地质灾害遥感综合监测现状与展望

邵芸, 张茗, 谢酬. 地质灾害遥感综合监测现状与展望[J]. 地质与资源, 2022, 31(3): 381-394. doi: 10.13686/j.cnki.dzyzy.2022.03.014
引用本文: 邵芸, 张茗, 谢酬. 地质灾害遥感综合监测现状与展望[J]. 地质与资源, 2022, 31(3): 381-394. doi: 10.13686/j.cnki.dzyzy.2022.03.014
SHAO Yun, ZHANG Ming, XIE Chou. PRESENT SITUATION AND PROSPECT OF COMPREHENSIVE MONITORING IN GEOLOGICAL HAZARD BY REMOTE SENSING[J]. Geology and Resources, 2022, 31(3): 381-394. doi: 10.13686/j.cnki.dzyzy.2022.03.014
Citation: SHAO Yun, ZHANG Ming, XIE Chou. PRESENT SITUATION AND PROSPECT OF COMPREHENSIVE MONITORING IN GEOLOGICAL HAZARD BY REMOTE SENSING[J]. Geology and Resources, 2022, 31(3): 381-394. doi: 10.13686/j.cnki.dzyzy.2022.03.014

地质灾害遥感综合监测现状与展望

  • 基金项目:
    国家重点研发计划项目"天空地协同遥感监测精准应急服务体系构建与示范"(编号2016YFB0502500)
详细信息
    作者简介: 邵芸(1961-), 女, 博士, 研究员, 从事微波遥感理论与应用研究工作, 通信地址北京市朝阳区大屯路甲20号北B-318, E-mail//shaoyun@radi.ac.cn
  • 中图分类号: P642.2;P231

PRESENT SITUATION AND PROSPECT OF COMPREHENSIVE MONITORING IN GEOLOGICAL HAZARD BY REMOTE SENSING

  • 中国是世界上地质灾害最频繁、受灾最严重的国家之一.因此,利用更先进、更经济有效的手段对地质灾害进行监测和防治,成为我国的当务之急.通过总结目前中国以及世界上关于微波遥感、光学遥感和LiDAR等多源遥感数据在地质灾害领域的应用现状,包括地震、滑坡、地面沉降、地面塌陷、火山活动、冻土变化、冰川活动、土壤侵蚀、海岸侵蚀等地质灾害,对遥感在地质灾害方面的应用提出新的建议.

  • 加载中
  • [1]

    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    [2]

    李媛, 孟晖, 董颖, 等. 中国地质灾害类型及其特征——基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 2004, 15(2): 29-34. doi: 10.3969/j.issn.1003-8035.2004.02.005

    Li Y, Meng H, Dong Y, et al. Main types and characteristics of geo- hazard in China: Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34. doi: 10.3969/j.issn.1003-8035.2004.02.005

    [3]

    中国地质灾害防治工程行业协会. T/CAGHP 001-2018地质灾害分类分级标准(试行)[S].

    China Geological Disaster Prevention and Control Engineering Industry Association. T/CAGHP 001-2018 Standard of classification for geological hazards[S].

    [4]

    梅安新, 彭望碌, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001.

    Mei A X, Peng W L, Qin Q M, et al. An introduction to remote sensing[M]. Beijing: Higher Education Press, 2001.

    [5]

    郭华东. 中国雷达遥感图像分析[M]. 北京: 科学出版社, 1999.

    Guo H D. Analysis of radar remote sensing imagery in China[M]. Beijing: Science Press, 1999.

    [6]

    郭华东, 邵芸, 王长林, 等. 雷达对地观测理论与应用[M]. 北京: 科学出版社, 2000.

    Guo H D, Shao Y, Wang C L, et al. Radar for earth observation: Theory and applications[M]. Beijing: Science Press, 2000.

    [7]

    邵芸, 谢酬, 张风丽, 等. 雷达地质灾害遥感[M]. 北京: 科学出版社, 2021.

    Shao Y, Xie C, Zhang F L, et al. Radar remote sensing of geological hazards[M]. Beijing: Science Press, 2021. (in Chinese)

    [8]

    邵芸, 赵忠明, 黄富祥, 等. 天空地协同遥感监测精准应急服务研究[M]. 北京: 科学出版社, 2020.

