MAIN CONTROLLING FACTORS OF UNCONSOLIDATED SANDSTONE IN PEARL RIVER MOUTH BASIN: A Case Study of Neogene Hanjiang Formation in M Oilfield of Enping Sag
-
摘要:
珠江口盆地恩平凹陷新近系浅层砂岩存在疏松现象,开发过程中出砂问题严重,为油田高效开采带来了很大的困难.通过对恩平凹陷M油田韩江组地层的沉积成因、成岩作用及油气充注期次的研究,揭示了砂岩疏松的主要控制因素,为后续根据属性情况进行井位调整等生产措施奠定了基础.研究结果表明,韩江组砂岩疏松的控因有3方面:一是研究区韩江组属于三角洲前缘沉积环境,粒度细,泥质含量高,不利于胶结成岩;二是成岩程度弱,属于早成岩A期,胶结程度弱;三是油气充注严重抑制了成岩作用.
Abstract:The unconsolidated Neogene shallow sandstone in Enping Sag of Pearl River Mouth Basin causes severe sand production in the development process and brings great difficulties to the efficient exploitation of oil fields. Through the study of sedimentary origin, diagenesis and oil-gas charging period of Hanjiang Formation in M Oilfield of Enping Sag, the paper reveals the main controlling factors of unconsolidated sandstone, which lays a foundation for subsequent production measures such as well location adjustment according to attributes. The results show that there are three controlling factors contributed to the unconsolidated sandstone as follows: 1) Hanjiang Formation in the study area is of delta front sedimentary environment with fine grain size and high mud content, which is not conducive to cementation; 2) the diagenetic degree is low, belonging to stage A of early diagenesis, with poor cementation; and 3) the diagenesis is severely inhibited by oil-gas charging.
-
Key words:
- Pearl River Mouth Basin /
- Enping Sag /
- Hanjiang Formation /
- unconsolidated sandstone /
- diagenesis
-
表 1 韩江组矿物组分及结构特征
Table 1. Mineral compositions and structural characteristics of Hanjiang Formation
样品号 石英/% 钾长石/% 斜长石/% 黏土矿物/% 其他/% 杂基/% 成分成熟度/% 接触方式 胶结类型 分选 磨圆 粒径/mm 1-03A 60 12 11 17 0 4 72 点 孔隙 中 次圆—次棱 0.067 1-09A 61 20 6 13 0 5 70 点 孔隙 好—中 次棱—次圆 0.125 1-15A 40 27 12 19 2 7 51 点 孔隙 好—中 次棱—次圆 0.165 1-16A 61 19 6 12 2 11 71 点 孔隙 中 次棱—次圆 0.186 1-17A 56 13 7 24 0 9 74 点 孔隙 较好 次圆—次棱 0.075 2-10A 53 9 9 29 0 1 75 点—未 镶嵌 中 次棱—次圆 0.135 2-14A 45 7 14 34 0 4 68 点 孔隙 差—中 次棱—次圆 0.112 2-18A 51 9 8 30 2 5 75 点 孔隙 中 次圆—次棱 0.156 3-06A 67 12 4 17 0 3 81 点 孔隙 中 次圆—次棱 0.130 3-11A 60 19 3 18 0 2.5 73 点 孔隙 好 次圆 0.114 3-14A 54 16 7 23 0 4 70 点 孔隙 好 次棱—次圆 0.202 3-18A 66 10 10 14 0 5 77 点 孔隙 好 次棱—次圆 0.198 3-23A 60 11 9 20 0 2 75 点 孔隙 中 次棱—次圆 0.202 3-26A 62 14 10 14 0 14 72 点 孔隙 中 次棱—次圆 0.091 4-01A 54 14 11 19 2 1 68 点 孔隙 中 次棱—次圆 0.112 4-06A 66 11 9 14 0 3 77 点 孔隙 好—中 次圆 0.240 5-06A 67 8 11 12 2 1.5 78 点 孔隙 中 次圆—次棱 0.158 5-12A 68 13 13 6 0 6 72 点 孔隙 中 次圆—次棱 0.274 5-17A 71 9 8 12 0 4.5 81 点 孔隙 好 次圆 0.189 5-20A 54 12 13 17 4 10 68 点 孔隙 中—好 次棱—次圆 0.226 6-05A 65 16 5 13 1 4 76 点 镶嵌 中 次棱—次圆 0.253 6-07A 61 19 9 11 0 5 69 点 孔隙 中 次棱—次圆 0.156 6-09A 65 16 6 13 0 3.5 75 点 孔隙 中—好 次圆 0.145 7-01A 70 14 7 9 0 4 77 点—未 镶嵌 差 次圆—次棱 0.369 7-05A 71 10 7 12 0 5 81 点 孔隙型 好 次圆 0.265 7-11A 70 13 7 10 0 5 78 点 镶嵌 中-好 次圆 0.263 表 2 恩平凹陷M油田韩江组储层成岩标志特征
Table 2. Diagenetic markers of Hanjiang Formation reservoir in M Oilfield, Enping Sag
时期 Ro/% 成熟带 蒙脱石/% 混层类型 固结程度 伊蒙混层 高岭石 伊利石 绿泥石 石英加大 菱铁矿 方解石 铁方解石 铁白云石 长石及岩屑 孔隙类型 深度/m 早成岩A 0.35 未成熟 70 蒙皂石带 弱固结 √ √ √ √ √ √ √ √ 原生孔 1331~1390 早成岩B 0.5 半成熟 50~70 无序混带 半固结 √ √ √ √ √ √ √ √ √ √ 混合孔 1390~1505 -
