MOVEMENT CHARACTERISTICS AND RISK ASSESSMENT OF MINE DEBRIS FLOW BASED ON FLO-2D SIMULATION: A Case Study of the Debris Flow in Bojigou Mine of Minxian County, Gansu Province
-
摘要:
岷县簸箕沟金矿因人类开采活动引发了矿山泥石流灾害. 采用FLO-2D软件模拟分析了降雨强度重现期50 a及100 a条件下的簸箕沟泥石流运动特征, 进行危险性评价和分区, 并结合实际发生情况做了精度验证. 结果表明: 簸箕沟泥石流的堆积扇范围、堆积深度以及平均流速等运动特征参数随着降雨重现周期的变长而增大, 堆积扇中部的堆积深度及流速明显大于两翼及前端. 泥石流的危险区集中分布于泥石流沟道以及沟口一定范围内. 随着降雨重现周期的变长, 高危险区面积比例由48%升高至54.0%. 通过精度验证得出模拟结果与实际情况基本相符, 可信度较高.
Abstract:The human mining activities in Bojigou gold mine of Minxian County cause debris flow. The FLO-2D software is used to simulate and analyze the movement characteristics of Bojigou debris flow under the frequency of rainfall return periods of 50 a and 100 a. On this basis, the risk assessment and zoning are carried out, and the accuracy is verified by actual situation. The results show that parameters of movement characteristics such as the range of alluvial fan, accumulation depth and average velocity of debris flow increase with the increase of rainfall return period. The accumulation depth and velocity in the middle part of alluvial fan are significantly larger than those in the wings and front end. The hazardous areas of debris flow are concentrated in a certain range at the gully and gully mouth. The proportion of high risk area increases from 48% to 54.0% with the longer rainfall return period. The simulation results are basically consistent with the actual situation through accuracy verification, which are reliable in application.
-
Key words:
- mine debris flow /
- FLO-2D simulation /
- risk assessment /
- rainfall frequency /
- Gansu Province
-
表 1 不同降雨频率下的暴雨参数取值表
Table 1. Rainstorm parameters under different rainfall frequencies
降雨重现期/a 暴雨洪峰流量Qs/(m3/s) 泥石流峰值流量Qc/(m3/s) 50(P=2%) 48.23 94.54 100(P=1%) 60.30 118.18 表 2 模拟参数取值表
Table 2. Value table of simulation parameters
曼宁系数n 体积浓度CV 层流阻滞系数K 泥石流容重γm/(t/m3) 宾汉黏滞系数α1 宾汉黏滞系数β1 宾汉屈服系数α2 宾汉屈服系数β2 0.1 0.49 2280 1.6 0.798 13.12 0.0042 11.14 表 3 泥石流运动过程模拟计算结果
Table 3. Simulation results of debris flow movement process
频率/% 最大堆积深度/m 平均堆积深度/m 堆积扇面积/104 m2 堆积扇体积/104 m3 冲出沟口物源量/104 m3 最大流速/(m/s) 平均流速/(m/s) 2 5.14 1.92 2.12 4.07 0.74 5.34 2.92 1 8.34 4.32 3.13 13.52 3.62 8.48 3.97 表 4 泥石流影响强度判别表
Table 4. Discrimination of debris flow influence intensity
泥石流强度等级 泥深/m 关系 泥深×流速/(m2/s) 高 h≥2.5 或 vh≥2.5 中 0.5≤h<2.5 且 0.5≤vh<2.5 低 0.001≤h<0.5 且 vh<0.5 表 5 泥石流危险性综合判别表
Table 5. Comprehensive discrimination of debris flow risk
重现周期 高影响强度 中影响强度 低影响强度 2% 危险性大 危险性中等 危险性小 1% 危险性中等 危险性小 危险性小 表 6 实际堆积面积与模拟堆积面积对比
Table 6. Comparison between actual and simulated accumulation areas
降雨频率/% 实际值/104 m2 模拟值/104 m2 重叠区/104 m2 精度/% 2 1.98 2.12 1.79 76.33 -
[1] 徐友宁, 何芳, 张江华, 等. 矿山泥石流特点及其防灾减灾对策[J]. 山地学报, 2010, 28(4): 463-469. doi: 10.3969/j.issn.1008-2786.2010.04.010
