班公湖流域水化学特征及主控因素分析

黄峻川, 严步青, 刘沛. 班公湖流域水化学特征及主控因素分析[J]. 地质与资源, 2023, 32(4): 453-461. doi: 10.13686/j.cnki.dzyzy.2023.04.009
引用本文: 黄峻川, 严步青, 刘沛. 班公湖流域水化学特征及主控因素分析[J]. 地质与资源, 2023, 32(4): 453-461. doi: 10.13686/j.cnki.dzyzy.2023.04.009
HUANG Jun-chuan, YAN Bu-qing, LIU Pei. HYDROCHEMICAL CHARACTERISTICS AND MAIN CONTROLLING FACTORS IN BANGONG LAKE BASIN[J]. Geology and Resources, 2023, 32(4): 453-461. doi: 10.13686/j.cnki.dzyzy.2023.04.009
Citation: HUANG Jun-chuan, YAN Bu-qing, LIU Pei. HYDROCHEMICAL CHARACTERISTICS AND MAIN CONTROLLING FACTORS IN BANGONG LAKE BASIN[J]. Geology and Resources, 2023, 32(4): 453-461. doi: 10.13686/j.cnki.dzyzy.2023.04.009

班公湖流域水化学特征及主控因素分析

  • 基金项目:
    中国地质调查局项目"喀纳-尼苏综合地质调查(DD20211580)
详细信息
    作者简介: 黄峻川(1991—), 男, 工程师, 主要从事水文地质与水资源调查研究工作, 通信地址四川省成都市金牛区茶店子路399号, E-mail//hjunchuan@mail.cgs.gov.cn
    通讯作者: 刘沛(1989—), 男, 硕士, 工程师, 通信地址四川省成都市金牛区茶店子路399号, E-mail//304789204@qq.com
  • 中图分类号: P592

HYDROCHEMICAL CHARACTERISTICS AND MAIN CONTROLLING FACTORS IN BANGONG LAKE BASIN

More Information
  • 通过班公湖流域水资源调查、数据采集与分析,运用数理统计、水化学分析方法综合研究流域水化学特征及主控因素.结果表明:水化学类型河水以HCO3-Ca型水为主、湖水以Cl·SO4-Na·Mg型水为主、地下水以HCO3-Ca·Mg型水为主.河水和地下水形成过程中主要受碳酸盐岩和硅酸盐岩控制,湖水主要受蒸发结晶作用控制.湖水中Na+、Cl-、K+来源于降雨、蒸发岩溶解以及其他含钾钠矿物溶解;河水以及地下水中的Na+、Cl-、K+主要来源于蒸发岩溶解;各水体中的Ca2+、Mg2+、SO42-来源于碳酸盐岩矿物和石膏溶解,其中河水和地下水中的Ca2+、Mg2+主要来源于碳酸盐岩矿物溶解.地下水中的Na+、K+与含水层或土壤中的Ca2+、Mg2+发生离子交换作用.

  • 加载中
  • 图 1  研究区交通位置图

    Figure 1. 

    图 2  水体取样位置图

    Figure 2. 

    图 3  班公湖离子浓度空间变化特征

    Figure 3. 

    图 4  河流离子浓度空间变化特征

    Figure 4. 

    图 5  地下水离子浓度空间变化特征

    Figure 5. 

    图 6  班公湖流域水体Piper图

    Figure 6. 

    图 7  水化学Gibbs图

    Figure 7. 

    图 8  离子摩尔浓度比值端元图

    Figure 8. 

    图 9  Na+/Cl与Cl关系曲线图

    Figure 9. 

    图 10  (Na++K+)与Cl关系曲线图

    Figure 10. 

    图 11  (Ca2++Mg2+)与HCO3关系曲线图

    Figure 11. 

    图 12  (Ca2++Mg2+)与(HCO3+SO42–)关系曲线图

    Figure 12. 

    图 13  氯碱指数与矿化度关系图

    Figure 13. 

    图 14  离子浓度关系图

    Figure 14. 