    Shao Y, Zhao Z M, Huang F X, et al. Research on precise emergency service of space-air-ground cooperative remote sensing monitoring[M]. Beijing: Science Press, 2020. (in Chinese)

    [9]

    邵芸, 赵忠明, 黄富祥, 等. 天空地协同遥感监测精准应急服务图集[M]. 北京: 科学出版社, 2020.

    Shao Y, Zhao Z M, Huang F X, et al. Atlas on precise emergency service of space-air-ground cooperative remote sensing monitoring[M]. Beijing: Science Press, 2020. (in Chinese)

    [10]

    Graham L C. Synthetic interferometer radar for topographic mapping [J]. Proceedings of the IEEE, 1974, 62(6): 763-768. doi: 10.1109/PROC.1974.9516

    [11]

    Wright T J, Parsons B, England P C, et al. InSAR observations of low slip rates on the major faults of western Tibet[J]. Science, 2004, 305(5681): 236-239. doi: 10.1126/science.1096388

    [12]

    范景辉, 李梅, 郭小方, 等. 基于PSInSAR方法和ASAR数据监测天津地面沉降的试验研究[J]. 国土资源遥感, 2007(4): 23-27. doi: 10.3969/j.issn.1001-070X.2007.04.005

    Fan J H, Li M, Guo X F, et al. A preliminary study of the subsidence in Tianjin area using ASAR images based on PSInSAR technique[J]. Remote Sensing for Land & Resources, 2007(4): 23-27. doi: 10.3969/j.issn.1001-070X.2007.04.005

    [13]

    Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9183-9191. doi: 10.1029/JB094iB07p09183

    [14]

    Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38 (5): 2202-2212. doi: 10.1109/36.868878

    [15]

    Massonnet D, Briole P, Arnaud A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature, 1995, 375(6532): 567-570. doi: 10.1038/375567a0

    [16]

    Dixon T H, Amelung F, Ferretti A, et al. Subsidence and flooding in New Orleans[J]. Nature, 2006, 441(7093): 587-588. doi: 10.1038/441587a

    [17]

    单新建, 屈春燕, 宋小刚, 等. 汶川Ms 8.0级地震InSAR同震形变场观测与研究[J]. 地球物理学报, 2009, 52(2): 496-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902022.htm

    Shan X J, Qu C Y, Song X G, et al. Coseismic surface deformation caused by the Wenchuan Ms 8.0 earthquake from InSAR data analysis [J]. Chinese Journal of Geophysics, 2009, 52(2): 496-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902022.htm

    [18]

    邵芸, 谢酬, 岳中琦, 等. 青海玉树地震差分干涉雷达同震形变测量[J]. 遥感学报, 2010, 14(5): 1029-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201005016.htm

    Shao Y, Xie C, Yue Z Q, et al. Co-seismic ground deformation of Yushu earthquake detected with D-InSAR technique[J]. Journal of Remote Sensing, 2010, 14(5): 1029-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201005016.htm

    [19]

    Calais E, Freed A, Mattioli G, et al. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake[J]. Nature Geoscience, 2010, 3(11): 794-799. doi: 10.1038/ngeo992

    [20]

    Marshall S T, Funning G J, Owen S E. Fault slip rates and interseismic deformation in the western Transverse Ranges, California [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(8): 4511-4534. doi: 10.1002/jgrb.50312

    [21]

    刘云华, 汪驰升, 单新建, 等. 芦山Ms 7.0级地震InSAR形变观测及震源参数反演[J]. 地球物理学报, 2014, 57(8): 2495-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408011.htm

    Liu Y H, Wang C S, Shan X J, et al. Result of SAR differential interferometry for the co-seismic deformation and source parameter of the Ms 7.0 Lushan earthquake[J]. Chinese Journal of Geophysics, 2014, 57(8): 2495-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408011.htm

    [22]

    Elliott J R, Walters R J, Wright T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 2016, 7: 13844. doi: 10.1038/ncomms13844

    [23]

    蔡杰华, 张路, 董杰, 等. 九寨沟震后滑坡隐患雷达遥感早期识别与形变监测[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1707- 1716. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011007.htm

    Cai J H, Zhang L, Dong J, et al. Detection and monitoring of post- earthquake landslides in Jiuzhaigou using radar remote sensing[J]. Geomatics and Information Science of Wuhan University, 2020, 45 (11): 1707-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011007.htm

    [24]