[1] 田波, 魏裕森, 汪红霖, 等. 南海东部疏松砂岩油藏防砂历程研究及展望[J]. 石油化工应用, 2021, 40(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH202102001.htm
Tian B, Wei Y S, Wang H L, et al. Research and prospect of sand control history of unconsolidated sandstone reservoir in eastern South China Sea[J]. Petrochemical Industry Application, 2021, 40(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH202102001.htm
[2] 罗宪波, 李金宜, 何逸凡, 等. 海上疏松砂岩油藏水驱油效率影响因素研究及应用——以NNX油田为例[J]. 石油地质与工程, 2021, 35(1): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN202101012.htm
Luo X B, Li J Y, He Y F, et al. Influencing factors of water flooding efficiency in offshore unconsolidated sandstone reservoir and its application: By taking NNX oilfield as an example[J]. Petroleum Geology and Engineering, 2021, 35(1): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN202101012.htm
[3] 赵博, 苏亚中, 丛巍, 等. 疏松砂岩油气藏出砂风险及机理离散元分析[J]. 中国安全生产科学技术, 2020, 16(11): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202011013.htm
Zhao B, Su Y Z, Cong W, et al. Discrete element analysis on sand production risk and mechanism in unconsolidated sandstone oil and gas reservoir[J]. Journal of Safety Science and Technology, 2020, 16(11): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202011013.htm
[4] 温晓杰. 海上油田疏松砂岩稠油水平井出砂因素和治理研究[J]. 石化技术, 2020, 27(11): 130-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS202011055.htm
Wen X J. Study on sand production factors and treatment of horizontal wells with loose sandstone heavy oil in offshore oilfield[J]. Petrochemical Industry Technology, 2020, 27(11): 130-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS202011055.htm
[5] 张运来, 张吉磊, 周焱斌, 等. 海上疏松砂岩油藏高含水期水驱开发规律研究[J]. 石油化工高等学校学报, 2020, 33(5): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHX202005006.htm
Zhang Y L, Zhang J L, Zhou Y B, et al. Study on the development law of water flooding in offshore loose sandstone reservoir at high water cut stage[J]. Journal of Petrochemical Universities, 2020, 33(5): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHX202005006.htm
[6] 李进, 张晓诚, 韩耀图, 等. 疏松砂岩储层出砂风险综合预测新方法及其应用[J]. 大庆石油地质与开发, 2021, 40(2): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202102010.htm
Li J, Zhang X C, Han Y T, et al. New method to comprehensively predict the sand production risk for unconsolidated sandstone reservoirs and its application[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202102010.htm
[7] 张启龙, 陈彬, 袁伟伟, 等. 海上疏松砂岩防砂设计方法的研究与应用[J]. 中外能源, 2020, 25(8): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW202008006.htm
Zhang Q L, Chen B, Yuan W W, et al. Research and application of design method for sand control in offshore loose sandstone oilfield[J]. Sino-Global Energy, 2020, 25(8): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW202008006.htm
[8] 谢明英, 刘伟新, 戴宗, 等. 海相强水驱疏松砂岩稠油薄油藏高效开发实践[J]. 中外能源, 2019, 24(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201906012.htm
