geological mapping methods in Yangtze River delta plane area[M]. Beijing: Science Press, 2018. (in Chinese)

    [14]

    田世攀, 王东明, 苏艳民. 森林沼泽浅覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2021.

    Tian S P, Wang D M, Su Y M. Guide book of 1: 50000 geological mapping methods in forest and swamp shallow coverd area[M]. Beijing: Science Press, 2021. (in Chinese)

    [15]

    张云强, 专少鹏, 魏文通, 等. 京津冀山前冲洪积平原区1: 50000填图方法指南[M]. 北京: 科学出版社, 2020.

    Zhang Y Q, Zhuan S P, Wei W T, et al. Guide book of 1: 50000 geological mapping methods in Beijing-Tianjin-Hebei Piedmont alluvial plain[M]. Beijing: Science Press, 2020. (in Chinese)

    [16]

    李振宏, 陈虹, 施炜, 等. 活动构造发育区1: 50000填图方法指南[M]. 北京: 科学出版社, 2020.

    Li Z H, Chen H, Shi W, et al. Guide book of 1: 50000 geological mapping methods in active tectonics region[M]. Beijing: Science Press, 2020. (in Chinese)

    [17]

    李朝柱, 傅建利, 王书兵, 等. 黄土覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2020.

    Li C Z, Fu J L, Wang S B, et al. Guide book of 1: 50000 geological mapping methods in loess covered area[M]. Beijing: Science Press, 2020. (in Chinese)

    [18]

    卜建军, 吴俊, 邓飞, 等. 中国南方强风化层覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2021.

    Bu J J, Wu J, Deng F, et al. Guide book of 1: 50000 geological mapping methods in trongly weathered area in southern China[M]. Beijing: Science Press, 2021. (in Chinese)

    [19]

    刘士毅. 物探技术的第三根支柱[M]. 北京: 地质出版社, 2016.

    Liu S Y. The third pillar of geophysical technology[M]. Beijing: Geology Press, 2016. (in Chinese)

    [20]

    吴俊, 卜建军, 谢国刚, 等. 区域化探数据在华南强烈风化区地质填图中的应用[J]. 地质力学学报, 2016, 22(4): 955-966. doi: 10.3969/j.issn.1006-6616.2016.04.013

    Wu J, Bu J J, Xie G G, et al. Application of regional geochemical data in geological mapping in strongly weathered area in southern China[J]. Journal of Geomechanics, 2016, 22(4): 955-966. doi: 10.3969/j.issn.1006-6616.2016.04.013

    [21]

    喻劲松, 荆磊, 王乔林, 等. 特殊地质地貌区填图物化探技术应用[J]. 地质力学学报, 2016, 22(4): 893-906. doi: 10.3969/j.issn.1006-6616.2016.04.008

    YuJ S, Jing L, Wang Q L, et al. Application of geophysical and geochemical prospecting techniques in special geological and geomorphic areas[J]. Journal of Geomechanics, 2016, 22(4): 893-906. doi: 10.3969/j.issn.1006-6616.2016.04.008

    [22]

    于长春, 孙杰, 张迪硕, 等. 基于多源遥感与航空物探数据的岩性分类方法[J]. 地质通报, 2022, 41(2/3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2022Z1002.htm

    Yu C C, Sun J, Zhang D S, et al. Lithologic classification method based on multi-source remote sensing and aerogeophysical data[J]. Geological Bulletin of China, 2022, 41(2/3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2022Z1002.htm

    [23]

    徐强. 我国区域地质调查数字采集系统研究取得重大进展[J]. 地质论评, 2002, 48(2): 167, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200202007.htm

    Xu Q. Marjor progress in the digital acquisition system of regional geological investigation of China[J]. Geological Review, 2002, 48(2): 167, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200202007.htm

    [24]

    张克信, 王国灿, 陈奋宁, 等. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合[J]. 地球科学——中国地质大学学报, 2007, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm

    Zhang K X, Wang G C, Chen F N, et al. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm

    [25]

    Jones S. Introducing sedimentology[M]. Edinburgh: Dunedin Academic Press, 2015.

    [26]

    张培震, 张会平, 郑文俊, 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    Zhang P Z, Zhang H P, Zheng W J, et al. Cenozoic tectonic evolution of continental eastern Asia[J]. Seismology and Geology, 2014, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    [27]

    任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999, 6(3): 85-93. doi: 10.3321/j.issn:1005-2321.1999.03.008

    Ren J S, Niu B G, Liu Z G. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, 1999, 6(3): 85-93. doi: 10.3321/j.issn:1005-2321.1999.03.008

    [28]

    葛肖虹, 任收麦, 马立祥, 等. 青藏高原多期次隆升的环境效应[J]. 地学前缘, 2006, 13(6): 118-130. doi: 10.3321/j.issn:1005-2321.2006.06.015

    Ge X H, Ren S M, Ma L X, et al. Multi-stage uplifts of the Qinghai-Tibet Plateau and their environmental effects[J]. Earth Science Frontiers, 2006, 13(6): 118-130. doi: 10.3321/j.issn:1005-2321.2006.06.015

    [29]

    李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001

    Li J J, Fang X M, Pan B T, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001

    [30]

    Li J J, Fang X M, Van der Voo R, et al. Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10121-10132. doi: 10.1029/97JB00275

    [31]

    程绍平, 邓起东, 闵伟, 等. 黄河晋陕峡谷河流阶地和鄂尔多斯高原第四纪构造运动[J]. 第四纪研究, 1998(3): 238-248. doi: 10.3321/j.issn:1001-7410.1998.03.007

    Cheng S P, Deng Q D, Min W, et al. Yellow River and Quaternary tectonic movements of the Ordos Plateau[J]. Quaternary Sciences, 1998(3): 238-248. doi: 10.3321/j.issn:1001-7410.1998.03.007

    [32]

    陈发虎, 范育新, Madsen D B, 等. 河套地区新生代湖泊演化与"吉兰泰-河套"古大湖形成机制的初步研究[J]. 第四纪研究, 2008, 28(5): 866-873. doi: 10.3321/j.issn:1001-7410.2008.05.009

    Chen F H, Fan Y X, Madsen D B, et al. Preliminary study on the formation mechanism of the"Jilantai-Hetao"megalake and the lake evolutionary history in Hetao region[J]. Quaternary Sciences, 2008, 28(5): 866-873. doi: 10.3321/j.issn:1001-7410.2008.05.009

    [33]

    王苏民, 吴锡浩, 张振克, 等. 三门古湖沉积记录的环境变迁与黄河贯通东流研究[J]. 中国科学: D辑, 2001, 31(9): 760-768. doi: 10.3969/j.issn.1674-7313.2002.07.002

    Wang S M, Wu X H, Zhang Z K, et al. Sedimentary records of environmental evolution in the Sanmen Lake Basin and the Yellow River running through the Sanmenxia Gorge eastward into the sea[J]. Science in China Series D: Earth Sciences, 2002, 45(7): 595-608. doi: 10.3969/j.issn.1674-7313.2002.07.002