    Hilley G E, Bürgmann R, Ferretti A, et al. Dynamics of slow- moving landslides from permanent scatterer analysis[J]. Science, 2004, 304(5679): 1952-1955. doi: 10.1126/science.1098821

    [25]

    廖明生, 唐婧, 王腾, 等. 高分辨率SAR数据在三峡库区滑坡监测中的应用[J]. 中国科学: 地球科学, 2012, 42(2): 217-229. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202009.htm

    Liao M S, Tang J, Wang T, et al. Landslide monitoring with high- resolution SAR data in the Three Gorges region[J]. Science China Earth Sciences, 2012, 55(4): 590-601. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202009.htm

    [26]

    李梦华, 张路, 董杰, 等. 四川茂县岷江河谷区段滑坡隐患雷达遥感识别与形变监测[J]. 武汉大学学报(信息科学版), 2021, 46 (10): 1529-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110011.htm

    Li M H, Zhang L, Dong J, et al. Detection and monitoring of potential landslides along Minjiang River valley in Maoxian County, Sichuan using radar remote sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110011.htm

    [27]

    刘斌, 葛大庆, 李曼, 等. 地基InSAR技术及其典型边坡监测应用[J]. 中国地质调查, 2018, 5(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201801011.htm

    Liu B, Ge D Q, Li M, et al. Ground-based interferometric synthetic aperture radar and its application in monitoring typical slopes[J]. Geological Survey of China, 2018, 5(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201801011.htm

    [28]

    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm

    Xu Q, Dong X J, Li W L, et al. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm

    [29]

    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44 (7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm

    Li Z H, Song C, Yu C, et al. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm

    [30]

    王哲, 赵超英, 刘晓杰, 等. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1569-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110015.htm

    Wang Z, Zhao C Y, Liu X J, et al. Evolution analysis and deformation monitoring of Yigong landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1569-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110015.htm

    [31]

    Massonnet D, Holzer T, Vadon H. Land subsidence caused by the East Mesa Geothermal Field, California, observed using SAR interferometry[J]. Geophysical Research Letters, 1997, 24(8): 901- 904. doi: 10.1029/97GL00817

    [32]

    Amelung F, Galloway D L, Bell J W, et al. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27 (6): 483-486. doi: 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2

    [33]

    Hoffmann J, Zebker H A, Galloway D L, et al. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry[J]. Water Resources Research, 2001, 37(6): 1551-1566. doi: 10.1029/2000WR900404

    [34]

    吴立新, 高均海, 葛大庆, 等. 工矿区地表沉陷D-InSAR监测试验研究[J]. 东北大学学报(自然科学版), 2005, 26(8): 778-782. doi: 10.3321/j.issn:1005-3026.2005.08.018

    Wu L X, Gao J H, Ge D Q, et al. Experimental study on surface subsidence monitoring with D-InSAR in mining area[J]. Journal of Northeastern University (Natural Science), 2005, 26(8): 778-782. doi: 10.3321/j.issn:1005-3026.2005.08.018

    [35]

    王艳, 廖明生, 李德仁, 等. 利用长时间序列相干目标获取地面沉降场[J]. 地球物理学报, 2007, 50(2): 598-604. doi: 10.3321/j.issn:0001-5733.2007.02.034

    Wang Y, Liao M S, Li D R, et al. Subsidence velocity retrieval from long-term coherent targets in radar interferometric stacks[J]. Chinese Journal of Geophysics, 2007, 50(2): 598-604. doi: 10.3321/j.issn:0001-5733.2007.02.034

    [36]

    Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote Sensing of Environment, 2014, 140: 94-106. doi: 10.1016/j.rse.2013.08.038

    [37]

    Tomás R, Romero R, Mulas J, et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain[J]. Environmental Earth Sciences, 2014, 71(1): 163-181. doi: 10.1007/s12665-013-2422-z

    [38]

    孙晓鹏, 鲁小丫, 文学虎, 等. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.

    Sun X P, Lu X Y, Wen X H, et al. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. Remote Sensing for Land and Resources, 2016, 28(3): 123-129.

    [39]

    李金超. 基于InSAR和Sentinel-1A的淮南矿区形变灾害监测研究[D]. 合肥: 合肥工业大学, 2021.

    Li J C. Study on deformation disaster monitoring in Huainan mining area based on In SAR and Sentinel-1A[D]. Hefei: Hefei University of Technology, 2021.

