南羌塘盆地江鱼玛洛地区中侏罗统雀莫错组砂岩地球化学及源区环境

徐琳, 肖进, 刘大明, 胡林, 罗绍强, 唐华, 赵宇. 南羌塘盆地江鱼玛洛地区中侏罗统雀莫错组砂岩地球化学及源区环境[J]. 地质与资源, 2022, 31(6): 738-747. doi: 10.13686/j.cnki.dzyzy.2022.06.004
引用本文: 徐琳, 肖进, 刘大明, 胡林, 罗绍强, 唐华, 赵宇. 南羌塘盆地江鱼玛洛地区中侏罗统雀莫错组砂岩地球化学及源区环境[J]. 地质与资源, 2022, 31(6): 738-747. doi: 10.13686/j.cnki.dzyzy.2022.06.004
XU Lin, XIAO Jin, LIU Da-ming, HU Lin, LUO Shao-qiang, TANG Hua, ZHAO Yu. GEOCHEMISTRY AND SOURCE AREA ENVIRONMENT OF THE MIDDLE JURASSIC SANDSTONE IN SOUTHERN QIANGTANG BASIN[J]. Geology and Resources, 2022, 31(6): 738-747. doi: 10.13686/j.cnki.dzyzy.2022.06.004
Citation: XU Lin, XIAO Jin, LIU Da-ming, HU Lin, LUO Shao-qiang, TANG Hua, ZHAO Yu. GEOCHEMISTRY AND SOURCE AREA ENVIRONMENT OF THE MIDDLE JURASSIC SANDSTONE IN SOUTHERN QIANGTANG BASIN[J]. Geology and Resources, 2022, 31(6): 738-747. doi: 10.13686/j.cnki.dzyzy.2022.06.004

南羌塘盆地江鱼玛洛地区中侏罗统雀莫错组砂岩地球化学及源区环境

  • 基金项目:
    中国地质调查局成都地质调查中心项目"羌塘盆地江鱼玛洛-多增木地区石油地质调查"(DD20160159-19)
详细信息
    作者简介: 徐琳(1986-), 男, 硕士, 高级工程师, 主要从事区域地质、石油地质调查工作, 通信地址四川省绵阳市涪城区剑门路西段88号, E-mail//664998491@qq.com
  • 中图分类号: P595

GEOCHEMISTRY AND SOURCE AREA ENVIRONMENT OF THE MIDDLE JURASSIC SANDSTONE IN SOUTHERN QIANGTANG BASIN

  • 南羌塘盆地江鱼玛洛地区发育中侏罗统雀莫错组, 通过岩石地球化学分析, 对砂岩源区环境进行恢复. 化学风化作用指标(CIW)、化学蚀变作用指标(CIA)和A-CN-K图解反映砂岩的碎屑成分遭受过较强烈的风化. 化学组分指标(ICV)和Th/Sc-Zr/Sc图解指示主要为第一沉积旋回产物, 伴有少量沉积再循环物质. 岩石元素Al2O3/TiO2、Th/Sc、Cr/Zr比值和La/Th-Hf源岩判别图解反映砂岩的碎屑主要来源于上地壳长英质源区, 并混入少量基性铁镁质岩石. 砂岩的微量元素特征及SiO2-K2O/Na2O、La-Th-Sc、Co-Th-Zr/10、Sc-Th-Zr/10判别图解均表明该砂岩形成于大陆边缘裂陷构造背景.

  • 加载中
  • 图 1  研究区构造位置图(据文献[9-10])

    Figure 1. 

    图 2  江鱼玛洛地区地质简图及采样位置

    Figure 2. 

    图 3  雀莫错组岩石显微特征

    Figure 3. 

    图 4  江鱼玛洛地区雀莫错组砂岩SiO2-A12O3和Fe2O3-Al2O3图解

    Figure 4. 

    图 5  雀莫错组砂岩标准化蛛网图和球粒陨石标准化稀土配分模式图

    Figure 5. 