    表 1  水化学成分分析结果

    Table 1.  Analysis results of hydrochemical compositions

    采样点 分析值 pH 氯化物 硫酸盐 硝酸盐 重碳酸根 矿化度
    河流 最小 8.3 1.0 1.3 10.0 3.2 1.5 12.8 1.0 56.0 90.0
    最大 8.8 2.2 19.0 90.0 23.4 7.1 78.9 2.2 204.0 251.0
    平均 8.5 1.6 10.9 46.5 12.3 4.0 35.9 1.3 119.6 157.6
    湖泊 最小 8.4 40.0 500.0 8.1 240.0 600.0 750.0 0.003 200.0 630.0
    最大 9.0 83.1 765.0 32.5 189.0 1095.0 849.0 0.003 500.0 2066.0
    平均 8.6 65.9 655.0 19.6 210.2 925.3 813.0 0.003 317.5 1348.3
    地下水 最小 8.2 0.9 3.1 18.0 8.2 3.7 21.9 0.9 96.0 128.0
    最大 8.5 11.2 184.0 180.0 85.0 256.0 628.0 13.3 337.0 797.0
    平均 8.3 4.5 35.6 54.4 29.7 43.5 109.3 5.6 250.5 311.4
    含量单位:mg/L.
    下载: 导出CSV

    表 2  水体离子浓度及矿化度

    Table 2.  Ion concentration and salinity in water

    采样点 点性质 氯化物 硫酸盐 硝酸盐 重碳酸根 矿化度
    QSY05 河水 0.03 0.06 0.50 0.28 0.04 0.29 0.02 0.92 90
    QSY06 河水 0.03 0.06 0.60 0.27 0.05 0.27 0.04 1.02 104
    QSY09 河水 0.05 0.68 4.25 1.30 0.13 0.73 0.03 2.21 150
    QSY10 河水 0.05 0.76 4.50 1.34 0.15 0.81 0.03 2.31 193
    QSY11 河水 0.06 0.83 1.80 1.95 0.20 1.64 0.00 3.34 251
    QSY08 湖水 2.13 33.26 0.90 20.00 31.29 17.65 0.00 8.20 2066
    QSY16 湖水 1.69 29.26 1.63 15.75 28.46 16.79 0.00 4.56 1800
    QSY04 湖水 1.92 29.65 0.41 16.00 28.86 17.69 0.00 4.79 897
    QSY15 湖水 1.03 13.04 1.00 18.33 17.14 15.63 0.00 3.28 630
    QSY01 地下水 0.09 0.75 2.25 2.28 0.71 1.45 0.02 3.69 274
    QSY02 地下水 0.04 0.35 0.90 0.94 0.24 0.47 0.05 1.58 135
    QSY03 地下水 0.29 0.40 1.14 2.05 0.12 0.68 0.03 2.92 203
    QSY07 地下水 0.28 8.00 9.00 7.08 7.31 13.08 0.19 5.52 797
    QSY12 地下水 0.02 0.13 1.46 1.03 0.11 0.51 0.06 1.95 159
    QSY13 地下水 0.10 0.53 1.10 1.42 0.40 0.78 0.04 1.97 174
    QSY14 地下水 0.06 0.30 1.06 0.69 0.17 0.46 0.06 1.70 128
    QSY17 地下水 0.11 1.20 3.40 2.23 1.06 1.69 0.05 5.36 359
    QSY18 地下水 0.11 1.27 3.55 2.44 1.35 1.79 0.21 5.28 350
    QSY19 地下水 0.10 1.72 3.28 2.35 1.77 2.48 0.18 5.11 374
    QSY20 地下水 0.07 2.40 2.82 4.73 0.43 1.68 0.10 10.10 473
    单位:矿化度为mg/L,其他为mmol/L.
    下载: 导出CSV
  • [1]

    陈松, 桂和荣. 淮北煤田太原组灰岩水年龄及同位素地球化学特征[J]. 中国地质, 2019, 46(2): 337–345. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902011.htm