    [40]

    Castañeda C, Gutiérrez F, Manunta M, et al. DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain[J]. Earth Surface Processes and Landforms, 2009, 34(11): 1562-1574. doi: 10.1002/esp.1848

    [41]

    Theron A, Engelbrecht J. The role of earth observation, with a focus on SAR interferometry, for sinkhole hazard assessment[J]. Remote Sensing, 2018, 10(10): 1506. doi: 10.3390/rs10101506

    [42]

    Amelung F, Jónsson S, Zebker H, et al. Widespread uplift and 'trapdoor' faulting on Galápagos volcanoes observed with radar interferometry[J]. Nature, 2000, 407(6807): 993-996. doi: 10.1038/35039604

    [43]

    Pritchard M E, Simons M. An InSAR-based survey of volcanic deformation in the central Andes[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(2): Q02002. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003GC000610

    [44]

    Amelung F, Yun S H, Walter T R, et al. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii[J]. Science, 2007, 316 (5827): 1026-1030. doi: 10.1126/science.1140035

    [45]

    Fournier T J, Pritchard M E, Riddick S N. Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01003. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GC002558

    [46]

    Ruch J, Wang T, Xu W B, et al. Oblique rift opening revealed by reoccurring magma injection in central Iceland[J]. Nature Communications, 2016, 7: 12352. doi: 10.1038/ncomms12352

    [47]

    Varugu B, Amelung F. Southward growth of Mauna Loa's dike-like magma body driven by topographic stress[J]. Scientific Reports, 2021, 11(1): 9816. doi: 10.1038/s41598-021-89203-6

    [48]

    谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究[J]. 国土资源遥感, 2008(3): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200803004.htm

    Xie C, Li Z, Li X W. A study of deformation in permafrost regions of Qinghai-Tibet Plateau based on ALOS/PALSAR D-InSAR interferometry [J]. Remote Sensing for Land & Resources, 2008(3): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200803004.htm

    [49]

    李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 1476-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305007.htm

    Li S S, Li Z W, Hu J, et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5): 1476- 1486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305007.htm

    [50]

    Daout S, Doin M P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901-909. doi: 10.1002/2016GL070781

    [51]

    王京. 基于多源SAR数据青藏高原冻土冻融过程及时空分布研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021.

    Wang J. Freeze-thaw process and temporal-spatial distribution of permafrost based on multi-source SAR data over the Qinghai-Tibet Plateau[D]. Beijing: University of Chinese Academy of Sciences (Aerospace Information Research Institute, CAS), 2021.

    [52]

    翟玮, 沈焕锋, 黄春林. 结合PolSAR影像纹理特征分析提取倒塌建筑物[J]. 遥感技术与应用, 2016, 31(5): 975-982.

    Zhai W, Shen H F, Huang C L. Collapsed buildings extraction from the PolSAR image based on the analysis of texture features[J]. Remote Sensing Technology and Application, 2016, 31(5): 975- 982.

    [53]

    李强, 张景发. 高分三号卫星全极化SAR影像九寨沟地震滑坡普查[J]. 遥感学报, 2019, 23(5): 883-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905008.htm

    Li Q, Zhang J F. Investigation on earthquake-induced landslide in Jiuzhaigou using fully polarimetric GF-3 SAR images[J]. Journal of Remote Sensing, 2019, 23(5): 883-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905008.htm

    [54]

    郭华东, 王心源, 李新武, 等. 多模式SAR玉树地震协同分析[J]. 科学通报, 2010, 55(13): 1195-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201013002.htm

    Guo H D, Wang X Y, Li X W, et al. Yushu earthquake synergic analysis using multimodal SAR datasets[J]. Chinese Science Bulletin, 2010, 55(31): 3499-3503. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201013002.htm

    [55]

    王治华. 大型个体滑坡遥感调查[J]. 地学前缘, 2006, 13(5): 516-523. doi: 10.3321/j.issn:1005-2321.2006.05.018

    Wang Z H. Large scale individual landslide remote sensing[J]. Earth Science Frontiers, 2006, 13(5): 516-523. doi: 10.3321/j.issn:1005-2321.2006.05.018

    [56]

    邓辉. 高精度卫星遥感技术在地质灾害调查与评价中的应用[D]. 成都: 成都理工大学, 2007.

