基于Faster R-CNN改进算法的遥感技术及其在地质灾害监测中的应用研究

崔娜, 卢小红, 王妍, 李菲, 宋珊, 郭庆妮, 周少伟, 史利燕. 基于Faster R-CNN改进算法的遥感技术及其在地质灾害监测中的应用研究[J]. 地质与资源, 2023, 32(6): 772-778. doi: 10.13686/j.cnki.dzyzy.2023.06.014
引用本文: 崔娜, 卢小红, 王妍, 李菲, 宋珊, 郭庆妮, 周少伟, 史利燕. 基于Faster R-CNN改进算法的遥感技术及其在地质灾害监测中的应用研究[J]. 地质与资源, 2023, 32(6): 772-778. doi: 10.13686/j.cnki.dzyzy.2023.06.014
CUI Na, LU Xiao-hong, WANG Yan, LI Fei, SONG Shan, GUO Qing-ni, ZHOU Shao-wei, SHI Li-yan. REMOTE SENSING TECHNOLOGY BASED ON IMPROVED FASTER R-CNN ALGORITHM AND ITS APPLICATION IN GEOLOGICAL DISASTER MONITORING[J]. Geology and Resources, 2023, 32(6): 772-778. doi: 10.13686/j.cnki.dzyzy.2023.06.014
Citation: CUI Na, LU Xiao-hong, WANG Yan, LI Fei, SONG Shan, GUO Qing-ni, ZHOU Shao-wei, SHI Li-yan. REMOTE SENSING TECHNOLOGY BASED ON IMPROVED FASTER R-CNN ALGORITHM AND ITS APPLICATION IN GEOLOGICAL DISASTER MONITORING[J]. Geology and Resources, 2023, 32(6): 772-778. doi: 10.13686/j.cnki.dzyzy.2023.06.014

基于Faster R-CNN改进算法的遥感技术及其在地质灾害监测中的应用研究

  • 基金项目:
    陕西省公益性地质调查项目"陕西省地质资料信息化与服务"(公益[2021]17);陕西省地质灾害综防体系建设项目"子洲县双湖峪街办地质灾害风险调查评价"(JYSH2021-政采023、SXLXZB2020-92);陕西省地质灾害综防体系建设项目"子洲县老君殿集镇地质灾害调查与风险评价"(SXLXZB2020-92);陕西省自然灾害综合风险普查项目"陕西省第一次自然灾害综合风险普查支撑服务与试点县综合风险评估与区划"(陕灾险普办函[2021]41号)
详细信息
    作者简介: 崔娜(1987-), 女, 硕士, 工程师, 从事地质测绘、地学统计、遥感与信息化工作, 通信地址陕西省西安市雁塔区西影路25号, E-mail//yyanjj6777@163.com
  • 中图分类号: TP753

REMOTE SENSING TECHNOLOGY BASED ON IMPROVED FASTER R-CNN ALGORITHM AND ITS APPLICATION IN GEOLOGICAL DISASTER MONITORING

  • 为了减少地质灾害带给人类的破坏, 对自然环境中的地质信息进行精确监测具有极为重要的意义. 在对地质灾害和遥感技术之间的关联性进行描述的基础上, 本研究引入Faster R-CNN算法, 进一步运用特征提取网络, 修改训练方法并对该算法进行优化, 使之应用于遥感技术以提升检测地质灾害的速度和精度, 最终通过PASCAL VOC数据集与COCO数据集对所提出方法模型进行实验评价及论证. 结果发现, GIOU值为0.6时, 检测精度达到最优, 且在算法对比中, 本研究所设计的Faster R-CNN改进算法的AP@0.5达到了59, 证明该算法兼顾了速度与精确性, 达到了预期的目标检测目的. 同时, 发现本次研究设计的Faster R-CNN改进目标检测算法能够有效应用于卫星遥感技术, 达到快速检测到自然环境中的地质信息, 并能够通过判断其属性变换而做出预警措施, 从而使得人类因地质变化引起的损失得以减少.

  • 加载中
  • 图 1  网络模型优化途径

    Figure 1. 

    图 2  数据增强的几何变换方法

    Figure 2. 

    图 3  Faster R-CNN算法图

    Figure 3. 

    图 4  RPN的结构

    Figure 4. 

    图 5  特征金字塔网络结构

    Figure 5. 

    图 6  不同k值下平均GIOU图

    Figure 6. 

    图 7  算法在MS COCO数据集上的实验结果

    Figure 7. 

  • [1]

    Meng R H, Rice S G, Wang J, et al. A fusion steganographic algorithm based on faster R-CNN[J]. Computers, Materials & Continua, 2018, 55(1): 1-16.