    图 6  雀莫错组砂岩Zr/Sc-Th/Sc图解

    Figure 6. 

    图 7  雀莫错组砂岩A-CN-K图解

    Figure 7. 

    图 8  江鱼玛洛地区雀莫错组砂岩源区判别图解

    Figure 8. 

    图 9  江鱼玛洛地区雀莫错组砂岩构造环境判别图解

    Figure 9. 

    表 1  江鱼玛洛地区雀莫错组砂岩主量元素分析结果

    Table 1.  Contents of major elements in sandstone of Quemocuo Formation in Jiangyumaluo area

    样品编号 1 2 3 4 5 6 7 8 9 10 11
    Al2O3 12.13 12.79 13.52 9.76 8.11 8.66 11.10 12.81 12.39 11.48 14.20
    SiO2 71.17 74.26 74.12 56.46 67.33 80.59 78.70 78.45 75.82 69.04 75.41
    Fe2O3 2.86 2.36 1.81 4.57 3.31 1.80 2.10 1.58 1.95 3.00 1.90
    CaO 2.51 1.51 1.14 8.64 6.27 1.62 0.46 0.39 1.28 3.60 0.56
    MgO 0.69 0.66 0.70 0.78 0.82 0.43 0.63 0.72 0.67 0.74 0.78
    Na2O 1.17 1.03 1.41 0.78 0.57 1.01 1.50 0.83 1.44 1.29 1.02
    K2O 3.16 3.34 3.15 2.31 1.96 2.52 3.08 3.45 3.28 2.78 3.33
    P2O5 0.12 0.09 0.23 0.10 0.12 0.07 0.09 0.11 0.14 0.14 0.20
    SO3 0.05 0.06 0.04 0.05 0.07 0.06 0.12 0.03 0.07 0.04 0.05
    TiO2 0.38 0.32 0.88 0.34 0.24 0.26 0.30 0.49 0.38 0.50 0.81
    MnO 0.16 0.03 0.04 0.33 0.21 0.03 0.03 0.02 0.06 0.14 0.03
    CaO* 1.17 1.03 0.37 0.78 0.57 1.01 0.16 0.02 0.81 1.29 1.02
    Fe2O3+MgO 3.55 3.01 2.51 5.35 4.14 2.23 2.72 2.30 2.62 3.74 2.67
    Al2O3/SiO2 0.17 0.17 0.18 0.17 0.12 0.11 0.14 0.16 0.16 0.17 0.19
    Al2O3/(Na2O+CaO) 3.30 5.03 5.30 1.04 1.19 3.28 5.66 10.49 4.57 2.34 8.99
    CIA 68.80 70.31 73.28 71.61 72.35 65.61 70.08 74.87 69.14 68.17 72.56
    CIW 83.83 86.13 88.37 86.22 87.68 81.09 86.99 93.78 84.63 81.65 87.44
    ICV 0.79 0.69 0.62 1.01 0.95 0.82 0.70 0.56 0.69 0.85 0.63
    注: CIA (蚀变作用指标)=A12O3/(A12O3+CaO*+Na2O+K2O)×100;CIW (化学风化作用指标)=A12O3/(Al2O3+CaO*+Na2O)×100;ICV (化学组分指标)=(Fe2O3+K2O+Na2O+CaO*+MgO+MnO+TiO2)/Al2O3.含量单位: %.
    下载: 导出CSV

    表 2  江鱼玛洛地区雀莫错组砂岩微量元素、稀土元素分析结果

    Table 2.  Contents of trace elements and REEs in sandstone of Quemocuo Formation in Jiangyumaluo area