    Deng H. Application on investigation and evaluation of geohazard by high-precision satellite remote sensing technique[D]. Chengdu: Chengdu University of Technology, 2007.

    [57]

    黄润秋, 李为乐. "5.12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    Huang R Q, Li W L. Research on development and distribution rules of geohazards induced by Wenchuan Earthquake on 12th May, 2008 [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    [58]

    彭令, 徐素宁, 梅军军, 等. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报, 2017, 21(4): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201802005.htm

    Peng L, Xu S N, Mei J J, et al. Earthquake-induced landslide recognition using high-resolution remote sensing images[J]. Journal of Remote Sensing, 2017, 21(4): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201802005.htm

    [59]

    唐尧, 王立娟, 马国超, 等. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902007.htm

    Tang Y, Wang L J, Ma G C, et al. Emergency monitoring of high- level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2): 252- 261. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902007.htm

    [60]

    郭忻怡, 郭擎, 冯钟葵. 滑坡蠕变与遥感影像上植被异常关系[J]. 遥感学报, 2020, 24(6): 776-786. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202006011.htm

    Guo X Y, Guo Q, Feng Z K. Relationship between landslide creep and vegetation anomalies in remote sensing images[J]. Journal of Remote Sensing, 2020, 24(6): 776-786. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202006011.htm

    [61]

    龙玉洁, 李为乐, 黄润秋, 等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1792-1800. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011016.htm

    Long Y J, Li W L, Huang R Q, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792-1800. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011016.htm

    [62]

    周学珍. 遥感技术在矿山地质灾害监测中的应用——以陕西神府煤矿区为例[J]. 能源环境保护, 2013, 27(1): 52-55. doi: 10.3969/j.issn.1006-8759.2013.01.015

    Zhou X Z. Application of remote sensing technology to the monitoring of mine geological disaster: An exampe in Shenfu coal mine region in Shanxi[J]. Energy Environmental Protection, 2013, 27(1): 52-55. doi: 10.3969/j.issn.1006-8759.2013.01.015

    [63]

    Heap M J, Villeneuve M, Albino F, et al. Towards more realistic values of elastic moduli for volcano modeling[J]. Journal of Volcanology and Geothermal Research, 2020, 390: 106684. doi: 10.1016/j.jvolgeores.2019.106684

    [64]

    黄磊, 李震. 光学遥感影像的山地冰川运动速度分析方法[J]. 冰川冻土, 2009, 31(5): 935-940. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200905022.htm

    Huang L, Li Z. Mountain glacier flow velocities analyzed from satellite optical images[J]. Journal of Glaciology and Geocryology, 2009, 31(5): 935-940. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200905022.htm

    [65]

    许君利, 张世强, 韩海东, 等. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析[J]. 冰川冻土, 2011, 33(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201102009.htm

    Xu J L, Zhang S Q, Han H D, et al. Change of the surface velocity of Koxkar Baxi glacier interpreted from remote sensing data, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201102009.htm

    [66]

    Zhu X, Zhang R Z, Sun X W. Spatiotemporal dynamics of soil erosion in the ecotone between the Loess Plateau and western Qinling Mountains based on RUSLE modeling, GIS, and remote sensing[J]. Arabian Journal of Geosciences, 2021, 14(1): 33. doi: 10.1007/s12517-020-06329-z

    [67]

    王晓青, 魏成阶, 苗崇刚, 等. 震害遥感快速提取研究——以2003年2月24日巴楚-伽师6.8级地震为例[J]. 地学前缘, 2003, 10 (S1): 285-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1038.htm

    Wang X Q, Wei C J, Miao C G, et al. The extraction of seismic damage from remote sensing images: A case study of Bachu-Jiashi Earthquake with Ms=6.8 occurred on Feb. 24, 2003[J]. Earth Science Frontiers, 2003, 10(S8): 285-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1038.htm

    [68]

    王福涛, 王世新, 周艺, 等. 高分辨率多光谱的芦山地震次生地质灾害遥感监测与评估[J]. 光谱学与光谱分析, 2016, 36(1): 181- 185.

    Wang F T, Wang S X, Zhou Y, et al. High resolution remote sensing monitoring and assessment of secondary geological disasters triggered by the Lushan earthquake[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 181-185.

    [69]

    王晓青, 窦爱霞, 王龙, 等. 2013年四川芦山7.0级地震烈度遥感评估[J]. 地球物理学报, 2015, 58(1): 163-171.