Xu Y N, He F, Zhang J H, et al. Characteristics and strategy for prevention and reduction of mine debris flow[J]. Journal of Mountain Science, 2010, 28(4): 463-469. doi: 10.3969/j.issn.1008-2786.2010.04.010
[2] 陈华清, 杨敏, 张江华, 等. 基于抗灾能力的矿渣型泥石流风险评价方法——以小秦岭金矿区为例[J]. 地质通报, 2015, 34(11): 2009-2017. doi: 10.3969/j.issn.1671-2552.2015.11.003
Chen H Q, Yang M, Zhang J H, et al. A tentative discussion on the risk evaluation of slag debris flow based on disaster-resisting capability: A case study of the Xiaoqinling gold mining area[J]. Geological Bulletin of China, 2015, 34(11): 2009-2017. doi: 10.3969/j.issn.1671-2552.2015.11.003
[3] 徐友宁, 陈华清, 杨敏, 等. 采矿废渣颗粒粒径对矿渣型泥石流起动的控制作用——以小秦岭金矿区为例[J]. 地质通报, 2015, 34 (11): 1993-2000. doi: 10.3969/j.issn.1671-2552.2015.11.001
Xu Y N, Chen H Q, Yang M, et al. Controlling role of particle sizes of mining waste residues in the initiation of mine debris flow: A case study of the Xiaoqinling gold mining area[J]. Geological Bulletin of China, 2015, 34(11): 1993-2000. doi: 10.3969/j.issn.1671-2552.2015.11.001
[4] 徐友宁, 何芳, 陈华清. 西北地区矿山泥石流及分布特征[J]. 山地学报, 2007, 25(6): 729-736. doi: 10.3969/j.issn.1008-2786.2007.06.013
Xu Y N, He F, Chen H Q. Mine debris flow and its distribution in northwestern China[J]. Journal of Mountain Science, 2007, 25(6): 729-736. doi: 10.3969/j.issn.1008-2786.2007.06.013
[5] 陈海龙. 贵州省典型矿山泥石流的基本特征和起动机理研究[D]. 成都: 成都理工大学, 2013.
Chen H L. The features and the initiated mechanism of the typical mine debris flows in Guizhou Province[D]. Chengdu: Chengdu University of Technology, 2013.
[6] 樊姝芳, 冯耀栋. 铁山嶂矿山泥石流的基本特征与起动过程研究[J]. 河南城建学院学报, 2017, 26(5): 33-38, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-CJGZ201705007.htm
Fan S F, Feng Y D. Basic characteristics and start-up process of mine debris flow in Tieshanzhang[J]. Journal of Henan University of Urban Construction, 2017, 26(5): 33-38, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-CJGZ201705007.htm
[7] 弓永峰, 刘春虎, 黄玮. 牛首山东麓矿山泥石流形成机理分析[J]. 宁夏工程技术, 2017, 16(3): 193-197. doi: 10.3969/j.issn.1671-7244.2017.03.001
Gong Y F, Liu C H, Huang W. The analysis of mine debris flow formation mechanism in eastern Niushou Mountain[J]. Ningxia Engineering Technology, 2017, 16(3): 193-197. doi: 10.3969/j.issn.1671-7244.2017.03.001
[8] 赵丽娅, 韩丽君, 樊姝芳, 等. 台风暴雨型矿山泥石流的形成条件及起动模式[J]. 地质论评, 2018, 64(4): 947-955. doi: 10.16509/j.georeview.2018.04.012
Zhao L Y, Han L J, Fan S F, et al. Formation condition and starting mode of mine debris flow in typhoon rainstorm[J]. Geological Review, 2018, 64(4): 947-955. doi: 10.16509/j.georeview.2018.04.012
[9] 杨敏. 影响小秦岭金矿区矿渣型泥石流形成的主要因素研究[D]. 西安: 长安大学, 2010.
Yang M. Study on the key control factors of mine waste debris flows initiation in Xiaoqinlin gold mine area[D]. Xi'an: Chang'an University, 2010.