    [34]

    张家声, 徐杰, 万景林, 等. 太行山山前中-新生代伸展拆离构造和年代学[J]. 地质通报, 2002, 21(4/5): 207-210. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2002Z1004.htm

    Zhang J S, Xu J, Wan J L, et al. Meso-Cenozoic detachment zones in the front of the Taihang Mountains and their fission-track ages[J]. Geological Bulletin of China, 2002, 21(4/5): 207-210. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2002Z1004.htm

    [35]

    吴忱, 张秀清, 马永红. 太行山、燕山主要隆起于第四纪[J]. 华北地震科学, 1999, 17(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD199903000.htm

    Wu C, Zhang X Q, Ma Y H. The Taihang and Yan mountains rose mainly in Quarteranary[J]. North China Earthguake Sciences, 1999, 17(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKD199903000.htm

    [36]

    徐杰, 高战武, 孙建宝, 等. 区域伸展体制下盆-山构造耦合关系的探讨——以渤海湾盆地和太行山为例[J]. 地质学报, 2001, 75(2): 165-174. doi: 10.3321/j.issn:0001-5717.2001.02.004

    Xu J, Gao Z W, Sun J B, et al. A preliminary study of the coupling relationship between basin and mountain in extensional environments: A case study of the Bohai Bay Basin and Taihang Mountain[J]. Acta Geologica Sinica, 2001, 75(2): 165-174. doi: 10.3321/j.issn:0001-5717.2001.02.004

    [37]

    马寅生, 赵逊, 赵希涛, 等. 太行山南缘新生代的隆升与断陷过程[J]. 地球学报, 2007, 28(3): 219-233. doi: 10.3321/j.issn:1006-3021.2007.03.001

    Ma Y S, Zhao X, Zhao X T, et al. The Cenozoic rifting and uplifting process on the southern margin of Taihangshan uplift[J]. Acta Geoscientica Sinica, 2007, 28(3): 219-233. doi: 10.3321/j.issn:1006-3021.2007.03.001

    [38]

    龚明权. 新生代太行山南段隆升过程研究[D]. 北京: 中国地质科学院, 2010.

    Gong M Q. Uplifting process of southern Taihang Mountain in Cenozoic[D]. Beijing: Chinese Academy of Geological Sciences, 2010.

    [39]

    张蒙, 李鹏霄. 太行山南段主要隆升时期探讨[J]. 国土与自然资源研究, 2014(4): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZY201404020.htm

    Zhang M, Li P X. Discussion on the main uplift period of the southern segment of Taihang Mountains[J]. Territory&Natural Resources Study, 2014(4): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZY201404020.htm

    [40]

    张蕾, 张绪教, 武法东, 等. 太行山南缘晚更新世以来河流阶地的发育及其新构造运动意义[J]. 现代地质, 2013, 27(4): 791-798. doi: 10.3969/j.issn.1000-8527.2013.04.005

    Zhang L, Zhang X J, Wu F D, et al. River terraces'development and significance of neotectonic movement on the southern margin of Taihang Mountains since Late Pleistocene[J]. Geoscience, 2013, 27(4): 791-798. doi: 10.3969/j.issn.1000-8527.2013.04.005

    [41]

    张哲, 张军龙. 第四纪太行山南段隆升问题的探讨[J]. 干旱区资源与环境, 2020, 34(10): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202010013.htm

    Zhang Z, Zhang J L. Discussion on the uplift of the south section of Taihang Mountain in Quaternary period[J]. Journal of Arid Land Resources and Environment, 2020, 34(10): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202010013.htm

    [42]

    马寅生, 崔盛芹, 吴淦国, 等. 辽西医巫闾山的隆升历史[J]. 地球学报, 2000, 21(3): 245-253. doi: 10.3321/j.issn:1006-3021.2000.03.003

    Ma Y S, Cui S Q, Wu G G, et al. Uplift history of the Yiwulushan Mountains in west Liaoning[J]. Acta Geoscientia Sinica, 2000, 21(3): 245-253. doi: 10.3321/j.issn:1006-3021.2000.03.003

    [43]

    吴中海, 吴珍汉. 燕山及邻区晚白垩世以来山脉隆升历史的低温热年代学证据[J]. 地质学报, 2003, 77(3): 399-406. doi: 10.3321/j.issn:0001-5717.2003.03.011

    Wu Z H, Wu Z H. Low-temperature thermochronological analysis of the uplift history of the Yanshan Mountain and its neighboring area[J]. Acta Geologica Sinica, 2003, 77(3): 399-406. doi: 10.3321/j.issn:0001-5717.2003.03.011

    [44]

    李越, 季建清, 涂继耀, 等. 燕山东部柳江地区构造属性新解与郯庐断裂系活动[J]. 岩石学报, 2009, 25(3): 675-681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903021.htm

    Li Y, Ji J Q, Tu J Y, et al. Structure of Liujiang terrain and implications for displacement of Tanlu fault system[J]. Acta Petrologica Sinica, 2009, 25(3): 675-681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903021.htm

    [45]

    陈详高, 张忠奎, 臧文秀. 北京房山花岗闪长岩中锆石的裂变径迹年龄测定和热历史研究[J]. 岩石学报, 1986, 2(1): 40-44. doi: 10.3321/j.issn:1000-0569.1986.01.005

    Chen X G, Zhang Z K, Zang W X. Study on fission track dating of zircon and thermal history of the Fangshan granodiorite in Beijing[J]. Acta Petrologica Sinica, 1986, 2(1): 40-44. doi: 10.3321/j.issn:1000-0569.1986.01.005

    [46]

    翟鹏济, 张峰, 赵云龙. 从裂变径迹分析探讨房山岩体地质热历史[J]. 地球化学, 2003, 32(2): 188-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200302012.htm

    Zhai P J, Zhang F, Zhao Y L. Thermal history of the Fangshan granodiorite intrusion, Beijing: Evidence from fission tracks of apatites and sphenes[J]. Geochimica, 2003, 32(2): 188-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200302012.htm

    [47]

    冯乾乾, 邱楠生, 常健, 等. 房山岩体构造-热演化: 来自(U-Th)/He年龄的约束[J]. 地球科学, 2018, 43(6): 1972-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201806015.htm

    Feng Q Q, Qiu N S, Chang J, et al. Tectonothermal evolution of Fangshan pluton: Constraints from (U-Th)/He Ages[J]. Earth Science, 2018, 43(6): 1972-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201806015.htm

    [48]

    陈子健. 燕山西段延庆-丰宁地区白垩纪岩体剥露过程的低温热年代学研究[D]. 北京: 中国地质大学(北京), 2019.

    Chen Z J. Low-temperature thermochronological study on the exhumation process of Cretaceous plutons in Yanqing-Fengning area of the western Yanshan belt[D]. Beijing: China University of Geosciences (Beijing), 2019.