    样品编号 1 2 3 4 5 6 7 8 9 10 11
    Li 14.67 12.11 15.75 8.22 8.23 8.03 14.03 13.83 11.91 14.68 15.47
    Be 0.88 0.61 1.14 0.79 0.24 0.34 0.71 0.45 0.66 0.77 1.01
    V 35.00 33.74 50.56 39.08 31.89 23.76 31.59 42.31 35.24 42.10 50.82
    Cr 54.67 34.32 45.79 56.88 52.78 40.64 41.21 80.22 41.46 72.80 49.38
    Co 7.84 5.65 4.94 9.29 3.59 1.12 7.34 2.94 3.86 4.89 8.03
    Ni 15.02 12.58 10.86 18.67 8.54 3.43 13.28 7.23 9.40 11.50 12.00
    Ga 11.18 11.92 14.04 9.82 8.54 8.89 11.93 15.73 13.54 13.95 17.51
    Rb 71.41 71.73 69.41 56.15 41.99 53.57 72.51 81.89 74.89 70.15 81.16
    Sr 109.80 109.13 80.60 148.92 131.13 99.20 81.62 84.21 81.83 110.63 80.31
    Zr 53.75 45.76 213.50 55.67 43.09 38.11 47.12 68.45 47.55 64.11 144.83
    Nb 6.23 5.98 13.83 6.91 4.67 5.10 6.27 9.57 6.77 8.37 14.80
    Cd 0.08 0.06 0.06 0.06 0.03 0.01 0.04 0.04 0.03 0.05 0.05
    Cs 2.32 1.95 2.57 2.13 1.43 1.50 2.07 2.05 2.26 2.37 2.67
    Ba 860.09 684.17 550.07 708.27 422.40 512.72 696.46 652.60 662.17 599.72 693.49
    Hf 1.74 1.64 7.21 1.88 1.53 1.30 1.57 2.18 1.67 2.24 4.93
    Ta 0.38 0.37 0.86 0.45 0.30 0.32 0.45 0.70 0.45 0.55 1.02
    Pb 11.73 23.71 22.43 18.15 9.14 18.13 14.80 15.28 12.19 12.50 22.81
    Bi 0.05 0.07 0.09 0.07 0.06 0.06 0.06 0.11 0.05 0.06 0.10
    U 1.31 1.13 3.11 1.47 1.16 0.90 0.99 1.30 1.09 1.46 2.18
    Sc 5.02 5.54 9.08 5.91 7.44 3.91 3.98 6.01 6.75 6.57 7.20
    Th 6.40 5.65 21.81 7.91 6.38 5.10 4.96 8.16 7.56 10.71 16.88
    La 28.08 29.47 51.05 34.97 34.31 22.60 19.18 32.06 30.46 33.97 43.72
    Ce 49.91 54.54 91.08 64.02 63.67 40.20 34.97 58.24 55.36 60.90 79.69
    Pr 5.99 6.52 11.27 7.66 7.67 4.85 4.13 7.00 6.71 7.46 9.76
    Nd 23.38 25.27 42.95 30.24 30.26 18.25 15.50 26.60 25.64 28.46 36.31
    Sm 4.41 4.44 7.60 5.91 6.11 2.92 2.74 4.85 4.86 5.32 6.36
    Eu 0.97 0.95 1.32 1.31 1.34 0.60 0.63 1.00 1.09 1.18 1.15
    Gd 3.64 3.32 6.69 5.28 5.57 2.03 2.41 3.69 4.06 5.07 5.19
    Tb 0.56 0.47 1.00 0.87 0.90 0.28 0.36 0.50 0.57 0.80 0.74
    Dy 2.50 2.24 4.30 4.33 4.21 1.34 1.73 2.15 2.50 3.60 3.28
    Ho 0.51 0.40 0.87 0.93 0.85 0.29 0.35 0.45 0.50 0.71 0.67
    Er 1.32 1.06 2.37 2.57 2.19 0.77 0.90 1.19 1.30 1.98 1.77
    Tm 0.22 0.18 0.40 0.43 0.38 0.14 0.15 0.20 0.22 0.30 0.31
    Yb 1.39 1.12 2.69 2.70 2.37 0.84 0.95 1.22 1.37 1.97 2.03
    Lu 0.21 0.18 0.41 0.39 0.34 0.12 0.14 0.19 0.21 0.29 0.32
    Y 16.68 10.73 25.68 28.06 22.31 7.27 9.24 12.23 13.28 18.68 17.61
    ΣREE 123.11 130.17 223.98 161.62 160.17 95.25 84.14 139.332 134.84 152 191.31
    LREE 112.75 121.19 205.26 144.11 143.36 89.43 77.15 129.75 124.12 137.29 176.99
    HREE 10.36 8.98 18.73 17.50 16.81 5.82 6.99 9.58 10.72 14.71 14.31
    LREE/HREE 10.88 13.50 10.96 8.23 8.53 15.35 11.03 13.54 11.58 9.33 12.37
    LaN/YbN 13.64 17.77 12.84 8.75 9.78 18.18 13.66 17.82 15.07 11.68 14.56
    δEu 0.72 0.73 0.55 0.70 0.69 0.72 0.74 0.70 0.73 0.69 0.60
    δCe 0.87 0.89 0.86 0.88 0.89 0.87 0.89 0.88 0.88 0.87 0.87
    含量单位: 10-6.
    下载: 导出CSV