    Chen S, Gui H R. The age and isotopic characteristics of groundwater in Taiyuan Formation limestone aquifer of the Huaibei coalfield[J]. Geology in China, 2019, 46(2): 337–345. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902011.htm

    [2]

    叶阳, 常园. 鄂尔多斯盆地盐池–定边地区水化学场分布特征及形成机理[J]. 地质与资源, 2020, 29(3): 260–265, 293. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10201.shtml

    Ye Y, Chang Y. Distribution characteristics and formation mechanism of hydrochemical field in Yanchi-Dingbian area of Ordos Basin[J]. Geology and Resources, 2020, 29(3): 260–265, 293. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10201.shtml

    [3]

    张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537–4545. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201711012.htm

    Zhang T, Cai W T, Li Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 2017, 38(11): 4537–4545. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201711012.htm

    [4]

    郭小娇, 王慧玮, 石建省, 等. 白洋淀湿地地下水系统水化学变化特征及演化模式[J]. 地质学报, 2022, 96(2): 656–672. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202202020.htm

    Guo X J, Wang H W, Shi J S, et al. Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland, North China Plain[J]. Acta Geologica Sinica, 2022, 96(2): 656–672. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202202020.htm

    [5]

    黄荷. 复杂岩溶矿区地下水化学组分演化研究及充水条件辨识——以云南毛坪铅锌矿为例[D]. 武汉: 中国地质大学, 2021.

    Huang H. Study on hydrochemical evolution pattern and water-filling conditions in complicated carbonate-hosted deposit: A case study of Maoping lead-zinc deposit, Yunnan[D]. Wuhan: China University of Geosciences, 2021.

    [6]

    严宇鹏, 牛凤霞, 刘佳, 等. 雅鲁藏布江上游夏季水化学特征及来源解析[J]. 中国环境科学, 2022, 42(2): 815–825. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202202036.htm

    Yan Y P, Niu F X, Liu J, et al. Hydrochemical characteristics and sources of the upper Yarlung Zangbo River in summer[J]. China Environmental Science, 2022, 42(2): 815–825. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202202036.htm

    [7]

    Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088–1090.

    [8]

    孙岐发, 贾林刚, 田辉, 等. 长春莲花山地区地下水化学特征及成因分析[J]. 地质与资源, 2020, 29(5): 476–482. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10234.shtml

    Sun Q F, Jia L G, Tian H, et al. Chemical characteristics and genesis analysis of the groundwater in Lianhuashan area, Changchun City[J]. Geology and Resources, 2020, 29(5): 476–482. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10234.shtml

    [9]

    孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究: 以广西大溶江、灵渠流域为例[J]. 环境科学, 2016, 37(1): 123–131. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201601020.htm

    Sun P A, Yu S, Mo F Z, et al. Hydrochemical characteristics and influencing factors in different geological background: a case study in Darongjiang and Lingqu Basin, Guangxi, China[J]. Environmental Science, 2016, 37(1): 123–131. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201601020.htm

    [10]

    林聪业, 孙占学, 高柏, 等. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘, 2021, 28(5): 49–58. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105008.htm

    Lin C Y, Sun Z X, Gao B, et al. Hydrochemical characteristics and formation mechanism of groundwater in Lhasa area, China[J]. Earth Science Frontiers, 2021, 28(5): 49–58. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105008.htm

    [11]

    康小兵, 许模. 阿里第四系地下水资源形成控制因素研究[J]. 干旱区资源与环境, 2011, 25(2): 102–106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201102020.htm

    Kang X B, Xu M. Formation and controlling factors of groundwater resources in Quaternary of Ali area[J]. Journal of Arid Land Resources and Environment, 2011, 25(2): 102–106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201102020.htm

    [12]

    田原, 余成群, 雒昆利, 等. 西藏地区天然水的水化学性质和元素特征[J]. 地理学报, 2014, 69(7): 969–982. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE201506002.htm

    Tian Y, Yu C Q, Luo K L, et al. Water chemical properties and the element characteristics of natural water in Tibet, China[J]. Acta Geographica Sinica, 2014, 69(7): 969–982. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE201506002.htm

    [13]

    Xiao J, Jin Z D, Zhang F, et al. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2012, 67(5): 1331–1344.