    [49]

    李理, 钟大赉. 泰山新生代抬升的裂变径迹证据[J]. 岩石学报, 2006, 22(2): 457-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602018.htm

    Li L, Zhong D L. Fission track evidence of Cenozoic uplifting events of the Taishan Mountain, China[J]. Acta Petrologica Sinica, 2006, 22(2): 457-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602018.htm

    [50]

    王振兰, 王金铎, 季建清, 等. 鲁西隆起与济阳坳陷箕状断陷形成时代研究[J]. 石油学报, 2008, 29(2): 206-212. doi: 10.3321/j.issn:0253-2697.2008.02.009

    Wang Z L, Wang J D, Ji J Q, et al. Research on formation age of dust pan fault depression in Luxi uplift and Jiyang depression[J]. Acta Petrolei Sinica, 2008, 29(2): 206-212. doi: 10.3321/j.issn:0253-2697.2008.02.009

    [51]

    唐智博, 李理, 时秀朋, 等. 鲁西隆起蒙山晚白垩世-新生代抬升的裂变径迹证据[J]. 中山大学学报(自然科学版), 2011, 50(2): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201102027.htm

    Tang Z B, Li L, Shi X P, et al. Fission track thermochronology of late Cretaceous-Cenozoic uplifting events of the Mengshan Mountain in the western Shandong rise, China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(2): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201102027.htm

    [52]

    Grimmer J C, Jonckheere R, Enkelmann E, et al. Cretaceous-Cenozoic history of the southern Tan-Lu fault zone: Apatite fission-track and structural constraints from the Dabie Shan (eastern China)[J]. Tectonophysics, 2002, 359(3/4): 225-253.

    [53]

    周祖翼, 许长海, Reiners P W, 等. 大别山天堂寨地区晚白垩世以来剥露历史的(U-Th)/He和裂变径迹分析证据[J]. 科学通报, 2003, 48(6): 598-602. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200306014.htm

    Zhou Z Y, Xu C H, Reiners P W, et al. Late Cretaceous-Cenozoic exhumation history of Tiantangzhai region of Dabieshan orogen: Constraints from (U-Th)/He and fission track analysis[J]. Chinese Science Bulletin, 2003, 48(11): 1151-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200306014.htm

    [54]

    Hu S B, Raza A, Min K, et al. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the North China craton through the Qinling orogen into the Yangtze craton, central China[J]. Tectonics, 2006, 25(6): TC6009.

    [55]

    Ge X, Shen C B, Yang Z, et al. Low-temperature thermochronology constraints on the Mesozoic-Cenozoic exhumation of the Huangling massif in the Middle Yangtze Block, Central China[J]. Journal of Earth Science, 2013, 24(4): 541-552. doi: 10.1007/s12583-013-0348-8

    [56]

    李庶波, 王岳军, 张玉芝, 等. 南太行山中新生代隆升过程: 磷灰石裂变径迹证据[J]. 大地构造与成矿学, 2015, 39(3): 460-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201503010.htm

    Li S B, Wang Y J, Zhang Y Z, et al. Meso-Cenozoic uplifting of south Taihang Mountains: Constraints from apatite fission track data[J]. Geotectonica et Metallogenia, 2015, 39(3): 460-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201503010.htm

    [57]

    Wu L, Wang F, Yang J H, et al. Meso-Cenozoic uplift of the Taihang Mountains, North China: Evidence from zircon and apatite thermochronology[J]. Geological Magazine, 2020, 157(7): 1097-1111. doi: 10.1017/S0016756819001377

    [58]

    Cao X Z, Li S Z, Xu L Q, et al. Mesozoic-Cenozoic evolution and mechanism of tectonic geomorphology in the central North China Block: Constraint from apatite fission track thermochronology[J]. Journal of Asian Earth Sciences, 2015, 114: 41-53. doi: 10.1016/j.jseaes.2015.03.041

    [59]

    侯贵廷, 钱祥麟, 蔡东升. 渤海湾盆地中、新生代构造演化研究[J]. 北京大学学报(自然科学版), 2001, 37(6): 845-851. doi: 10.3321/j.issn:0479-8023.2001.06.016

    Hou G T, Qian X L, Cai D S. The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(6): 845-851. doi: 10.3321/j.issn:0479-8023.2001.06.016

    [60]

    秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989.

    Qin Y S, Zhao Y Y, Chen L R, et al. Geology of Yellow Sea[M]. Beijing: China Ocean Press, 1989. (in Chinese)

    [61]

    刘国纬. 黄河下游治理的地学基础[J]. 中国科学(地球科学), 2011, 41(10): 1511-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201110014.htm

    Liu G W. On the geo-basis of river regulation in the lower reaches of the Yellow River[J]. Science China Earth Sciences, 2012, 55(4): 530-544. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201110014.htm

    [62]

    Yi L, Ye X Y, Chen J B, et al. Magnetostratigraphy and luminescence dating on a sedimentary sequence from northern East China Sea: Constraints on evolutionary history of eastern marginal seas of China since the Early Pleistocene[J]. Quaternary International, 2014, 349: 316-326. doi: 10.1016/j.quaint.2014.07.038

    [63]

    Zhao D B, Wan S M, Jiang S J, et al. Quaternary sedimentary record in the northern Okinawa Trough indicates the tectonic control on depositional environment change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 126-138. doi: 10.1016/j.palaeo.2018.12.001

    [64]

    Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last~3.50 Myr in the western South Yellow Sea: Paleoenvironmental and tectonic implications[J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005

    [65]

    Zhao Y, Cao W H, Hu C H, et al. Analysis of changes in characteristics of flood and sediment yield in typical basins of the Yellow River under extreme rainfall events[J]. CATENA, 2019, 177: 31-40. doi: 10.1016/j.catena.2019.02.001

    [66]

    Chen J, Wang Z H, Wei T Y, et al. Clay minerals in the Pliocene-Quaternary sediments of the southern Yangtze coast, China: Sediment sources and palaeoclimate implications[J]. Journal of Palaeogeography, 2014, 3(3): 297-308.

    [67]

    Yue W, Jin B F, Zhao B C. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta[J]. Sedimentary Geology, 2018, 364: 42-52. doi: 10.1016/j.sedgeo.2017.12.006

    [68]

    闫纪元, 胡健民, 王东明, 等. 黄淮海平原晚新生代重大地质事件[J]. 地质通报, 2021, 40(5): 623-648. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202105001.htm

    Yan J Y, Hu J M, Wang D M, et al. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic[J]. Geological Bulletin of China, 2021, 40(5): 623-648. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202105001.htm

    [69]

    Yi L, Deng C L, Xu X Y, et al. Paleo-megalake termination in the Quaternary: Paleomagnetic and water-level evidence from south Bohai Sea, China[J]. Sedimentary Geology, 2015, 319: 1-12. doi: 10.1016/j.sedgeo.2015.01.005

    [70]

    中国科学院海洋研究所海洋地质研究室. 渤海地质[M]. 北京: 科学出版社, 1985.