[10] 李彩侠, 马煜. 四川都江堰龙溪河流域泥石流成因、特征和危险性评价[J]. 地质与资源, 2019, 28(3): 298-304. doi: 10.3969/j.issn.1671-1947.2019.03.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8411.shtml
Li C X, Ma Y. Causes, characteristics and hazard assessment of the debris flows in Longxi River Basin, Sichuan Province[J]. Geology and Resources, 2019, 28(3): 298-304. doi: 10.3969/j.issn.1671-1947.2019.03.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8411.shtml
[11] 刘德玉, 丛凯, 魏洁, 等. 基于理想点法的武都区北山泥石流危险度评价[J]. 地质灾害与环境保护, 2018, 29(2): 7-11. doi: 10.3969/j.issn.1006-4362.2018.02.002
Liu D Y, Cong K, Wei J, et al. Hazardousness evaluation of debris flow in Beishan Mountain of Wudu District based on ideal point method [J]. Journal of Geological Hazards and Environment Preservation, 2018, 29(2): 7-11. doi: 10.3969/j.issn.1006-4362.2018.02.002
[12] 王高峰, 陈宗良, 毛佳睿, 等. 不同工程情景和降雨频率工况下白龙江流域泥石流危险性评价[J]. 山东科技大学学报(自然科学版), 2020, 39(5): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY202005004.htm
Wang G F, Chen Z L, Mao J R, et al. Debris flow risk assessment in Bailong River Basin under different engineering scenarios and rainfall frequency conditions[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(5): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY202005004.htm
[13] 张奋翔, 张路青, 周剑, 等. 基于FLO-2D的西藏若如村泥石流危险性分析[J]. 水资源与水工程学报, 2019, 30(5): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201905015.htm
Zhang F X, Zhang L Q, Zhou J, et al. Risk assessment of debris flow in Ruoru village, Tibet based on FLO-2D[J]. Journal of Water Resources & Water Engineering, 2019, 30(5): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201905015.htm
[14] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055. doi: 10.11867/j.issn.1001-8166.2016.10.1047
Huang X, Tang C. Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science, 2016, 31(10): 1047-1055. doi: 10.11867/j.issn.1001-8166.2016.10.1047
[15] 刘鑫磊, 唐川, 黄勋, 等. 基于数值模拟的震区溃决型泥石流入流点选取探讨[J]. 地球与环境, 2019, 47(2): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201902012.htm
Liu X L, Tang C, Huang X, et al. Discussion on selection of the inflow point of the dam-break debris flow based on the numerical simulation model[J]. Earth and Environment, 2019, 47(2): 211- 217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201902012.htm
[16] 王文臣, 张卫民, 王博思, 等. 对甘肃岷县簸箕沟金矿深部富集特征的认识[J]. 甘肃地质, 2015, 24(4): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201504007.htm
Wang W C, Zhang W M, Wang B S, et al. Gold enrichment in the deep of Bojigou gold deposit in Minxian County, Gansu[J]. Gansu Geology, 2015, 24(4): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201504007.htm
[17] 刘德玉, 贾贵义, 李松, 等. 地形因素对白龙江流域甘肃段泥石流灾害的影响及权重分析[J]. 水文地质工程地质, 2019, 46(3): 33- 40. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903005.htm
Liu D Y, Jia G Y, Li S, et al. Impacts of topographical factors on debris flows and weight analysis at the Gansu segment of the Bailongjiang River Basin[J]. Hydrogeology and Engineering Geology, 2019, 46(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903005.htm
[18] 周洪建, 王曦, 袁艺, 等. 半干旱区极端强降雨灾害链损失快速评估方法——以甘肃岷县"5·10"特大山洪泥石流灾害为例[J]. 干旱区研究, 2014, 31(3): 440-445. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201403010.htm
Zhou H J, Wang X, Yuan Y, et al. Rapid-assessing methods of loss in extremely heavy rainfall disaster chain in semiarid region: A case study on a flash flood debris flow in Minxian County, Gansu Province [J]. Arid Zone Research, 2014, 31(3): 440-445. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201403010.htm
[19] 常鸣, 杨涛, 周宇, 等. 张家坪泥石流物源活动性演化及冲出范围模拟研究[J]. 南水北调与水利科技, 2019, 17(2): 166-172, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201902020.htm
Chang M, Yang T, Zhou Y, et al. Source activity rates and run-out amount simulation in Zhangjiaping debris-flow area[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(2): 166-172, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201902020.htm
[20] 丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(3): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201903021.htm
Cong K, Li R D, Bi Y H. Benefit evaluation of debris flow control engineering based on the FLO-2D model[J]. Northwestern Geology, 2019, 52(3): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201903021.htm
[21] 常鸣, 窦向阳, 唐川, 等. 降雨驱动泥石流危险性评价[J]. 地球科学, 2019, 44(8): 2794-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908023.htm
Chang M, Dou X Y, Tang C, et al. Hazard assessment of typical debris flow induced by rainfall intensity[J]. Earth Science, 2019, 44 (8): 2794-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908023.htm