Xie M Y, Liu W X, Dai Z, et al. Practice of efficient development in marine strong-water flooding loose sandstone heavy oil thin reservoirs[J]. Sino-Global Energy, 2019, 24(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201906012.htm
[9] 刘高, 魏蒙恩, 谢裕江, 等. 甘肃新近系疏松砂岩成因[J]. 地质论评, 2015, 61(1): 139-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501015.htm
Liu G, Wei M E, Xie Y J, et al. Genetic analysis of the neogene unconsolidated sandstone in Gansu, Northwest China[J]. Geological Review, 2015, 61(1): 139-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501015.htm
[10] 谢裕江, 刘高, 李高勇. 甘肃兰州黄河北岸疏松砂岩成因[J]. 现代地质, 2012, 26(4): 705-711. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201204010.htm
Xie Y J, Liu G, Li G Y. Genesis of the unconsolidated sandstones in the north side of the Yellow River in Lanzhou, Gansu[J]. Geoscience, 2012, 26(4): 705-711. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201204010.htm
[11] 顾端阳, 窦文博, 丁富寿, 等. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202003023.htm
Gu D Y, Dou W B, Ding F S, et al. Research on the genesis and identification of low resistivity gas reservoirs in unconsolidated sandstone gas reservoirs: A case study of the Sebei Gas Field, Qaidam Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(3): 649-655. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202003023.htm
[12] 邓孝亮, 杨希冰, 尤丽, 等. 北部湾盆地涠西南凹陷始新统流沙港组一段低渗储层特征及控制因素[J]. 石油实验地质, 2021, 43(4): 628-637. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104009.htm
Deng X L, Yang X B, You L, et al. Characteristics and constrains of low-permeability reservoirs in the first member of Eocene Liushagang Formation, Weixinan Sag, Beibuwan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 628-637. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104009.htm
[13] 朱明, 张向涛, 杨兴业, 等. 珠江口盆地惠南半地堑恩平组烃类充注特征与砂岩致密化成因分析[J]. 中国海上油气, 2018, 30(6): 14-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806002.htm
Zhu M, Zhang X T, Yang X Y, et al. Hydrocarbon charging characteristics and sandstone densification genesis of Enping Formation in Huinan half-graben, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2018, 30(6): 14-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806002.htm
[14] 傅宁, 丁放, 何仕斌, 等. 珠江口盆地恩平凹陷烃源岩评价及油气成藏特征分析[J]. 中国海上油气, 2007, 19(5): 295-299, 305. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200705003.htm
Fu N, Ding F, He S B, et al. Source rocks evaluation and reservoir characteristics analysis in Enping Sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2007, 19(5): 295-299, 305. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200705003.htm
[15] 龙更生, 施和生, 郑荣才, 等. 珠江口盆地惠州凹陷深部古近系储层特征及发育控制因素[J]. 海相油气地质, 2011, 16(3): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201103009.htm
Long G S, Shi H S, Zheng R C, et al. Characteristics and development controlling factors of Paleogene deep reservoirs in Huizhou Depression, Pearl River Mouth Basin[J]. Marine Origin Petroleum Geology, 2011, 16(3): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201103009.htm
[16] 刘振宇. 惠州凹陷恩平组烃源岩发育与沉积相关系[D]. 北京: 中国地质大学, 2020.