    Department of Marine Geology, Institute of Oceanography, Chinese Academy of Sciences. Geology of Bohai[M]. Beijing: Science Press, 1986. (in Chinese)

    [71]

    张克信, 王国灿, 季军良, 等. 青藏高原古近纪-新近纪地层分区与序列及其对隆升的响应[J]. 中国科学: 地球科学, 2010, 40(12): 1632-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012003.htm

    Zhang K X, Wang G C, Ji J L, et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science China Earth Science, 2010, 53(9): 1271-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012003.htm

    [72]

    张克信, 王国灿, 洪汉烈, 等. 青藏高原新生代隆升研究现状[J]. 地质通报, 2013, 32(1): 1-18. doi: 10.3969/j.issn.1671-2552.2013.01.001

    Zhang K X, Wang G C, Hong H L, et al. The study of the Cenozoic uplift in the Tibetan Plateau: A review[J]. Geological Bulletin of China, 2013, 32(1): 1-18. doi: 10.3969/j.issn.1671-2552.2013.01.001

    [73]

    郑家坚, 徐钦琦, 金昌柱. 中国北方晚更新世哺乳类动物群的划分及其地理分布[J]. 地层学杂志, 1992, 16(3): 171-181, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199203001.htm

    Zheng J J, Xu X Q, Jin C Z. Division of the late pleistocene mammalian fauna in North China and its geographic distribution[J]. Journal of Stratigraphy, 1992, 16(3): 171-181, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199203001.htm

    [74]

    安芷生, 刘晓东. 东亚季风气候的历史与变率[J]. 科学通报, 2000, 45(3): 238-249. doi: 10.3321/j.issn:0023-074X.2000.03.002

    An Z S, Liu X D. History and variability of monsoon climate in East Asia[J]. Chinese Science Bulletin, 2000, 45(3): 238-249. (in Chinese) doi: 10.3321/j.issn:0023-074X.2000.03.002

    [75]

    蒋复初, 吴锡浩, 肖华国, 等. 中原邙山黄土及构造与气候耦合作用[J]. 海洋地质与第四纪地质, 1999, 19(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.006.htm

    Jiang F C, Wu X H, Xiao H G, et al. Mangshan loess in China central plains and the coupling effect between tectonics and climate[J]. Marine Geology&Quaternary Geology, 1999, 19(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.006.htm

    [76]

    潘保田, 王均平, 高红山, 等. 河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示[J]. 科学通报, 2005, 50(3): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200503010.htm

    Pan B T, Wang J P, Gao H S, et al. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River's running through Sanmen Gorges[J]. Chinese Science Bulletin, 2005, 50(7): 657-664. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200503010.htm

    [77]

    Hu Z B, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment[J]. Quaternary Science Reviews, 2017, 166: 324-338. doi: 10.1016/j.quascirev.2017.02.026

    [78]

    Kong P, Jia J, Zheng Y. Time constraints for the Yellow River traversing the Sanmen Gorge[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(2): 395-407. doi: 10.1002/2013GC004912

    [79]

    吴锡浩, 蒋复初, 王苏民, 等. 关于黄河贯通三门峡东流入海问题[J]. 第四纪研究, 1998, 18(2): 188. doi: 10.3321/j.issn:1001-7410.1998.02.016

    Wu X H, Jiang F C, Wang S M, et al. On problem of the Yellow River passing through the Sanmen Gorge and flowing east into sea[J]. Quaternary Sciences, 1998, 18(2): 188. doi: 10.3321/j.issn:1001-7410.1998.02.016

    [80]

    Jiang F C, Fu J L, Wang S B, et al. Formation of the Yellow River, inferred from loess-palaeosoil sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 2007, 175(1): 62-70. doi: 10.1016/j.quaint.2007.03.022

    [81]

    Zheng H B, Huang X T, Ji J L, et al. Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7: Implication for the Yellow River erosion of the Sanmen Gorge[J]. Geomorphology, 2007, 85(3/4): 131-142.

    [82]

    Shang Y, Prins M A, Beets C J, et al. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra[J]. Quaternary Science Reviews, 2018, 182: 131-143. doi: 10.1016/j.quascirev.2018.01.001

    [83]

    刘书丹, 李广坤, 李玉信, 等. 从河南东部平原第四纪沉积物特征探讨黄河的形成与演变[J]. 河南地质, 1988, 6(2): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD198802003.htm

    Liu S D, Li G K, Li Y X, et al. Discussion on the formation and evolution of the Yellow River from the characteristics of Quaternary sediments in the eastern plain of Henan Province[J]. Henan Geology, 1988, 6(2): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD198802003.htm

    [84]

    薛铎. 黄河东段形成时代管见[J]. 河南地质, 1996, 14(2): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD602.005.htm

    Xue D. A humble opinion of the formed age for the eastern section of the Yellow River[J]. Henan Geology, 1996, 14(2): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD602.005.htm

    [85]

    杨守业, 蔡进功, 李从先, 等. 黄河贯通时间的新探索[J]. 海洋地质与第四纪地质, 2001, 21(2): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200102003.htm

    Yang S Y, Cai J G, Li C X, et al. New discussion about the run-through time of the Yellow River[J]. Marine Geology&Quaternary Geology, 2001, 21(2): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200102003.htm

    [86]

    杨吉龙, 胥勤勉, 胡云壮, 等. 渤海湾西岸钻孔记录的沉积演化过程和沉积物风化强度、物源重建[J]. 地球科学, 2018, 43(S1): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2018S1025.htm

    Yang J L, Xu Q M, Hu Y Z, et al. The sedimentary evolution process, weathering intensity and provenance reconstruction insight from borehole records of Bohai Bay[J]. Earth Science, 2018, 43(S1): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2018S1025.htm

    [87]

    Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least~880 ka ago[J]. Scientific Reports, 2017, 7(1): 2827. doi: 10.1038/s41598-017-03140-x

    [88]

    Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing?[J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002

    [89]

    Xiao G Q, Sun Y Q, Yang J L, et al. Early Pleistocene integration of the Yellow River Ⅰ: Detrital-zircon evidence from the North China Plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109691. doi: 10.1016/j.palaeo.2020.109691

    [90]

    张磊, 刘嘉麒, 秦小光. 第四纪黄河入淮成因机制与环境效应的研究现状及存在问题[J]. 第四纪研究, 2018, 38(2): 441-453.

    Zhang L, Liu J Q, Qin X G. The environmental effects and mechanism of the Yellow River flooding into the Huaibei Plain during Quaternary: A brief review[J]. Quaternary Sciences, 2018, 38(2): 441-453.