    Wang X Q, Dou A X, Wang L, et al. RS-based assessment of seismic intensity of the 2013 Lushan, Sichuan, China Ms 7.0 earthquake[J]. Chinese Journal of Geophysics, 2015, 58(1): 163- 171.

    [70]

    范熙伟, 聂高众, 邓砚, 等. 基于无人机热红外遥感数据的地震倒塌房屋提取[J]. 地震地质, 2021, 43(6): 1657-1670. doi: 10.3969/j.issn.0253-4967.2021.06.017

    Fan X W, Nie G Z, Deng Y, et al. Earthquake building damage detection using UAV thermal infrared remote sensing images[J]. Seismology and Geology, 2021, 43(6): 1657-1670. doi: 10.3969/j.issn.0253-4967.2021.06.017

    [71]

    Lucieer A, de Jong S M, Turner D. Mapping landslide displacements using structure from motion (SfM) and image correlation of multi- temporal UAV photography[J]. Progress in Physical Geography: Earth and Environment, 2014, 38(1): 97-116. doi: 10.1177/0309133313515293

    [72]

    李维炼, 朱军, 朱秀丽, 等. 无人机遥感数据支持下滑坡VR场景探索分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1065-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907012.htm

    Li W L, Zhu J, Zhu X L, et al. A exploratory analysis method of VR scene in landslide based on UAV remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1065- 1072. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907012.htm

    [73]

    高冠杰, 侯恩科, 谢晓深, 等. 基于四旋翼无人机的宁夏羊场湾煤矿采煤沉陷量监测[J]. 地质通报, 2018, 37(12): 2264-2269. doi: 10.12097/j.issn.1671-2552.2018.12.018

    Gao G J, Hou E K, Xie X S, et al. The monitoring of ground surface subsidence related to coal seams mining in Yangchangwan coal mine by means of unmanned aerial vehicle with quad-rotors[J]. Geological Bulletin of China, 2018, 37(12): 2264-2269. doi: 10.12097/j.issn.1671-2552.2018.12.018

    [74]

    赵一鸣, 李艳华, 商雅楠, 等. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014, 35(5): 4-22. doi: 10.3969/j.issn.2095-1000.2014.05.002

    Zhao Y M, Li Y H, Shang Y N, et al. Application and development direction of LiDAR[J]. Journal of Telemetry, Tracking and Command, 2014, 35(5): 4-22. doi: 10.3969/j.issn.2095-1000.2014.05.002

    [75]

    佘金星, 程多祥, 刘飞, 等. 机载激光雷达技术在地质灾害调查中的应用——以四川九寨沟7.0级地震为例[J]. 中国地震, 2018, 34(3): 435-444. doi: 10.3969/j.issn.1001-4683.2018.03.005

    She J X, Cheng D X, Liu F, et al. Application of airborne LiDAR technology in geological disaster investigation: Taking the Jiuzhaigou MS 7.0 earthquake in Sichuan province as an example[J]. Earthquake Research in China, 2018, 34(3): 435-444. doi: 10.3969/j.issn.1001-4683.2018.03.005

    [76]

    陈梦雪, 刘洪庆, 许世城. LiDAR技术在钱塘江海塘工程安全监测上的应用研究[J]. 测绘工程, 2015, 24(9): 44-47. doi: 10.3969/j.issn.1006-7949.2015.09.010

    Chen M X, Liu H Q, Xu S C. Applied research of LiDAR technology in the safety monitoring of Qiantang River seawall construction[J]. Engineering of Surveying and Mapping, 2015, 24(9): 44-47. doi: 10.3969/j.issn.1006-7949.2015.09.010

    [77]

    张永庭, 徐友宁, 梁伟, 等. 基于无人机载LiDAR的采煤沉陷监测技术方法——以宁东煤矿基地马连台煤矿为例[J]. 地质通报, 2018, 37(12): 2270-2277. doi: 10.12097/j.issn.1671-2552.2018.12.019

    Zhang Y T, Xu Y N, Liang W, et al. Technical methods for colliery subsidence disaster monitoring using UAV LiDAR: A case study of the Maliantai colliery, Ningdong coal base, Ningxia[J]. Geological Bulletin of China, 2018, 37(12): 2270-2277. doi: 10.12097/j.issn.1671-2552.2018.12.019