    表 3  雀莫错组砂岩与不同构造环境砂岩地球化学参数对比表

    Table 3.  Comparison of geochemical parameters between sandstones of Quemocuo Formation and other tectonic settings

    特征值 本文平均值 活动大陆边缘 被动大陆边缘 大陆岛弧 大洋岛弧 PAAS
    SiO2 72.85 73.86 81.95 70.69 58.83 62.8
    TiO2 0.45 0.46 0.49 0.64 1.06 1
    Al2O3 11.54 12.89 8.41 14.04 17.11 18.9
    Fe2O3+MgO 3.17 4.63 2.89 6.79 11.73 8.7
    Al2O3/SiO2 0.16 0.18 0.1 0.2 0.29 0.3
    K2O/Na2O 2.82 0.99 1.6 0.61 0.39 3.08
    Al2O3/(Na2O+CaO) 4.65 2.56 4.15 2.24 1.72 7.56
    La 32.72 37 39 27 8.2 38
    Ce 59.33 78 85 59 19.4 80
    ΣREE 145.08 186 210 146 58 161
    LREE/HREE 11.39 9.1 8.5 7.7 3.8 /
    LaN/YbN 13.98 12.3 15.9 11 4.2 9.2
    δEu 0.69 0.6 0.55 0.8 1.04 0.64
    Th/U 6.07 4.8 5.6 4.6 2.1 4.1
    La/Sc 5.34 4.55 6.25 1.82 0.55 2.37
    Th/Sc 1.45 2.59 3.06 0.85 0.15 1.1
    Rb/Sr 0.71 0.89 1.19 0.65 0.05 0.8
    Ba/Sr 6.59 3.8 4.7 3.55 0.95 3.25
    Ti/Zr 39.02 15.3 6.74 19.7 56.8 28.55
    注: 特征参数引自参考文献[20]; PAAS-澳大利亚后太古宙平均页岩.
    下载: 导出CSV
  • [1]

    谭富文, 王剑, 王小龙, 等. 羌塘盆地雁石坪地区中-晚侏罗世碳、氧同位素特征与沉积环境分析[J]. 地球学报, 2004, 25(2): 119-126. doi: 10.3321/j.issn:1006-3021.2004.02.004

    Tan F W, Wang J, Wang X L, et al. Analysis of carbon and oxygen isotope composition and sedimentary environment of the Yanshiping area of the Qiangtang Basin in Middle-Late Jurassic[J]. Acta Geoscientia Sinica, 2004, 25(2): 119-126. doi: 10.3321/j.issn:1006-3021.2004.02.004

    [2]