    [91]

    徐近之. 淮北平原与淮河中游的地文[J]. 地理学报, 1953, 19(2): 203-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB195302006.htm

    Xu J Z. The geography of the Huaibei Plain and the middle reaches of the Huaihe River[J]. Acta Geographica Sinica, 1953, 19(2): 203-233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB195302006.htm

    [92]

    冯大奎, 张光业. 全新世黄河下游平原地貌和自然环境的演变[J]. 河南大学学报(自然科学版), 1988(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR198801006.htm

    Feng D K, Zhang G S. Holocene evolution of geomorphology and natural environment in the plain of the lower reaches of the Yellow River[J]. Journal of Henan University (Natural Science), 1988(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR198801006.htm

    [93]

    王强, 田国强. 中国东部晚第四纪海侵的新构造背景[J]. 地质力学学报, 1999, 5(4): 41-48. doi: 10.3969/j.issn.1006-6616.1999.04.005

    Wang Q, Tian G Q. The Neotectonic setting of late Quaternary transgressions on the eastern coastal plain of China[J]. Journal of Geomechanics, 1999, 5(4): 41-48. doi: 10.3969/j.issn.1006-6616.1999.04.005

    [94]

    张晋. 3.5 Ma以来南黄海西部沉积演化史及其环境响应[D]. 青岛: 中国科学院大学, 2019.

    Zhang J. Sedimentary evolution in the western South Yellow Sea and its environmental response since 3.5 Ma[D]. Qingdao: University of Chinese Academy of Sciences, 2019.

    [95]

    王强, 刘立军, 王卫东, 等. 环渤海地区及华北平原第四纪古环境变迁机制[J]. 地质调查与研究, 2004, 27(3): 129-138. doi: 10.3969/j.issn.1672-4135.2004.03.001

    Wang Q, Liu L J, Wang W D, et al. The mechanism of quaternary palaeoenvironmental change in Circum-Bohai-Sea region and North China Plain[J]. Geological Survey and Research, 2004, 27(3): 129-138. doi: 10.3969/j.issn.1672-4135.2004.03.001

    [96]

    叶青超. 华北平原地貌体系与环境演化趋势[J]. 地理研究, 1989, 8(3): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ198903001.htm

    Ye Q C. Landform system of the great plain of north China and its tendency of environmental evolution[J]. Geographical Research, 1989, 8(3): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ198903001.htm

    [97]

    Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110

    [98]

    贾军涛, 郑洪波, 黄湘通, 等. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J]. 科学通报, 2010, 55(4/5): 350-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z1009.htm

    Jia J T, Zheng H B, Huang X T, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of theYangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z1009.htm

    [99]

    范代读, 李从先, Yokoyama K, 等. 长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究[J]. 中国科学(D辑: 地球科学), 2004, 34(11): 1015-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200411003.htm

    Fan D D, Li C X, Yokoyama K, et al. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science in China Series D: Earth Sciences, 2005, 48(10): 1718-1727. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200411003.htm

    [100]

    舒强, 张茂恒, 赵志军, 等. 苏北盆地XH-1钻孔晚新生代沉积记录特征及其与长江贯通时间的关联[J]. 地层学杂志, 2008, 32(3): 308-314. doi: 10.3969/j.issn.0253-4959.2008.03.013

    Shu Q, Zhang M H, Zhao Z J, et al. Sedimentary record from the XH-1 core in north Jiangsu Basin and its implication on the Yangtze River run-through time[J]. Journal of Stratigraphy, 2008, 32(3): 308-314. doi: 10.3969/j.issn.0253-4959.2008.03.013

    [101]

    向芳, 杨栋, 田馨, 等. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石, 2011, 31(2): 106-114. doi: 10.3969/j.issn.1001-6872.2011.02.015

    Xiang F, Yang D, Tian X, et al. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance[J]. Journal of Mineralogy and Petrology, 2011, 31(2): 106-114. doi: 10.3969/j.issn.1001-6872.2011.02.015

    [102]

    Shao L, Li C A, Yuan S Y, et al. Neodymium isotopic variations of the Late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 2012, 45: 57-64. doi: 10.1016/j.jseaes.2011.09.018

    [103]

    范代读, 李从先. 长江贯通时限研究进展[J]. 海洋地质与第四纪地质, 2007, 27(2): 121-131. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200702021.htm

    Fan D D, Li C X. Reviews on researches of timing of the Yangtze draining the Tibetan Plateau to the East China Sea[J]. Marine Geology&Quaternary Geology, 2007, 27(2): 121-131. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200702021.htm

    [104]

    黄湘通, 郑洪波, 杨守业, 等. 长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义[J]. 第四纪研究, 2009, 29(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902021.htm

    Huang T X, Zheng H B, Yang S Y, et al. Investigation of sedimentary geochemistry of core DY03 in the Yangtze Delta: Implications to tracing provenance[J]. Quaternary Sciences, 2009, 29(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902021.htm

    [105]

    Fu X W, Zhu W L, Geng J H, et al. The present-day Yangtze River was established in the Late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 2021, 205: 104600. doi: 10.1016/j.jseaes.2020.104600

    [106]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    [107]

    郭正堂. 黄土高原见证季风和荒漠的由来[J]. 中国科学: 地球科学, 2017, 47(4): 421-437. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704006.htm

    Guo Z T. Loess Plateau attests to the onsets of monsoon and deserts[J]. Scientia Sinica (Terrae), 2017, 47(4): 421-437. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704006.htm

    [108]

    程峰. 中国南方更新世红土沉积物的特征及其物源研究[D]. 武汉: 中国地质大学, 2018.

    Cheng F. Study on characteristics and source provenance of the Pleistocene red earth sediments in southern China[D]. Wuhan: China University of Geosciences, 2018.

    [109]

    An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. doi: 10.1038/35075035

    [110]

    Zhao L L, Hong H L, Fang Q, et al. Monsoonal climate evolution in southern China since 1.2 Ma: New constraints from Fe-oxide records in red earth sediments from the Shengli section, Chengdu Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 473: 1-15. doi: 10.1016/j.palaeo.2017.02.027

    [111]

    Hong H L, Gu Y S, Li R B, et al. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China[J]. Journal of Quaternary Science, 2010, 25(5): 662-674. doi: 10.1002/jqs.1340

    [112]

    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21. doi: 10.1086/628741

    [113]

    Ren M E. Sediment discharge of the Yellow River, China: Past, present and future-A synthesis[J]. Acta Oceanologica Sinica, 2015, 34(2): 1-8. doi: 10.1007/s13131-015-0619-6

    [114]

    Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    [115]

    Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 225(5052): 1663-1670.