    [2]

    葛大庆. 地质灾害早期识别与监测预警中的综合遥感应用[J]. 城市与减灾, 2018(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201806011.htm

    Ge D Q. Comprehensive application of remote sensing in early identification, monitoring and early warning in geological disasters[J]. City and Disaster Reduction, 2018(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201806011.htm

    [3]

    毕瑞, 甘淑, 李绕波, 等. 面向东川复杂山地泥石流沟谷三维地形建模及特征分析的无人机遥感探测应用研究[J]. 中国地质灾害与防治学报, 2021, 32(3): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103012.htm

    Bi R, Gan S, Li R B, et al. Application research of unmanned aerial vehicle remote sensing detection for 3D terrain modelling and feature analysis of debris flow gullies in complex mountainous area of Dongchuan[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103012.htm

    [4]

    Lian X G, Li Z J, Yuan H Y, et al. Rapid identification of landslide, collapse and crack based on low-altitude remote sensing image of UAV[J]. Journal of Mountain Science, 2020, 17(12): 2915-2928. doi: 10.1007/s11629-020-6080-9

    [5]

    Athanassas C D. Muography for geological hazard assessment in the South Aegean active volcanic arc (SAAVA)[J]. Mediterranean Geoscience Reviews, 2020, 2(2): 233-246. doi: 10.1007/s42990-020-00020-x

    [6]

    Lai F, Shao Q F, Lin Y, et al. A method for the hazard assessment of regional geological disasters: A case study of the Panxi area, China[J]. Journal of Spatial Science, 2021, 66(1): 143-162. doi: 10.1080/14498596.2019.1606741

    [7]

    Qi L, Li B Y, Chen L K, et al. Ship target detection algorithm based on improved faster R-CNN[J]. Electronics, 2019, 8(9): 959. doi: 10.3390/electronics8090959

    [8]

    Gao M Y, Du Y J, Yang Y X, et al. Adaptive anchor box mechanism to improve the accuracy in the object detection system[J]. Multimedia Tools and Applications, 2019, 78(19): 27383-27402. doi: 10.1007/s11042-019-07858-w

    [9]

    Liu P, Wei Y M, Wang Q J, et al. A research on landslides automatic extraction model based on the improved mask R-CNN[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 168. doi: 10.3390/ijgi10030168

    [10]

    Vabalas A, Gowen E, Poliakoff E, et al. Machine learning algorithm validation with a limited sample size[J]. PLoS One, 2019, 14(11): e0224365. doi: 10.1371/journal.pone.0224365

    [11]

    Krinitskiy M, Aleksandrova M, Verezemskaya P, et al. On the generalization ability of data-driven models in the problem of total cloud cover retrieval[J]. Remote Sensing, 2021, 13(2): 326. doi: 10.3390/rs13020326

    [12]

    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm

    Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm

    [13]

    Siregar S P, Wanto A. Analysis of artificial neural network accuracy using backpropagation algorithm in predicting process (forecasting)[J]. IJISTECH (International Journal of Information System and Technology), 2017, 1(1): 34-42.

    [14]

    Xu Q H, Yuan S F, Huang T X. Multi-dimensional uniform initialization Gaussian mixture model for spar crack quantification under uncertainty[J]. Sensors, 2021, 21(4): 1283.

    [15]

    张春晓, 鲍云飞, 马中祺, 等. 基于卷积神经网络的光学遥感目标检测研究进展[J]. 航天返回与遥感, 2020, 41(6): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202006006.htm

    Zhang C X, Bao Y F, Ma Z Q, et al. Research progress on optical remote sensing object detection based on CNN[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(6): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202006006.htm

    [16]

    Tanatipuknon A, Aimmanee P, Watanabe Y, et al. Study on combining two faster R-CNN models for landslide detection with a classification decision tree to improve the detection performance[J]. Journal of Disaster Research, 2021, 16(4): 588-595.

    [17]

    Mahmood T, Arsalan M, Owais M, et al. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs[J]. Journal of Clinical Medicine, 2020, 9(3): 749.

    [18]

    Zhang N, Feng Y R, Lee E J. Activity object detection based on improved faster R-CNN[J]. Journal of Korea Multimedia Society, 2021, 24(3): 416-422.

    [19]

    Singh S, Ahuja U, Kumar M, et al. Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment[J]. Multimedia Tools and Applications, 2021, 80(13): 19753-19768.

    [20]

    Chen K, Tao W B. Learning linear regression via single-convolutional layer for visual object tracking[J]. IEEE Transactions on Multimedia, 2019, 21(1): 86-97.

    [21]

    刘小波, 刘鹏, 蔡之华, 等. 基于深度学习的光学遥感图像目标检测研究进展[J]. 自动化学报, 2021, 47(9): 2078-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202109002.htm

    Liu X B, Liu P, Cai Z H, et al. Research progress of optical remote sensing image object detection based on deep learning[J]. Acta Automatica Sinica, 2021, 47(9): 2078-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202109002.htm

    [22]

    Zhao K, Wang Y N, Zhu Q, et al. Intelligent detection of parcels based on improved faster R-CNN[J]. Applied Sciences, 2022, 12(14): 7158.

    [23]

    Martín-Doñas J M, Gomez A M, Gonzalez J A, et al. A deep learning loss function based on the perceptual evaluation of the speech quality[J]. IEEE Signal Processing Letters, 2018, 25(11): 1680-1684.

    [24]

    欧攀, 张正, 路奎, 等. 基于卷积神经网络的遥感图像目标检测[J]. 激光与光电子学进展, 2019, 56(5): 051002. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201905009.htm

    Ou P, Zhang Z, Lu K, et al. Object detection of remote sensing images based on convolutional neural networks[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051002. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201905009.htm

  • 加载中

(7)

计量
  • 文章访问数:  619
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2021-12-27
修回日期:  2022-10-08
刊出日期:  2023-12-25

目录