Liu Z Y. Relationship between source rocks and sedimentary facies of Enping Formation in Huizhou Sag[D]. Beijing: China University of Geosciences, 2020.
[17] 刘强虎, 朱红涛, 舒誉, 等. 珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制[J]. 石油学报, 2015, 36(3): 286-299. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201503005.htm
Liu Q H, Zhu H T, Shu Y, et al. Provenance systems and their control on the beach-bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 286-299. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201503005.htm
[18] 葛家旺, 朱筱敏, 吴陈冰洁, 等. 辫状河三角洲沉积特征及成因差异——以珠江口盆地陆丰凹陷恩平组为例[J]. 石油学报, 2019, 40(S1): 139-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1012.htm
Ge J W, Zhu X M, Wu C B J, et al. Sedimentary characteristics and genetic difference of braided delta: A case study of Enping Formation in Lufeng Sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 139-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1012.htm
[19] 许新明, 刘丽华, 陈胜红, 等. 珠江口盆地恩平凹陷新近系油气成藏主控因素分析[J]. 地质科技情报, 2015, 34(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501016.htm
Xu X M, Liu L H, Chen S H, et al. Analysis of the main control factors on Neogene hydrocarbon accumulation in Enping Sag, Pearl River Mouth Basin[J]. Geological Science and Technology Information, 2015, 34(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501016.htm
[20] 刘方圆, 叶加仁, 舒誉, 等. 恩平凹陷含油气系统划分与评价[J]. 西安石油大学学报(自然科学版), 2014, 29(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201404007.htm
Liu F Y, Ye J R, Shu Y, et al. Division and evaluation of hydrocarbon-bearing system in Enping Sag[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2014, 29(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201404007.htm
[21] 于开平, 张功成, 梁建设, 等. 珠江口盆地恩平凹陷油气成藏条件研究[J]. 石油实验地质, 2011, 33(5): 509-512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201105015.htm
Yu K P, Zhang G C, Liang J S, et al. Petroleum accumulation conditions in Enping Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2011, 33(5): 509-512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201105015.htm
[22] 黄丽芬. 层序地层学在陆相沉积凹陷分析中的应用——以珠江口盆地恩平凹陷为例[J]. 中国海上油气(地质), 1999, 13(3): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199903002.htm
Huang L F. The application of sequence stratigraphy for analysis in nonmarine depression with example of Enping Sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 1999, 13(3): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199903002.htm
[23] 禚喜准, 王琪, 李娟, 等. 早期碳酸盐胶结作用对恩平凹陷珠江组砂岩孔隙演化模式的影响[J]. 天然气工业, 2013, 33(4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201304004.htm
Zhuo X Z, Wang Q, Li J, et al. Influence of early carbonate cementation on porosity evolution of sandstones in the Zhujiang Formation, Enping Sag, Pearl River Mouth Basin[J]. Natural Gas Industry, 2013, 33(4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201304004.htm
[24] 邢作昌, 张忠涛, 林畅松, 等. 珠江口盆地荔湾凹陷上渐新统-早中新统物源特征及其对沉积充填的影响[J]. 中国地质, 2020, 47(5): 1577-1588. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005023.htm
Xing Z C, Zhang Z T, Lin C S, et al. Provenance feature of Upper Oligocene to Early Miocene in Liwan Sag, Pearl River Mouth Basin and its influence on depositional filling[J]. Geology in China, 2020, 47(5): 1577-1588. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005023.htm