    [116]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    [117]

    Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. doi: 10.1126/science.105978

    [118]

    Royden L H, Burchfiel B C, Van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058. doi: 10.1126/science.1155371

    [119]

    Zhu R X, Zhang H F, Zhu G, et al. Craton destruction and related resources[J]. International Journal of Earth Sciences, 2017, 106(7): 2233-2257. doi: 10.1007/s00531-016-1441-x

    [120]

    朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909003.htm

    Zhu R X, Xu Y G. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62(9): 1340-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909003.htm

    [121]

    李容全. 黄河、永定河发育历史与流域新生代古湖演变间的相互关系[J]. 北京师范大学学报(自然科学版), 1988, 24(4): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ198804015.htm

    Li R Q. The relationship between developments of the Yellow River and the Yongding River, and the evolution of fossil lake of drainage basin in the Cenozoic Era[J]. Journal of Beijing Normal University (Natural Science), 1988, 24(4): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ198804015.htm

    [122]

    李吉均, 方小敏, 马海洲, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑: 地球科学), 1996, 26(4): 316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005

    Li J J, Fang X M, Ma H Z, et al. Geomorphological evolution of the upper reaches of the Yellow River and the uplift of the Tibetan Plateau in the Late Cenozoic[J]. Scientia Sinica (Terrae), 1996, 26(4): 316-322. (in Chinese) doi: 10.3321/j.issn:1006-9267.1996.04.005

    [123]

    Lin A M, Yang Z Y, Sun Z M, et al. How and when did the Yellow River develop its square bend?[J]. Geology, 2001, 29(10): 951-954. doi: 10.1130/0091-7613(2001)029<0951:HAWDTY>2.0.CO;2

    [124]

    张珂, 蔡剑波. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动[J]. 第四纪研究, 2006, 26(1): 85-91. doi: 10.3321/j.issn:1001-7410.2006.01.011

    Zhang K, Cai J B. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia Gorge Mouth, northeast margin of Tibetan Plateau and its expression of neotectonic movement in that area[J]. Quaternary Sciences, 2006, 26(1): 85-91. doi: 10.3321/j.issn:1001-7410.2006.01.011

    [125]

    潘保田, 苏怀, 刘小丰, 等. 兰州东盆地最近1.2 Ma的黄河阶地序列与形成原因[J]. 第四纪研究, 2007, 27(2): 172-180. doi: 10.3321/j.issn:1001-7410.2007.02.002

    Pan B T, Su H, Liu X F, et al. Iver terraces of the Yellow River and their genesis in eastern Lanzhou Basin during last 1.2 Ma[J]. Quaternary Sciences, 2007, 27(2): 172-180. doi: 10.3321/j.issn:1001-7410.2007.02.002

    [126]

    刘运明, 李有利. 山西保德黄河最高阶地形成的时代[J]. 地理与地理信息科学, 2007, 23(1): 101-103, 108. doi: 10.3969/j.issn.1672-0504.2007.01.024

    Liu Y M, Li Y L. Formation age of the highest terrace of the Yellow River in Baode area[J]. Geography and Geo-information Science, 2007, 23(1): 101-103, 108. doi: 10.3969/j.issn.1672-0504.2007.01.024

    [127]

    Pan B T, Hu Z B, Wang J P, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River[J]. Geomorphology, 2011, 125(1): 225-238. doi: 10.1016/j.geomorph.2010.09.019

    [128]

    Pan B T, Hu Z B, Wang J P, et al. The approximate age of the planation surface and the incision of the Yellow River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 356/357: 54-61. doi: 10.1016/j.palaeo.2010.04.011

    [129]

    Hu X F, Kirby E, Pan B T, et al. Cosmogenic burial ages reveal sediment reservoir dynamics along the Yellow River, China[J]. Geology, 2011, 39(9): 839-842. doi: 10.1130/G32030.1

    [130]

    Nie J S, Stevens T, Rittner M, et al. Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2006, 6: 8511.

    [131]

    Liu Y M. Neogene fluvial sediments in the northern Jinshaan Gorge, China: Implications for early development of the Yellow River since 8 Ma and its response to rapid subsidence of the Weihe-Shanxi graben[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109675. doi: 10.1016/j.palaeo.2020.109675

    [132]

    Wang Z, Nie J S, Wang J P, et al. Testing contrasting models of the formation of the upper Yellow River using heavy-mineral data from the Yinchuan Basin drill cores[J]. Geophysical Research Letters, 2019, 46: 10338-10345. doi: 10.1029/2019GL084179

    [133]

    Jia L Y, Zhang X J, Ye P S, et al. Development of the alluvial and lacustrine terraces on the northern margin of the Hetao Basin, Inner Mongolia, China: Implications for the evolution of the Yellow River in the Hetao area since the Late Pleistocene[J]. Geomorphology, 2016, 263: 87-98. doi: 10.1016/j.geomorph.2016.03.034

    [134]

    Wu X, Wang H J, Bi N S, et al. Evolution of a tide-dominated abandoned channel: A case of the abandoned Qingshuigou course, Yellow River[J]. Marine Geology, 2020, 422: 106116. doi: 10.1016/j.margeo.2020.106116

    [135]

    Li J, Xia J Q, Ji Q F. Rapid and long-distance channel incision in the Lower Yellow River owing to upstream damming[J]. CATENA, 2021, 196: 104943. doi: 10.1016/j.catena.2020.104943

    [136]

    Hassan M A, Church M, Xu J X, et al. Spatial and temporal variation of sediment yield in the landscape: Example of Huanghe (Yellow River)[J]. Geophysical Research Letters, 2008, 35(6): L06401.

    [137]

    Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78: 355-368. doi: 10.1016/j.quascirev.2012.11.032

    [138]

    赵希涛, 贾丽云, 胡道功. 内蒙河套地区黄河阶地与新近纪砾石层的发现及其对黄河发育、中国河流古老性与河湖共存论的意义[J]. 地质学报, 2018, 92(4): 845-886. doi: 10.3969/j.issn.0001-5717.2018.04.013

    Zhao X T, Jia L Y, Hu D G. Discoveries of fluvial terraces and Neogene gravels in the Hetao area, Inner Mongolia: Implications for the development of the Yellow River, antiquity of Chinese rivers, and coexistence theory of rivers and lakes[J]. Acta Geologica Sinica, 2018, 92(4): 845-886. doi: 10.3969/j.issn.0001-5717.2018.04.013

    [139]

    朱照宇. 黄河中游河流阶地的形成与水系演化[J]. 地理学报, 1989, 44(4): 429-440. doi: 10.3321/j.issn:0375-5444.1989.04.007

    Zhu Z Y. The formation of river terraces and evolution of drainage system in the middle Yellow River[J]. Acta Geographica Sinica, 1989, 44(4): 429-440. doi: 10.3321/j.issn:0375-5444.1989.04.007

    [140]

    岳乐平, 雷祥义, 屈红军. 黄河中游水系的阶地发育时代[J]. 地质论评, 1997, 43(2): 186-192. doi: 10.3321/j.issn:0371-5736.1997.02.011

    Yue L P, Lei X Y, Qu H J. The age of terrace development in the middle reaches of the Yellow River[J]. Geological Review, 1997, 43(2): 186-192. doi: 10.3321/j.issn:0371-5736.1997.02.011

    [141]

    Sun J M. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(10/11): 1279-1286.