    [14]

    周训. 深层地下卤水的基本特征与资源量分类[J]. 水文地质工程地质, 2013, 40(5): 4–10. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201305004.htm

    Zhou X. Basic characteristics and resource classification of subsurface brines in deep-seated aquifers[J]. Hydrogeology & Engineering Geology, 2013, 40(5): 4–10. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201305004.htm

    [15]

    徐洪飞, 周训, 王蒙蒙, 等. 云南泸水登埂与玛布温泉形成特征及成因研究[J]. 中国地质, 2020, 47(6): 1739–1754. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006012.htm

    Xu H F, Zhou X, Wang M M, et al. Characteristics and origin of the Denggeng and Mabu hot spring in Lushui County, Yunnan Province [J]. Geology in China, 2020, 47(6): 1739–1754. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006012.htm

    [16]

    刘久潭, 李颖智, 高宗军, 等. 拉萨河流域中下游地区水化学及地表水–地下水转化关系研究[J]. 山东科技大学学报(自然科学版), 2020, 39(5): 10–20. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY202005002.htm

    Liu J T, Li Y Z, Gao Z J, et al. Hydrochemistry and relationship between groundwater and surface water in the middle and lower reaches of Lhasa River Basin[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(5): 10–20. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY202005002.htm

    [17]

    曾妍妍, 周金龙, 乃尉华, 等. 新疆喀什噶尔河流域地下水形成的水文地球化学过程[J]. 干旱区研究, 2020, 37(3): 541–550. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202003001.htm

    Zeng Y Y, Zhou J L, Nai W H, et al. Hydrogeochemical processes of groundwater formation in the Kashgar River Basin, Xinjiang[J]. Arid Zone Research, 2020, 37(3): 541–550. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202003001.htm

    [18]

    赵春红, 申豪勇, 王志恒, 等. 汾河流域地表水水化学同位素特征及其影响因素[J]. 环境科学, 2022, 43(10): 4440–4448. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202210015.htm

    Zhao C H, Sheng H Y, Wang Z H, et al. Hydrochemical and isotopic characteristics in the surface water of the Fenhe River Basin and influence factors[J]. Environmental Science, 2022, 43(10): 4440– 4448. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202210015.htm

    [19]

    杨景燕, 杨余辉, 胡义成, 等. 新疆伊犁喀什河流域地表水水化学特征及控制因素[J]. 环境化学, 2021, 40(12): 3815–3827. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202112019.htm

    Yang J Y, Yang Y H, Hu Y C, et al. Hydrochemical characteristics and possible controls of the surface water in Kashi River Basin, Ili, Xinjiang[J]. Environmental Chemistry, 2021, 40(12): 3815–3827. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202112019.htm

    [20]

    郝启勇, 徐晓天, 张心彬, 等. 鲁西北阳谷地区浅层高氟地下水化学特征及成因[J]. 地球科学与环境学报, 2020, 42(5): 668–677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm

    Hao Q Y, Xu X T, Zhang X B, et al. Hydrochemical characteristics and genesis of high-fluorine shallow groundwater in Yanggu area of the northwestern Shandong, China[J]. Journal of Earth Sciences and Environment, 2020, 42(5): 668–677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm

    [21]

    王建, 张华兵, 许君利, 等. 盐城地区地下水溶质来源及其成因分析[J]. 环境科学, 2022, 43(4): 1908–1919. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202204022.htm

    Wang J, Zhang H B, Xu J L, et al. Provenance of groundwater solute and its controlling factors in Yancheng area[J]. Environmental Science, 2022, 43(4): 1908–1919. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202204022.htm

  • 加载中

(14)

(2)

计量
  • 文章访问数:  707
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2022-04-11
修回日期:  2022-05-10
刊出日期:  2023-08-25

目录