    [78]

    陈剑桥. 激光雷达在水土保持监测中的应用[J]. 水土保持通报, 2007, 27(4): 15-17. doi: 10.3969/j.issn.1000-288X.2007.04.004

    Chen J Q. Lidar application to soil and water conservation monitoring [J]. Bulletin of Soil and Water Conservation, 2007, 27(4): 15-17. doi: 10.3969/j.issn.1000-288X.2007.04.004

    [79]

    米·阿森鲍姆, 彭嘉婷. 无人机载激光雷达在监测海岸侵蚀方面的应用——海岸线地形测量[J]. 中国测绘, 2019(3): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCHZ201903020.htm

    Assenbaum M, Peng J T. Monitoring coastal erosion with UAV lidar [J]. China Surveying and Mapping, 2019(3): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCHZ201903020.htm

    [80]

    邓明德, 崔承禹, 耿乃光. 遥感用于地震预报的理论及实验结果[J]. 中国地震, 1993, 9(2): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199302008.htm

    Deng M D, Cui C Y, Geng N G. Application of principle of remote sensing to earthquake prediction and the experimental results[J]. Earthquake Research in China, 1993, 9(2): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199302008.htm

    [81]

    单新建, 李建华, 马超, 等. 2001年昆仑山口西MS 8.1级地震地表破裂带遥感影像特征分析[J]. 地质学报, 2005, 79(1): 132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501018.htm

    Shan X J, Li J H, Ma C, et al. Analysis in remote sensing image features of surface rupture zone in the west of Kunlun Mountain Pass of Ms 8.1 Magnitude earthquake, 2001[J]. Acta Geologica Sinica, 2005, 79(1): 132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501018.htm

    [82]

    董秀军, 许强, 佘金星, 等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版), 2020, 45(3): 432- 441. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202003015.htm

    Dong X J, Xu Q, She J X, et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 432-441. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202003015.htm

    [83]

    Roering J J, Stimely L L, Mackey B H, et al. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport[J]. Geophysical Research Letters, 2009, 36(19): L19402. doi: 10.1029/2009GL040374

    [84]

    陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 2019, 44(9): 1342-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201909011.htm

    Lu H Y, Li W L, Xu Q, et al. Early Detection of landslides in the upstream and downstream areas of the Baige landslide, the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (9): 1342-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201909011.htm

    [85]

    何倩, 范洪冬, 段晓晔, 等. 三维激光扫描与DInSAR联合监测矿区地表动态沉降方法[J]. 煤矿安全, 2017, 48(12): 70-73, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201712018.htm

    He Q, Fan H D, Duan X Y, et al. A combining method of 3D laser scanning and DInSAR for monitoring surface dynamic subsidence in Mining Area[J]. Safety in Coal Mines, 2017, 48(12): 70-73, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201712018.htm

    [86]

    Wang R, Wu K, He Q M, et al. A novel method of monitoring surface subsidence law based on probability integral model combined with active and passive remote sensing data[J]. Remote Sensing, 2022, 14(2): 299. doi: 10.3390/rs14020299

    [87]

    Francis P, Rothery D. Remote sensing of active volcanoes[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 81-106. doi: 10.1146/annurev.earth.28.1.81

    [88]

    Pavez A, Remy D, Bonvalot S, et al. Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring[J]. Remote Sensing of Environment, 2006, 100(3): 307-320. doi: 10.1016/j.rse.2005.10.013

    [89]

    Kääb A, Huggel C, Fischer L, et al. Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview[J]. Natural Hazards and Earth System Sciences, 2005, 5(4): 527-554. doi: 10.5194/nhess-5-527-2005

    [90]

    吴立新, 李佳, 苗则朗, 等. 冰川流域孕灾环境及灾害的天空地协同智能监测模式与方向[J]. 测绘学报, 2021, 50(8): 1109-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202108012.htm

    Wu L X, Li J, Miao Z L, et al. Pattern and directions of spaceborne- airborne-ground collaborated intelligent monitoring on the geo-hazards developing environment and disasters in glacial basin[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1109-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202108012.htm

  • 加载中
计量
  • 文章访问数:  2834
  • PDF下载数:  108
  • 施引文献:  0
出版历程
收稿日期:  2022-05-05
修回日期:  2022-05-10
刊出日期:  2022-06-25

目录