    [142]

    Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423. doi: 10.1016/j.yqres.2014.01.002

    [143]

    Hu Z B, Pan B T, Guo L Y, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension[J]. Quaternary Science Reviews, 2016, 133: 1-14. doi: 10.1016/j.quascirev.2015.12.003

    [144]

    王青. 试论史前黄河下游的改道与古文化的发展[J]. 中原文物, 1993(4): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYWW199304009.htm

    Wang Q. On the diversion of the prehistoric lower reaches of the Yellow River and the development of the ancient culture[J]. Cultural Relics of Central China, 1993(4): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZYWW199304009.htm

    [145]

    岑仲勉. 黄河变迁史[M]. 北京: 人民出版社, 1957.

    Cen Z M. History of the change of the Yellow River[M]. Beijing: People's Publishing House, 1957. (in Chinese)

    [146]

    江苏省地质矿产局. 江苏省及上海市区域地质志[M]. 北京: 地质出版社, 1984: 346-370.

    Jiangsu Bureau of Geology and Mineral Resources. Regional geology of Jiangsu Province and Shanghai City[M]. Beijing: Geological Publishing House, 1984: 346-370. (in Chinese)

    [147]

    程瑜, 李向前, 赵增玉, 等. 长江三角洲地区TZK3孔碎屑锆石U-Pb年龄及其物源意义[J]. 地质力学学报, 2018, 24(5): 635-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201805066.htm

    Cheng Y, Li X Q, Zhao Z Y, et al. Detrital zircon U-Pb ages and its provenance significance in the TZK3 core from the Yangtze River Delta[J]. Journal of Geomechanics, 2018, 24(5): 635-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201805066.htm

    [148]

    Zhang L, Qin X G, Liu J Q, et al. Geochemistry of sediments from the Huaibei Plain (East China): Implications for provenance, weathering, and invasion of the Yellow River into the Huaihe River[J]. Journal of Asian Earth Sciences, 2016, 121: 72-83. doi: 10.1016/j.jseaes.2016.02.008

    [149]

    程瑜, 李向前, 赵增玉, 等. 苏北盆地TZK9孔磁性地层及重矿物组合特征研究[J]. 地质力学学报, 2016, 22(4): 994-1003. doi: 10.3969/j.issn.1006-6616.2016.04.017

    Cheng Y, Li X Q, Zhao Z Y, et al. Magnetostratigraphy and heavy minerals records of TZK9 core in Subei Basin[J]. Journal of Geomechanics, 2016, 22(4): 994-1003. doi: 10.3969/j.issn.1006-6616.2016.04.017

    [150]

    王强, 张玉发, 袁桂邦, 等. MIS3阶段以来河北黄骅北部地区海侵与气候期对比[J]. 第四纪研究, 2008, 28(1): 79-95. doi: 10.3321/j.issn:1001-7410.2008.01.009

    Wang Q, Zhang Y F, Yuan G B, et al. Since MIS3 stage the correlation between transgression and climatic changes in the north Huanghua area, Hebei[J]. Quaternary Sciences, 2008, 28(1): 79-95. doi: 10.3321/j.issn:1001-7410.2008.01.009

    [151]

    陈宇坤, 李振海, 邵永新, 等. 天津地区第四纪年代地层剖面研究[J]. 地震地质, 2008, 30(2): 383-399. doi: 10.3969/j.issn.0253-4967.2008.02.005

    Chen Y K, Li Z H, Shao Y X, et al. Study on the Quaternary chronostratigraphic section in Tianjin area[J]. Seismology and Geology, 2008, 30(2): 383-399. doi: 10.3969/j.issn.0253-4967.2008.02.005

    [152]

    Cheng Y, Li X Q, Shu J W, et al. Sedimentary evolution and transgressions of the western Subei basin in eastern China since the Late Pliocene[J]. Acta Geologica Sinica, 2019, 93(1): 155-166. doi: 10.1111/1755-6724.13774

    [153]

    林景星. 华北平原第四纪海进海退现象的初步认识[J]. 地质学报, 1977, 51(2): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702001.htm

    Lin C H. Preliminary notes on Quaternary transgressions and regressions in N. China Plain[J]. Acta Geologica Sinica, 1977, 51(2): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702001.htm

    [154]

    赵松龄, 杨光复, 苍树溪, 等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼, 1978, 9(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ197801001.htm

    Zhao S L, Yang G F, Cang S X, et al. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai[J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ197801001.htm

    [155]

    杨子赓, 李幼军, 丁秋玲, 等. 试论河北平原东部第四纪地质几个基本问题[J]. 地质学报, 1979, 53(4): 264-279, 363-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197904000.htm

    Yang Z G, Li Y J, Ding Q L, et al. Some fundamental problesms of Quaternary geology of Eastern Hebei Plain[J]. Acta Geologica Sinica, 1979, 53(4): 264-279, 363-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197904000.htm

    [156]

    王靖泰, 汪品先. 中国东部晚更新世以来海面升降与气候变化的关系[J]. 地理学报, 1980, 35(4): 299-312. doi: 10.3321/j.issn:0375-5444.1980.04.003

    Wang J T, Wang P X. Relationship between sea-level changes and climatic fluctuations in East China since Late Pleistocene[J]. Acta Geographica Sinica, 1980, 35(4): 299-312. doi: 10.3321/j.issn:0375-5444.1980.04.003

    [157]

    汪品先, 闵秋宝, 卞云华, 等. 我国东部第四纪海侵地层的初步研究[J]. 地质学报, 1981, 55(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198101000.htm

    Wang P X, Min Q B, Bian Y H, et al. Strata of Quaternary transgressions in East China: A preliminary study[J]. Acta Geologica Sinica, 1981, 55(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198101000.htm

    [158]

    王强. 渤海湾西岸第四纪海相及海陆过渡相介形虫化石群及古地理[J]. 海洋地质研究, 1982, 2(3): 36-46, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198203004.htm

    Wang Q. The ostracod fauna of marine and marineterrestrial transitional facies in western coast of the Bohai Gulf (North China) and paleogeography during Quaternary[J]. Marine Geological Research, 1982, 2(3): 36-46, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198203004.htm

    [159]

    王强, 李凤林, 李玉德, 等. 十五万年来渤海西、南岸平原海岸线变迁[C]//赵松龄, 苍树溪. 中国海平面变化(IGCP200项中国工作组). 北京: 海洋出版社, 1986: 43-52.

    Wang Q, Li F L, Li Y D, et al. The change of shore line in west-southern plain of the Bohai Sea since 150 ka[C]//Zhao S L, Cang S X. Sea-level change in China (IGCP200 Project China National Working Group). Beijing: China Ocean Press, 1986: 43-52.

    [160]

    王强, 李凤林. 渤海湾西岸第四纪海陆变迁[J]. 海洋地质与第四纪地质, 1983, 3(4): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198304012.htm

    Wang Q, Li F L. The changes of marine-continental conditions in the west coast of the bohai gulf during quaternary[J]. Marine Geology&Quaternary Geology, 1983, 3(4): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198304012.htm

    [161]

    吴标云, 李从先. 长江三角洲第四纪地质[M]. 北京: 海洋出版杜, 1987.