    王建坡, 赵兵. 羌塘雁石坪中侏罗统雀莫错组地层及沉积环境[J]. 沉积与特提斯地质, 2004, 24(3): 43-47. doi: 10.3969/j.issn.1009-3850.2004.03.006

    Wang J P, Zhao B. Stratigraphy and sedimentary environments of the Qoimaco Formation in the Yanshiping region, Qiangtang[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(3): 43-47. doi: 10.3969/j.issn.1009-3850.2004.03.006

    [3]

    王剑, 谭富文, 王小龙, 等. 藏北羌塘盆地早侏罗世-中侏罗世早期沉积构造特征[J]. 沉积学报, 2004, 22(2): 198-205. doi: 10.3969/j.issn.1000-0550.2004.02.003

    Wang J, Tan F W, Wang X L, et al. The sedimentary and tectonic characteristics of Qiangtang Basin in the Early Jurassic in Northern Xizang (Tibet)[J]. Acta Sedimentologica Sinica, 2004, 22(2): 198-205. doi: 10.3969/j.issn.1000-0550.2004.02.003

    [4]

    付修根, 王剑, 吴滔, 等. 羌塘盆地胜利河地区雀莫错组地层及其古环境[J]. 中国地质, 2010, 37(5): 1305-1312. doi: 10.3969/j.issn.1000-3657.2010.05.006

    Fu X G, Wang J, Wu T, et al. Stratigraphy and paleoenvironment of the Quemo Co Formation in Shengli River area, northern Tibet[J]. Geology in China, 2010, 37(5): 1305-1312. doi: 10.3969/j.issn.1000-3657.2010.05.006

    [5]

    曾胜强, 王剑, 冯兴雷, 等. 北羌塘盆地沃若山地区中-下侏罗统雀莫错组一段沉积环境分析[J]. 中国地质, 2014, 41(1): 162-172. doi: 10.3969/j.issn.1000-3657.2014.01.012

    Zeng S Q, Wang J, Feng X L, et al. A sedimentary environment analysis of the First Member of the Quemo Co Formation in Woruo Mountain area of the North Qiangtang Basin[J]. Geology in China, 2014, 41(1): 162-172. doi: 10.3969/j.issn.1000-3657.2014.01.012

    [6]

    冯兴雷, 付修根, 谭富文, 等. 北羌塘盆地沃若山地区早侏罗世雀莫错组砂岩地球化学特征与物源判别意义[J]. 中国地质, 2016, 43(4): 1227-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604010.htm

    Feng X L, Fu X G, Tan F W, et al. Geochemical characteristics and tectonic significance of Early Jurassic Quemo Co Formation in Woruoshan area, North Qiangtang Basin[J]. Geology in China, 2016, 43(4): 1227-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604010.htm

    [7]

    高远, 付修根, 万友利, 等. 北羌塘盆地雀莫错组三段混合沉积层系发育特征及控制因素[J]. 东北石油大学学报, 2020, 44(3): 36-45, 106. doi: 10.3969/j.issn.2095-4107.2020.03.004

    Gao Y, Fu X G, Wan Y L, et al. Development features and controlling factors of mixed siliciclastic-carbonate sediments in the Member 3 of the Quemocuo Formation, Northern Qiangtang Basin[J]. Journal of Northeast Petroleum University, 2020, 44(3): 36-45, 106. doi: 10.3969/j.issn.2095-4107.2020.03.004

    [8]

    占王忠, 谭富文. 北羌塘坳陷早-中侏罗世雀莫错期岩相古地理特征与成钾意义[J]. 地质论评, 2020, 66(5): 1261-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005017.htm

    Zhan W Z, Tan F W. Evolution of lithofacies paleogeography of the Early-Middle Jurassic Quemocuo Formation in the North Qiangtang Basin and its implication of potash formation[J]. Geological Review, 2020, 66(5): 1261-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005017.htm

    [9]

    王剑, 丁俊, 王成善, 等. 青藏高原油气资源战略选区调查与评价[M]. 北京: 地质出版社, 2009: 336.