    Wu B Y, Li C X. Quaternary geology of the Yangtze River Delta[M]. Beijing: China Ocean Press, 1987. (in Chinese)

    [162]

    Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423(6942): 853-858. doi: 10.1038/nature01690

    [163]

    杨子赓. 从北海第四纪地层、沉积研究中所得到的启示[J]. 海洋地质动态, 1987(12): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT198712002.htm

    Yang Z G. Enlightenment from the study of Quaternary stratigraphy and sedimentation in the North Sea[J]. Marine Geology Frontiers, 1987(12): 3-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT198712002.htm

    [164]

    汪品先, 闵秋宝, 卞云华, 等. 关于东海残留沉积物的微体化石特征[J]. 海洋学报, 1980, 2(1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198001005.htm

    Wang P X, Min Q B, Bian Y H, et al. Micropaleontologic characteristics of relict sediments of the East China Sea[J]. Acta Oceanologica Sinica, 1980, 2(1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198001005.htm

    [165]

    易亮, 姜兴钰, 田立柱, 等. 渤海盆地演化的年代学研究[J]. 第四纪研究, 2016, 36(5): 1075-1087. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201610042016.htm

    Yi L, Jiang X Y, Tian L Z, et al. Geochronological study on Plio-Pleistocene evolution of Bohai Basin[J]. Quaternary Sciences, 2016, 36(5): 1075-1087. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201610042016.htm

    [166]

    汪品先, 成鑫荣. 东海底质中钙质超微化石的分布[J]. 海洋学报, 1988, 10(1): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198801009.htm

    Wang P X, Cheng X R. Distribution of calcareous nannoplankton in bottom sediments of the East China Sea[J]. Acta Oceanologica Sinica, 1988, 10(1): 76-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198801009.htm

    [167]

    Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144: 1-15. doi: 10.1016/j.quascirev.2016.05.025

    [168]

    杨达源, 陈可锋, 舒肖明. 深海氧同位素第3阶段晚期长江三角洲古环境初步研究[J]. 第四纪研究, 2004, 24(5): 525-530. doi: 10.3321/j.issn:1001-7410.2004.05.008

    Yang D Y, Chen K F, Shu X M. A preliminary study on the paleoenvironment during MIS 3 in the Changjiang Delta region[J]. Quaternary Sciences, 2004, 24(5): 525-530. doi: 10.3321/j.issn:1001-7410.2004.05.008

    [169]

    张振克, 谢丽, 张云峰, 等. 苏北平原MIS 3阶段海侵事件的沉积记录[J]. 第四纪研究, 2010, 30(5): 883-891. doi: 10.3969/j.issn.1001-7410.2010.05.05

    Zhang Z K, Xie L, Zhang Y F, et al. Sedimentary records of the MIS 3 transgression event in the North Jiangsu Plain, China[J]. Quaternary Sciences, 2010, 30(5): 883-891. doi: 10.3969/j.issn.1001-7410.2010.05.05

    [170]

    Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marined δ18O record[C]//Berger A. Milankovitch and Climate, Part 1. New York: Reidel Publishing Company, 1984: 269-305.

    [171]

    Shackleton N J. Oxygen isotopes, ice volume and sea level[J]. Quaternary Science Reviews, 1987, 6(3/4): 183-190.

    [172]

    Chappell J, Omura A, Esat T, et al. Reconciliaion of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records[J]. Earth and Planetary Science Letters, 1996, 141(1/4): 227-236.

    [173]

    Yim W W S, Ivanovich M, Yu K F. Young age bias of radiocarbon dates in pre-Holocene marine deposits of Hong Kong and implications for Pleistocene stratigraphy[J]. Geo-Marine Letters, 1990, 10(3): 165-172. doi: 10.1007/BF02085932

    [174]

    Li Y, Tsukamoto S, Shang Z W, et al. Constraining the transgression history in the Bohai Coast China since the Middle Pleistocene by luminescence dating[J]. Marine Geology, 2019, 416: 105980. doi: 10.1016/j.margeo.2019.105980

    [175]

    夏非, 殷勇, 王强, 等. MIS3晚期以来江苏中部海岸的层序地层[J]. 地质学报, 2012, 86(10): 1696-1712. doi: 10.3969/j.issn.0001-5717.2012.10.009

    Xia F, Yin Y, Wang Q, et al. Sequence stratigraphy of the central part of north Jiangsu coasts since Late MIS3, eastern China[J]. Acta Geologica Sinica, 2012, 86(10): 1696-1712. doi: 10.3969/j.issn.0001-5717.2012.10.009

    [176]

    尚帅, 范代读, 王强, 等. MIS 3以来浙江温瑞平原YQ0902孔古环境与古气候变化记录[J]. 古地理学报, 2013, 15(4): 551-564. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201304013.htm

    Shang S, Fan D D, Wang Q, et al. Records of palaeoenvironment and palaeoclimate changes since the MIS 3 in Borehole YQ0902 at Wenrui Plain, Zhejiang Province[J]. Journal of Palaeogeography, 2013, 15(4): 551-564. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201304013.htm

    [177]

    同济大学海洋地质系三角洲科研组. 全新世长江三角洲的形成和发育[J]. 科学通报, 1978, 23(5): 310-313. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB197805010.htm

    Delta Research Group, Department of Marine Geology, Tongji University. Formation and evolution of the Yangtze River Delta[J]. Chinese Science Bulletin, 1978, 23(5): 310-314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB197805010.htm

    [178]

    肖国桥, 郭正堂, 陈宇坤, 等. 渤海湾西岸BZ1钻孔的磁性地层学研究[J]. 第四纪研究, 2008, 28(5): 909-916. doi: 10.3321/j.issn:1001-7410.2008.05.014

    Xiao G Q, Guo Z T, Chen Y K, et al. Magnetostratigraphy of BZ1 borehole in west coast of Bohai Bay, northern China[J]. Quaternary Sciences, 2008, 28(5): 909-916. doi: 10.3321/j.issn:1001-7410.2008.05.014

    [179]

    邓万明. 中国西部新生代火山活动及其大地构造背景——青藏及邻区火山岩的形成机制[J]. 地学前缘, 2003, 10(2): 471-478. doi: 10.3321/j.issn:1005-2321.2003.02.027

    Deng W M. Cenozoic volcanic activity and its geotectonic background in West China: Formative excitation mechanism of volcanic rocks in Qinghai-Xizang and adjacent districts[J]. Earth Science Frontiers, 2003, 10(2): 471-478. doi: 10.3321/j.issn:1005-2321.2003.02.027

  • 加载中

(12)

(4)

计量
  • 文章访问数:  2899
  • PDF下载数:  82
  • 施引文献:  0
出版历程
收稿日期:  2022-05-27
修回日期:  2022-06-06
刊出日期:  2022-06-25

目录