    Wang J, Ding J, Wang C S, et al. Investigation and evaluation of strategic selection of oil and gas resources in Qinghai-Tibet Plateau [M]. Beijing: Geological Publishing House, 2009: 336. (in Chinese)

    [10]

    徐琳, 罗绍强, 唐华, 等. 西藏南羌塘盆地达卓玛地区油气地质条件研究[J]. 中国地质调查, 2020, 7(5): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005003.htm

    Xu L, Luo S Q, Tang H, et al. Study on petroleum geological conditions in Dazhuom area of southern Qiangtang Basin of Tibet[J]. Geological Survey of China, 2020, 7(5): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005003.htm

    [11]

    Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.

    [12]

    陈小双, 吕奥, 宋贺民, 等. 新疆阿合奇地区志留系砂岩地球化学特征及大地构造背景[J]. 古地理学报, 2018, 20(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201802009.htm

    Chen X S, Lü A, Song H M, et al. Geochemical characteristics and tectonic history of the Silurian sandstones in Akeqi area, Xinjiang[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201802009.htm

    [13]

    Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 1988, 58(5): 820-829.

    [14]

    计波, 焦养泉, 刘阳. 鄂尔多斯盆地东北部下侏罗统富县组底部石英砂岩成因与物源[J]. 地质通报, 2022, 41(9): 1601-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202209009.htm

    Ji B, Jiao Y Q, Liu Y. Petrogenesis and provenance of the quartz sandstone from the bottom of Lower Jurassic Fuxian Formation, northeastern Ordos Basin[J]. Geological Bulletin of China, 2022, 41(9): 1601-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202209009.htm

    [15]

    Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985: 1-311.

    [16]

    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.

    [17]

    Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.

    [18]

    Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.

    [19]

    丁海峰, 马东升, 姚春彦, 等. 新疆阿克苏地区新元古代冰成沉积地球化学研究[J]. 地球化学, 2014, 43(3): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201403004.htm

    Ding H F, Ma D S, Yao C Y, et al. A geochemistry study on Neoproterozoic glaciogenic sediments in Aksu area, Xinjiang[J]. Geochimica, 2014, 43(3): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201403004.htm

    [20]

    屈李华, 刘喜方, 赵芳, 等. 北羌塘盆地三叠系康南组砂岩地球化学特征及其对物源区和构造背景的制约[J]. 西北地质, 2018, 51(4): 97-113. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201804012.htm

    Qu L H, Liu X F, Zhao F, et al. Geochemical characteristics of the sandstones from Triassic Kangnan Formation in North Qiangtang Basin (Tibet): Implications for provenance and tectonic setting[J]. Northwestern Geology, 2018, 51(4): 97-113. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201804012.htm

    [21]

    van de Kamp P C, Leake B E. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1985, 76(4): 411-449.

    [22]

    Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.

    [23]

    Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118.

    [24]

    Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA[J]. Chemical Geology, 1988, 70(4): 335-348.

    [25]

    Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.

    [26]

    张玉修. 班公湖-怒江缝合带中西段构造演化[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2007.

    Zhang Y X. Tectonic evolution of the middle-western Bangong-Nujiang suture, Tibet[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2007.

    [27]

    田康志, 季长军, 伊海生, 等. 南羌塘坳陷扎仁地区中侏罗统布曲组晶粒白云岩成因分析[J]. 中国地质, 2019, 46(2): 398-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902017.htm

    Tian K Z, Ji C J, Yi H S, et al. Origin of grained dolomite from the Buqu Formation of Zaring area in southern Qiangtang depression[J]. Geology in China, 2019, 46(2): 398-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902017.htm

  • 加载中

(9)

(3)

计量
  • 文章访问数:  781
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2021-11-08
修回日期:  2021-12-24
刊出日期:  2022-12-25

目录